Assessing health risks in bottled water: chemical compounds and their impact on human health.


Journal

Environmental geochemistry and health
ISSN: 1573-2983
Titre abrégé: Environ Geochem Health
Pays: Netherlands
ID NLM: 8903118

Informations de publication

Date de publication:
02 May 2024
Historique:
received: 03 11 2023
accepted: 09 02 2024
medline: 2 5 2024
pubmed: 2 5 2024
entrez: 2 5 2024
Statut: epublish

Résumé

Bottled mineral and spring water constitute one of the main sources of drinking water. Relevant legal acts in each country individually regulate the highest permitted concentrations of harmful substances in these waters. However, current regulations do not take into account newly emerging contaminants such as BPA. Analysis of the chemical composition of 72 bottled waters from the Polish market showed that undesirable elements occur in quantities that do not exceed the maximum permissible concentrations. Special attention should be paid to bottled therapeutic water, which may contain elevated concentrations of some micronutrients, such as Al, B, Ba, Fe, Mn, or Sr contributing to the pattern of health risk with excessive consumption of this type of water. The presence of BPA was confirmed in 25 tested waters. The calculated hazard index values showed that the most exposed group are children up to 12 years of age. The greatest attention should be paid to waters with high mineralisation, for which the calculated risk values are the highest.

Identifiants

pubmed: 38695953
doi: 10.1007/s10653-024-01908-5
pii: 10.1007/s10653-024-01908-5
doi:

Substances chimiques

Drinking Water 0
Water Pollutants, Chemical 0
Benzhydryl Compounds 0
Phenols 0
bisphenol A MLT3645I99
Mineral Waters 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

178

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer Nature B.V.

Références

Acarer, S. (2023). Abundance and characteristics of microplastics in drinking water treatment plants, distribution systems, water from refill kiosks, tap waters and bottled waters. Science of the Total Environment, 884, 163866. https://doi.org/10.1016/j.scitotenv.2023.163866
doi: 10.1016/j.scitotenv.2023.163866
Akhbarizadeh, R., Dobaradaran, S., Schmidt, T. C., Nabipour, I., & Spitz, J. (2020). Worldwide bottled water occurrence of emerging contaminants: A review of the recent scientific literature. Journal of Hazardous Materials, 392, 122271. https://doi.org/10.1016/j.jhazmat.2020.122271
doi: 10.1016/j.jhazmat.2020.122271
Andra, S. S., Makris, K. C., Shine, J. P., & Lu, C. (2012). Co-leaching of brominated compounds and antimony from bottled water. Environment International, 38(1), 45–53. https://doi.org/10.1016/j.envint.2011.08.007
doi: 10.1016/j.envint.2011.08.007
Aneck-Hahn, N. H., Van Zijl, M. C., Swart, P., Truebody, B., Genthe, B., Charmier, J., & Jager, C. D. (2018). Estrogenic activity, selected plasticizers and potential health risks associated with bottled water in South Africa. Journal of Water and Health, 16(2), 253–262. https://doi.org/10.2166/wh.2018.043
doi: 10.2166/wh.2018.043
Bertoldi, D., Bontempo, L., Larcher, R., Nicolini, G., Voerkelius, S., Lorenz, G. D., Ueckermann, H., Froeschl, H., Baxter, M. J., Hoogewerff, J., & Brereton, P. (2011). Survey of the chemical composition of 571 European bottled mineral waters. Journal of Food Composition and Analysis, 24(3), 376–385. https://doi.org/10.1016/j.jfca.2010.07.005
doi: 10.1016/j.jfca.2010.07.005
Bityukova, L., & Petersell, V. (2010). Chemical composition of bottled mineral waters in Estonia. Journal of Geochemical Exploration, 107(3), 238–244. https://doi.org/10.1016/j.gexplo.2010.07.006
doi: 10.1016/j.gexplo.2010.07.006
Bradley, P. M., Romanok, K. M., Smalling, K. L., Focazio, M. J., Evans, N., Fitzpatrick, S. C., Givens, C. E., Gordon, S. E., Gray, J. L., Green, E. M., Griffin, D. W., Hladik, M. L., Kanagy, L. K., Lisle, J. T., Loftin, K. A., Blaine McCleskey, R., Medlock-Kakaley, E. K., Navas-Acien, A., Roth, D. A., & Weis, C. P. (2023). Bottled water contaminant exposures and potential human effects. Environment International. https://doi.org/10.1016/j.envint.2022.107701
doi: 10.1016/j.envint.2022.107701
Burlingame, G. A., Dietrich, A. M., & Whelton, A. J. (2007). Understanding the basics of tap water taste. Journal AWWA, 99(5), 100–111.
doi: 10.1002/j.1551-8833.2007.tb07930.x
Caldwell, D. J., Mastrocco, F., Nowak, E., Johnston, J., Yekel, H., Pfeiffer, D., Hoyt, M., DuPlessie, B. M., & Anderson, P. D. (2010). An assessment of potential exposure and risk from estrogens in drinking water. Environmental Health Perspectives. https://doi.org/10.1289/ehp.0900654.S1
doi: 10.1289/ehp.0900654.S1
Careghini, A., Mastorgio, A. F., Saponaro, S., & Sezenna, E. (2015). Bisphenol A, nonylphenols, benzophenones, and benzotriazoles in soils, groundwater, surface water, sediments, and food: A review. Environmental Science and Pollution Research, 22(8), 5711–5741. https://doi.org/10.1007/s11356-014-3974-5
doi: 10.1007/s11356-014-3974-5
Carmona, E., Andreu, V., & Picó, Y. (2014). Occurrence of acidic pharmaceuticals and personal care products in Turia River Basin: From waste to drinking water. Science of the Total Environment, 484(1), 53–63. https://doi.org/10.1016/j.scitotenv.2014.02.085
doi: 10.1016/j.scitotenv.2014.02.085
Chang, H., Wan, Y., Naile, J., Zhang, X., Wiseman, S., Hecker, M., ... & Jones, P. D. (2010). Simultaneous quantification of multiple classes of phenolic compounds in blood plasma by liquid chromatography–electrospray tandem mass spectrometry. Journal of Chromatography A, 1217(4), 506–513.
Cerar, S., & Mali, N. (2016). Assessment of presence, origin and seasonal variations of persistent organic pollutants in groundwater by means of passive sampling and multivariate statistical analysis. In Journal of Geochemical Exploration, 170, 78–93. https://doi.org/10.1016/j.gexplo.2016.08.016
doi: 10.1016/j.gexplo.2016.08.016
Chen, Y., Xu, H., Luo, Y., Ding, Y., Huang, J., Wu, H., Han, J., Du, L., Kang, A., Jia, M., Xiong, W., & Yang, Z. (2023). Plastic bottles for chilled carbonated beverages as a source of microplastics and nanoplastics. Water Research. https://doi.org/10.1016/j.watres.2023.120243
doi: 10.1016/j.watres.2023.120243
Collins, H., & Wright, A. (2014). Still sparkling: The phenomenon of bottled water-an Irish context. Journal of Marketing Management, 2(1), 15–31.
De Giglio, O., Quaranta, A., