Expression patterns of novel immunotherapy targets in intermediate- and high-grade lung neuroendocrine neoplasms.


Journal

Cancer immunology, immunotherapy : CII
ISSN: 1432-0851
Titre abrégé: Cancer Immunol Immunother
Pays: Germany
ID NLM: 8605732

Informations de publication

Date de publication:
02 May 2024
Historique:
received: 06 11 2023
accepted: 14 04 2024
medline: 2 5 2024
pubmed: 2 5 2024
entrez: 1 5 2024
Statut: epublish

Résumé

Advancements in immunotherapeutic approaches only had a modest impact on the therapy of lung neuroendocrine neoplasms (LNENs). Our multicenter study aimed to investigate the expression patterns of novel immunotherapy targets in intermediate- and high-grade LNENs. The expressions of V-domain Ig suppressor of T cell activation (VISTA), OX40L, Glucocorticoid-induced TNF receptor (GITR), and T cell immunoglobulin and mucin domain 3 (TIM3) proteins were measured by immunohistochemistry in surgically resected tumor samples of 26 atypical carcinoid (AC), 49 large cell neuroendocrine lung cancer (LCNEC), and 66 small cell lung cancer (SCLC) patients. Tumor and immune cells were separately scored. Tumor cell TIM3 expression was the highest in ACs (p < 0.001), whereas elevated tumor cell GITR levels were characteristic for both ACs and SCLCs (p < 0.001 and p = 0.011, respectively). OX40L expression of tumor cells was considerably lower in ACs (vs. SCLCs; p < 0.001). Tumor cell VISTA expression was consistently low in LNENs, with no significant differences across histological subtypes. ACs were the least immunogenic tumors concerning immune cell abundance (p < 0.001). Immune cell VISTA and GITR expressions were also significantly lower in these intermediate-grade malignancies than in SCLCs or in LCNECs. Immune cell TIM3 and GITR expressions were associated with borderline prognostic significance in our multivariate model (p = 0.057 and p = 0.071, respectively). LNEN subtypes have characteristic and widely divergent VISTA, OX40L, GITR, and TIM3 protein expressions. By shedding light on the different expression patterns of these immunotherapy targets, the current multicenter study provides support for the future implementation of novel immunotherapeutic approaches.

Sections du résumé

BACKGROUND BACKGROUND
Advancements in immunotherapeutic approaches only had a modest impact on the therapy of lung neuroendocrine neoplasms (LNENs). Our multicenter study aimed to investigate the expression patterns of novel immunotherapy targets in intermediate- and high-grade LNENs.
METHODS METHODS
The expressions of V-domain Ig suppressor of T cell activation (VISTA), OX40L, Glucocorticoid-induced TNF receptor (GITR), and T cell immunoglobulin and mucin domain 3 (TIM3) proteins were measured by immunohistochemistry in surgically resected tumor samples of 26 atypical carcinoid (AC), 49 large cell neuroendocrine lung cancer (LCNEC), and 66 small cell lung cancer (SCLC) patients. Tumor and immune cells were separately scored.
RESULTS RESULTS
Tumor cell TIM3 expression was the highest in ACs (p < 0.001), whereas elevated tumor cell GITR levels were characteristic for both ACs and SCLCs (p < 0.001 and p = 0.011, respectively). OX40L expression of tumor cells was considerably lower in ACs (vs. SCLCs; p < 0.001). Tumor cell VISTA expression was consistently low in LNENs, with no significant differences across histological subtypes. ACs were the least immunogenic tumors concerning immune cell abundance (p < 0.001). Immune cell VISTA and GITR expressions were also significantly lower in these intermediate-grade malignancies than in SCLCs or in LCNECs. Immune cell TIM3 and GITR expressions were associated with borderline prognostic significance in our multivariate model (p = 0.057 and p = 0.071, respectively).
CONCLUSIONS CONCLUSIONS
LNEN subtypes have characteristic and widely divergent VISTA, OX40L, GITR, and TIM3 protein expressions. By shedding light on the different expression patterns of these immunotherapy targets, the current multicenter study provides support for the future implementation of novel immunotherapeutic approaches.

Identifiants

pubmed: 38693435
doi: 10.1007/s00262-024-03704-7
pii: 10.1007/s00262-024-03704-7
doi:

Substances chimiques

Hepatitis A Virus Cellular Receptor 2 0
HAVCR2 protein, human 0
Glucocorticoid-Induced TNFR-Related Protein 0
Biomarkers, Tumor 0
B7 Antigens 0
VSIR protein, human 0
OX40 Ligand 0
TNFRSF18 protein, human 0

Types de publication

Journal Article Multicenter Study

Langues

eng

Sous-ensembles de citation

IM

Pagination

114

Subventions

Organisme : Nemzeti Kutatási Fejlesztési és Innovációs Hivatal
ID : TKP2021-EGA-33
Organisme : Semmelweis Egyetem
ID : Semmelweis 250+ Excellence PhD Scholarship
Organisme : Austrian Science Fund
ID : FWF No. T 1062-B33
Organisme : Austrian Science Fund
ID : FWF I3522
Organisme : Hochschuljubiläumsstiftung der Stadt Wien
ID : Innovative Interdisciplinary Cancer Research
Organisme : Magyar Tudományos Akadémia
ID : PC2022-II-19/1/2022
Organisme : Magyar Tudományos Akadémia
ID : Bolyai Research Scholarship
Organisme : Innovációs és Technológiai Minisztérium
ID : UNKP-20-3
Organisme : International Association for the Study of Lung Cancer
ID : International Lung Cancer Foundation Young Investigator Grant (2022)

Informations de copyright

© 2024. The Author(s).

Références

Ferlay J, Colombet M, Soerjomataram I, Parkin DM, Piñeros M, Znaor A, Bray F (2021) Cancer statistics for the year 2020: an overview. Int J Cancer. https://doi.org/10.1002/ijc.33588
doi: 10.1002/ijc.33588 pubmed: 34460109
Metovic J, Barella M, Bianchi F et al (2021) Morphologic and molecular classification of lung neuroendocrine neoplasms. Virchows Arch 478:5–19. https://doi.org/10.1007/s00428-020-03015-z
doi: 10.1007/s00428-020-03015-z pubmed: 33474631 pmcid: 7966641
Nicholson AG, Tsao MS, Beasley MB et al (2022) The 2021 WHO classification of lung tumors: impact of advances since 2015. J Thorac Oncol 17:362–387. https://doi.org/10.1016/j.jtho.2021.11.003
doi: 10.1016/j.jtho.2021.11.003 pubmed: 34808341
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA a Cancer J Clin 71(3):209–249. https://doi.org/10.3322/caac.21660
doi: 10.3322/caac.21660
Travis WD, Brambilla E, Nicholson AG et al (2015) The 2015 world health organization classification of lung tumors: impact of genetic, clinical and radiologic advances since the 2004 classification. J Thorac Oncol 10:1243–1260. https://doi.org/10.1097/jto.0000000000000630
doi: 10.1097/jto.0000000000000630 pubmed: 26291008
Morandi U, Casali C, Rossi G (2006) Bronchial typical carcinoid tumors. Semin Thorac Cardiovasc Surg 18:191–198. https://doi.org/10.1053/j.semtcvs.2006.08.005
doi: 10.1053/j.semtcvs.2006.08.005 pubmed: 17185178
Baudin E, Caplin M, Garcia-Carbonero R et al (2021) Lung and thymic carcinoids: ESMO clinical practice guidelines for diagnosis, treatment and follow-up(☆). Ann Oncol 32:439–451. https://doi.org/10.1016/j.annonc.2021.01.003
doi: 10.1016/j.annonc.2021.01.003 pubmed: 33482246
Pusceddu S, Lo Russo G, Macerelli M et al (2016) Diagnosis and management of typical and atypical lung carcinoids. Crit Rev Oncol Hematol 100:167–176. https://doi.org/10.1016/j.critrevonc.2016.02.009
doi: 10.1016/j.critrevonc.2016.02.009 pubmed: 26917456
Randhawa S, Trikalinos N, Patterson GA (2021) Neuroendocrine tumors of the lung. Thorac Surg Clin 31:469–476. https://doi.org/10.1016/j.thorsurg.2021.05.005
doi: 10.1016/j.thorsurg.2021.05.005 pubmed: 34696859
Ferrara MG, Stefani A, Simbolo M et al (2021) Large cell neuro-endocrine carcinoma of the lung: current treatment options and potential future opportunities. Front Oncol 11:650293. https://doi.org/10.3389/fonc.2021.650293
doi: 10.3389/fonc.2021.650293 pubmed: 33937057 pmcid: 8081906
Borczuk AC (2020) Pulmonary neuroendocrine tumors. Surg Pathol Clin 13(1):35–55. https://doi.org/10.1016/j.path.2019.10.002
doi: 10.1016/j.path.2019.10.002 pubmed: 32005434
Megyesfalvi Z, Gay CM, Popper H et al (2023) Clinical insights into small cell lung cancer: tumor heterogeneity, diagnosis, therapy, and future directions. CA: A Cancer J Clin 73(6):620–652. https://doi.org/10.3322/caac.21785
doi: 10.3322/caac.21785
Lim SM, Hong MH, Kim HR (2020) Immunotherapy for non-small cell lung cancer: current landscape and future perspectives. immune Netw 20:e10. https://doi.org/10.4110/in.2020.20.e10
doi: 10.4110/in.2020.20.e10 pubmed: 32158598 pmcid: 7049584
Reck M, Remon J, Hellmann MD (2022) First-line immunotherapy for non-small-cell lung cancer. J Clin Oncol 40:586–597. https://doi.org/10.1200/jco.21.01497
doi: 10.1200/jco.21.01497 pubmed: 34985920
Albertelli M, Dotto A, Nista F, Veresani A, Patti L, Gay S, Sciallero S, Boschetti M, Ferone D (2021) Present and future of immunotherapy in neuroendocrine tumors. Rev Endocr Metab Disord 22:615–636. https://doi.org/10.1007/s11154-021-09647-z
doi: 10.1007/s11154-021-09647-z pubmed: 33851319 pmcid: 8346388
Klein O, Kee D, Markman B et al (2020) Immunotherapy of ipilimumab and nivolumab in patients with advanced neuroendocrine tumors: a subgroup analysis of the CA209-538 clinical trial for rare cancers. Clin Cancer Res 26:4454–4459. https://doi.org/10.1158/1078-0432.Ccr-20-0621
doi: 10.1158/1078-0432.Ccr-20-0621 pubmed: 32532787
Di Molfetta S, Feola T, Fanciulli G, Florio T, Colao A, Faggiano A, Nike G (2022) Immune checkpoint blockade in lung carcinoids with aggressive behaviour: one more arrow in our quiver? J Clin Med. https://doi.org/10.3390/jcm11041019
doi: 10.3390/jcm11041019 pubmed: 36233385 pmcid: 9570643
Berghmans T, Dingemans AM, Hendriks LEL, Cadranel J (2020) Immunotherapy for nonsmall cell lung cancer: a new therapeutic algorithm. Eur Respir J. https://doi.org/10.1183/13993003.01907-2019
doi: 10.1183/13993003.01907-2019 pubmed: 32451346
Pavan A, Attili I, Pasello G, Guarneri V, Conte PF, Bonanno L (2019) Immunotherapy in small-cell lung cancer: from molecular promises to clinical challenges. J Immunother Cancer 7:205. https://doi.org/10.1186/s40425-019-0690-1
doi: 10.1186/s40425-019-0690-1 pubmed: 31383005 pmcid: 6683488
Dantoing E, Piton N, Salaün M, Thiberville L, Guisier F (2021) Anti-PD1/PD-L1 immunotherapy for non-small cell lung cancer with actionable oncogenic driver mutations. Int J Mol Sci. https://doi.org/10.3390/ijms22126288
doi: 10.3390/ijms22126288 pubmed: 34208111 pmcid: 8230861
Han Y, Liu D, Li L (2020) PD-1/PD-L1 pathway: current researches in cancer. Am J Cancer Res 10:727–742
pubmed: 32266087 pmcid: 7136921
Hosseini A, Gharibi T, Marofi F, Babaloo Z, Baradaran B (2020) CTLA-4: From mechanism to autoimmune therapy. Int Immunopharmacol 80:106221. https://doi.org/10.1016/j.intimp.2020.106221
doi: 10.1016/j.intimp.2020.106221 pubmed: 32007707
Rowshanravan B, Halliday N, Sansom DM (2018) CTLA-4: a moving target in immunotherapy. Blood 131:58–67. https://doi.org/10.1182/blood-2017-06-741033
doi: 10.1182/blood-2017-06-741033 pubmed: 29118008
Ferencz B, Megyesfalvi Z, Csende K et al (2023) Comparative expression analysis of immune-related markers in surgically resected lung neuroendocrine neoplasms. Lung Cancer 181:107263. https://doi.org/10.1016/j.lungcan.2023.107263
doi: 10.1016/j.lungcan.2023.107263 pubmed: 37270937
Huang X, Zhang X, Li E, Zhang G, Wang X, Tang T, Bai X, Liang T (2020) VISTA: an immune regulatory protein checking tumor and immune cells in cancer immunotherapy. J Hematol Oncol 13:83. https://doi.org/10.1186/s13045-020-00917-y
doi: 10.1186/s13045-020-00917-y pubmed: 32600443 pmcid: 7325042
Mortezaee K, Majidpoor J, Najafi S (2022) VISTA immune regulatory effects in bypassing cancer immunotherapy: updated. Life Sci 310:121083. https://doi.org/10.1016/j.lfs.2022.121083
doi: 10.1016/j.lfs.2022.121083 pubmed: 36265568
Tagliamento M, Agostinetto E, Borea R, Brandão M, Poggio F, Addeo A, Lambertini M (2021) VISTA: a promising target for cancer immunotherapy? Immunotargets Ther 10:185–200. https://doi.org/10.2147/itt.S260429
doi: 10.2147/itt.S260429 pubmed: 34189130 pmcid: 8235942
Lu X (2021) OX40 and OX40L interaction in cancer. Curr Med Chem 28:5659–5673. https://doi.org/10.2174/0929867328666201229123151
doi: 10.2174/0929867328666201229123151 pubmed: 33372866
Redmond WL, Weinberg AD (2007) Targeting OX40 and OX40L for the treatment of autoimmunity and cancer. Crit Rev Immunol 27:415–436. https://doi.org/10.1615/critrevimmunol.v27.i5.20
doi: 10.1615/critrevimmunol.v27.i5.20 pubmed: 18197805
Chan S, Belmar N, Ho S et al (2022) An anti-PD-1-GITR-L bispecific agonist induces GITR clustering-mediated T cell activation for cancer immunotherapy. Nat Cancer 3:337–354. https://doi.org/10.1038/s43018-022-00334-9
doi: 10.1038/s43018-022-00334-9 pubmed: 35256819 pmcid: 8960412
Hernandez-Guerrero T, Moreno V (2022) GITR Antibodies in cancer: not ready for prime time. Clin Cancer Res 28:3905–3907. https://doi.org/10.1158/1078-0432.Ccr-22-1489
doi: 10.1158/1078-0432.Ccr-22-1489 pubmed: 35834593
Solinas C, De Silva P, Bron D, Willard-Gallo K, Sangiolo D (2019) Significance of TIM3 expression in cancer: from biology to the clinic. Semin Oncol 46:372–379. https://doi.org/10.1053/j.seminoncol.2019.08.005
doi: 10.1053/j.seminoncol.2019.08.005 pubmed: 31733828
Kandel S, Adhikary P, Li G, Cheng K (2021) The TIM3/Gal9 signaling pathway: an emerging target for cancer immunotherapy. Cancer Lett 510:67–78. https://doi.org/10.1016/j.canlet.2021.04.011
doi: 10.1016/j.canlet.2021.04.011 pubmed: 33895262 pmcid: 8168453
Buzzatti G, Dellepiane C, Del Mastro L (2020) New emerging targets in cancer immunotherapy: the role of GITR. ESMO Open 4:e000738. https://doi.org/10.1136/esmoopen-2020-000738
doi: 10.1136/esmoopen-2020-000738 pubmed: 32817129 pmcid: 7451269
Davar D, Zappasodi R (2023) Targeting GITR in cancer immunotherapy - there is no perfect knowledge. Oncotarget 14:614–621. https://doi.org/10.18632/oncotarget.28461
doi: 10.18632/oncotarget.28461 pubmed: 37335294 pmcid: 10278658
Herrera-Camacho I, Anaya-Ruiz M, Perez-Santos M, Millán-Pérez Peña L, Bandala C, Landeta G (2019) Cancer immunotherapy using anti-TIM3/PD-1 bispecific antibody: a patent evaluation of EP3356411A1. Expert Opin Ther Pat 29:587–593. https://doi.org/10.1080/13543776.2019.1637422
doi: 10.1080/13543776.2019.1637422 pubmed: 31241380
Martin AS, Molloy M, Ugolkov A, von Roemeling RW, Noelle RJ, Lewis LD, Johnson M, Radvanyi L, Martell RE (2023) VISTA expression and patient selection for immune-based anticancer therapy. Front Immunol 14:1086102. https://doi.org/10.3389/fimmu.2023.1086102
doi: 10.3389/fimmu.2023.1086102 pubmed: 36891296 pmcid: 9986543
Mlika M, Zendah I, Braham E, El Mezni F (2015) CD56 antibody: old-fashioned or still trendy in endocrine lung tumors. J Immunoassay Immunochem 36:414–419. https://doi.org/10.1080/15321819.2014.952444
doi: 10.1080/15321819.2014.952444 pubmed: 25140506
Pelosi G, Rindi G, Travis WD, Papotti M (2014) Ki-67 antigen in lung neuroendocrine tumors: unraveling a role in clinical practice. J Thorac Oncol 9:273–284. https://doi.org/10.1097/jto.0000000000000092
doi: 10.1097/jto.0000000000000092 pubmed: 24518085
Xiao Y, Yu D (2021) Tumor microenvironment as a therapeutic target in cancer. Pharmacol Ther 221:107753. https://doi.org/10.1016/j.pharmthera.2020.107753
doi: 10.1016/j.pharmthera.2020.107753 pubmed: 33259885
Whiteside TL (2010) Immune responses to malignancies. J Allergy Clin Immunol 125:S272–S283. https://doi.org/10.1016/j.jaci.2009.09.045
doi: 10.1016/j.jaci.2009.09.045 pubmed: 20061007 pmcid: 3721350
Galli F, Aguilera JV, Palermo B, Markovic SN, Nisticò P, Signore A (2020) Relevance of immune cell and tumor microenvironment imaging in the new era of immunotherapy. J Exp Clin Cancer Res 39:89. https://doi.org/10.1186/s13046-020-01586-y
doi: 10.1186/s13046-020-01586-y pubmed: 32423420 pmcid: 7236372
Ruiz-Cordero R, Devine WP (2020) Targeted therapy and checkpoint immunotherapy in lung cancer. Surg Pathol Clin 13:17–33. https://doi.org/10.1016/j.path.2019.11.002
doi: 10.1016/j.path.2019.11.002 pubmed: 32005431
Gonzalez H, Hagerling C, Werb Z (2018) Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev 32:1267–1284. https://doi.org/10.1101/gad.314617.118
doi: 10.1101/gad.314617.118 pubmed: 30275043 pmcid: 6169832
Bruni D, Angell HK, Galon J (2020) The immune contexture and Immunoscore in cancer prognosis and therapeutic efficacy. Nat Rev Cancer 20:662–680. https://doi.org/10.1038/s41568-020-0285-7
doi: 10.1038/s41568-020-0285-7 pubmed: 32753728
Moonen L, Derks J, Dingemans AM, Speel EJ (2019) Orthopedia homeobox (OTP) in Pulmonary neuroendocrine tumors: the diagnostic value and possible molecular interactions. Cancers (Basel). https://doi.org/10.3390/cancers11101508
doi: 10.3390/cancers11101508 pubmed: 31600958
Papaxoinis G, Nonaka D, O’Brien C, Sanderson B, Krysiak P, Mansoor W (2017) Prognostic significance of CD44 and Orthopedia homeobox protein (OTP) expression in pulmonary carcinoid tumours. Endocr Pathol 28:60–70. https://doi.org/10.1007/s12022-016-9459-y
doi: 10.1007/s12022-016-9459-y pubmed: 27873160
Swarts DR, Henfling ME, Van Neste L et al (2013) CD44 and OTP are strong prognostic markers for pulmonary carcinoids. Clin Cancer Res 19:2197–2207. https://doi.org/10.1158/1078-0432.Ccr-12-3078
doi: 10.1158/1078-0432.Ccr-12-3078 pubmed: 23444222
Swarts DR, Scarpa A, Corbo V et al (2014) MEN1 gene mutation and reduced expression are associated with poor prognosis in pulmonary carcinoids. J Clin Endocrinol Metab 99:E374–E378. https://doi.org/10.1210/jc.2013-2782
doi: 10.1210/jc.2013-2782 pubmed: 24276465
Derks JL, Leblay N, Lantuejoul S, Dingemans AC, Speel EM, Fernandez-Cuesta L (2018) New insights into the molecular characteristics of pulmonary carcinoids and large cell neuroendocrine carcinomas, and the impact on their clinical management. J Thorac Oncol 13:752–766. https://doi.org/10.1016/j.jtho.2018.02.002
doi: 10.1016/j.jtho.2018.02.002 pubmed: 29454048
George J, Walter V, Peifer M et al (2018) Integrative genomic profiling of large-cell neuroendocrine carcinomas reveals distinct subtypes of high-grade neuroendocrine lung tumors. Nat Commun 9:1048. https://doi.org/10.1038/s41467-018-03099-x
doi: 10.1038/s41467-018-03099-x pubmed: 29535388 pmcid: 5849599
Rekhtman N, Pietanza MC, Hellmann MD et al (2016) Next-generation sequencing of pulmonary large cell neuroendocrine carcinoma reveals small cell carcinoma-like and non-small cell carcinoma-like subsets. Clin Cancer Res 22:3618–3629. https://doi.org/10.1158/1078-0432.Ccr-15-2946
doi: 10.1158/1078-0432.Ccr-15-2946 pubmed: 26960398 pmcid: 4995776
Rekhtman N (2022) Lung neuroendocrine neoplasms: recent progress and persistent challenges. Mod Pathol 35:36–50. https://doi.org/10.1038/s41379-021-00943-2
doi: 10.1038/s41379-021-00943-2 pubmed: 34663914
Gay CM, Stewart CA, Park EM et al (2021) Patterns of transcription factor programs and immune pathway activation define four major subtypes of SCLC with distinct therapeutic vulnerabilities. Cancer Cell 39:346–60.e7. https://doi.org/10.1016/j.ccell.2020.12.014
doi: 10.1016/j.ccell.2020.12.014 pubmed: 33482121 pmcid: 8143037
Rudin CM, Poirier JT, Byers LA et al (2019) Molecular subtypes of small cell lung cancer: a synthesis of human and mouse model data. Nat Rev Cancer 19:289–297. https://doi.org/10.1038/s41568-019-0133-9
doi: 10.1038/s41568-019-0133-9 pubmed: 30926931 pmcid: 6538259
Le Mercier I, Chen W, Lines JL, Day M, Li J, Sergent P, Noelle RJ, Wang L (2014) VISTA regulates the development of protective antitumor immunity. Cancer Res 74:1933–1944. https://doi.org/10.1158/0008-5472.Can-13-1506
doi: 10.1158/0008-5472.Can-13-1506 pubmed: 24691994
Hendry S, Salgado R, Gevaert T et al (2017) Assessing tumor-infiltrating lymphocytes in solid tumors: a practical review for pathologists and proposal for a standardized method from the international immuno-oncology biomarkers working group: part 2: tils in melanoma, gastrointestinal tract carcinomas, non-small cell lung carcinoma and mesothelioma, endometrial and ovarian carcinomas, squamous cell carcinoma of the head and neck, genitourinary carcinomas, and primary brain tumors. Adv Anat Pathol 24:311–335. https://doi.org/10.1097/pap.0000000000000161
doi: 10.1097/pap.0000000000000161 pubmed: 28777143 pmcid: 5638696
Zong L, Mo S, Sun Z, Lu Z, Yu S, Chen J, Xiang Y (2022) Analysis of the immune checkpoint V-domain Ig-containing suppressor of T-cell activation (VISTA) in endometrial cancer. Mod Pathol 35:266–273. https://doi.org/10.1038/s41379-021-00901-y
doi: 10.1038/s41379-021-00901-y pubmed: 34493823
Muller S, Victoria Lai W, Adusumilli PS et al (2020) V-domain Ig-containing suppressor of T-cell activation (VISTA), a potentially targetable immune checkpoint molecule, is highly expressed in epithelioid malignant pleural mesothelioma. Mod Pathol 33:303–311. https://doi.org/10.1038/s41379-019-0364-z
doi: 10.1038/s41379-019-0364-z pubmed: 31537897
Terenziani R, Zoppi S, Fumarola C, Alfieri R, Bonelli M (2021) Immunotherapeutic approaches in malignant pleural mesothelioma. Cancers (Basel). https://doi.org/10.3390/cancers13112793
doi: 10.3390/cancers13112793 pubmed: 34830781
Saleh R, Taha RZ, Toor SM et al (2020) Expression of immune checkpoints and T cell exhaustion markers in early and advanced stages of colorectal cancer. Cancer Immunol Immunother 69:1989–1999. https://doi.org/10.1007/s00262-020-02593-w
doi: 10.1007/s00262-020-02593-w pubmed: 32393998 pmcid: 7511277
Yuan L, Tatineni J, Mahoney KM, Freeman GJ (2021) VISTA: a mediator of quiescence and a promising target in cancer immunotherapy. Trends Immunol 42:209–227. https://doi.org/10.1016/j.it.2020.12.008
doi: 10.1016/j.it.2020.12.008 pubmed: 33495077 pmcid: 8088836
Röcken C (2023) Predictive biomarkers in gastric cancer. J Cancer Res Clin Oncol 149:467–481. https://doi.org/10.1007/s00432-022-04408-0
doi: 10.1007/s00432-022-04408-0 pubmed: 36260159
Hung YP (2019) Neuroendocrine tumors of the lung: updates and diagnostic pitfalls. Surg Pathol Clin 12:1055–1071. https://doi.org/10.1016/j.path.2019.08.012
doi: 10.1016/j.path.2019.08.012 pubmed: 31672294
Wang Y, Zhang H, Liu C et al (2022) Immune checkpoint modulators in cancer immunotherapy: recent advances and emerging concepts. J Hematol Oncol 15:111. https://doi.org/10.1186/s13045-022-01325-0
doi: 10.1186/s13045-022-01325-0 pubmed: 35978433 pmcid: 9386972
Rittig SM, Lutz MS, Clar KL et al (2022) Controversial role of the immune checkpoint OX40L expression on platelets in breast cancer progression. Front Oncol 12:917834. https://doi.org/10.3389/fonc.2022.917834
doi: 10.3389/fonc.2022.917834 pubmed: 35875148 pmcid: 9304936
Fu Y, Lin Q, Zhang Z, Zhang L (2020) Therapeutic strategies for the costimulatory molecule OX40 in T-cell-mediated immunity. Acta Pharm Sin B 10:414–433. https://doi.org/10.1016/j.apsb.2019.08.010
doi: 10.1016/j.apsb.2019.08.010 pubmed: 32140389
Porciuncula A, Morgado M, Gupta R, Syrigos K, Meehan R, Zacharek SJ, Frederick JP, Schalper KA (2021) Spatial Mapping and immunomodulatory role of the OX40/OX40L Pathway in human non-small cell lung cancer. Clin Cancer Res 27:6174–6183. https://doi.org/10.1158/1078-0432.Ccr-21-0987
doi: 10.1158/1078-0432.Ccr-21-0987 pubmed: 34518312 pmcid: 8595671
Chen P, Wang H, Zhao L et al (2021) Immune checkpoints OX40 and OX40L in small-cell lung cancer: predict prognosis and modulate immune microenvironment. Front Oncol 11:713853. https://doi.org/10.3389/fonc.2021.713853
doi: 10.3389/fonc.2021.713853 pubmed: 34900670 pmcid: 8652148
Chen X, Ma H, Mo S, Zhang Y, Lu Z, Yu S, Chen J (2022) Analysis of the OX40/OX40L immunoregulatory axis combined with alternative immune checkpoint molecules in pancreatic ductal adenocarcinoma. Front Immunol 13:942154. https://doi.org/10.3389/fimmu.2022.942154
doi: 10.3389/fimmu.2022.942154 pubmed: 35936015 pmcid: 9352865
Nocentini G, Riccardi C (2009) GITR: a modulator of immune response and inflammation. Adv Exp Med Biol 647:156–173. https://doi.org/10.1007/978-0-387-89520-8_11
doi: 10.1007/978-0-387-89520-8_11 pubmed: 19760073
Zappasodi R, Sirard C, Li Y et al (2019) Rational design of anti-GITR-based combination immunotherapy. Nat Med 25:759–766. https://doi.org/10.1038/s41591-019-0420-8
doi: 10.1038/s41591-019-0420-8 pubmed: 31036879 pmcid: 7457830
Kraehenbuehl L, Weng CH, Eghbali S, Wolchok JD, Merghoub T (2022) Enhancing immunotherapy in cancer by targeting emerging immunomodulatory pathways. Nat Rev Clin Oncol 19:37–50. https://doi.org/10.1038/s41571-021-00552-7
doi: 10.1038/s41571-021-00552-7 pubmed: 34580473
Ronchetti S, Nocentini G, Petrillo MG, Bianchini R, Sportoletti P, Bastianelli A, Ayroldi EM, Riccardi C (2011) Glucocorticoid-Induced TNFR family related gene (GITR) enhances dendritic cell activity. Immunol Lett 135:24–33. https://doi.org/10.1016/j.imlet.2010.09.008
doi: 10.1016/j.imlet.2010.09.008 pubmed: 20883723
Marin-Acevedo JA, Dholaria B, Soyano AE, Knutson KL, Chumsri S, Lou Y (2018) Next generation of immune checkpoint therapy in cancer: new developments and challenges. J Hematol Oncol 11:39. https://doi.org/10.1186/s13045-018-0582-8
doi: 10.1186/s13045-018-0582-8 pubmed: 29544515 pmcid: 5856308
Nocentini G, Ronchetti S, Cuzzocrea S, Riccardi C (2007) GITR/GITRL: more than an effector T cell co-stimulatory system. Eur J Immunol 37:1165–1169. https://doi.org/10.1002/eji.200636933
doi: 10.1002/eji.200636933 pubmed: 17407102
Riccardi C, Ronchetti S, Nocentini G (2018) Glucocorticoid-induced TNFR-related gene (GITR) as a therapeutic target for immunotherapy. Expert Opin Ther Targets 22:783–797. https://doi.org/10.1080/14728222.2018.1512588
doi: 10.1080/14728222.2018.1512588 pubmed: 30107134
Zhao L, Cheng S, Fan L, Zhang B, Xu S (2021) TIM-3: an update on immunotherapy. Int Immunopharmacol 99:107933. https://doi.org/10.1016/j.intimp.2021.107933
doi: 10.1016/j.intimp.2021.107933 pubmed: 34224993
Wolf Y, Anderson AC, Kuchroo VK (2020) TIM3 comes of age as an inhibitory receptor. Nat Rev Immunol 20:173–185. https://doi.org/10.1038/s41577-019-0224-6
doi: 10.1038/s41577-019-0224-6 pubmed: 31676858
Grillo F, Bruzzone M, Pigozzi S, Prosapio S, Migliora P, Fiocca R, Mastracci L (2017) Immunohistochemistry on old archival paraffin blocks: is there an expiry date? J Clin Pathol 70:988–993. https://doi.org/10.1136/jclinpath-2017-204387
doi: 10.1136/jclinpath-2017-204387 pubmed: 28596153
Kokkat TJ, Patel MS, McGarvey D, LiVolsi VA, Baloch ZW (2013) Archived formalin-fixed paraffin-embedded (FFPE) blocks: a valuable underexploited resource for extraction of DNA, RNA, and protein. Biopreserv Biobank 11:101–106. https://doi.org/10.1089/bio.2012.0052
doi: 10.1089/bio.2012.0052 pubmed: 24845430 pmcid: 4077003

Auteurs

Bence Ferencz (B)

Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary.
National Koranyi Institute of Pulmonology, Budapest, Hungary.

Klára Török (K)

Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary.
National Koranyi Institute of Pulmonology, Budapest, Hungary.

Orsolya Pipek (O)

Department of Physics of Complex Systems, Eotvos Lorand University, Budapest, Hungary.

János Fillinger (J)

National Koranyi Institute of Pulmonology, Budapest, Hungary.

Kristóf Csende (K)

Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary.

András Lantos (A)

National Koranyi Institute of Pulmonology, Budapest, Hungary.

Radoslava Černeková (R)

Department of Pulmonary Diseases and Tuberculosis, University Hospital Ostrava and Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic.

Marcel Mitták (M)

Surgical Clinic, University Hospital Ostrava and Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic.

Jozef Škarda (J)

Medical Faculty, Institute of Clinical and Molecular Pathology, Palacky University Olomouc, Olomouc, Czech Republic.
Department of Pathology, University Hospital Ostrava and Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic.

Patricie Delongová (P)

Department of Pathology, University Hospital Ostrava and Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic.

Evelyn Megyesfalvi (E)

Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary.
Department of Clinical Pharmacology, National Institute of Oncology, Chest and Abdominal Tumors Chemotherapy "B", Budapest, Hungary.

Karin Schelch (K)

Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
Center for Cancer Research, Medical University of Vienna, Vienna, Austria.

Christian Lang (C)

Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
Division of Pulmonology, Department of Medicine II, Medical University of Vienna, Vienna, Austria.

Anna Solta (A)

Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.

Kristiina Boettiger (K)

Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.

Luka Brcic (L)

Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria.

Jörg Lindenmann (J)

Division of Thoracic and Hyperbaric Surgery, Department of Surgery, Medical University of Graz, Graz, Austria.

Ferenc Rényi-Vámos (F)

Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary.
National Koranyi Institute of Pulmonology, Budapest, Hungary.
National Institute of Oncology and National Tumor Biology Laboratory, Budapest, Hungary.

Clemens Aigner (C)

Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.

Judit Berta (J)

National Koranyi Institute of Pulmonology, Budapest, Hungary. berta.judit@koranyi.hu.

Zsolt Megyesfalvi (Z)

Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary.
National Koranyi Institute of Pulmonology, Budapest, Hungary.
Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.

Balázs Döme (B)

Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary. balazs.dome@meduniwien.ac.at.
National Koranyi Institute of Pulmonology, Budapest, Hungary. balazs.dome@meduniwien.ac.at.
Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria. balazs.dome@meduniwien.ac.at.
Department of Translational Medicine, Lund University, Lund, Sweden. balazs.dome@meduniwien.ac.at.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH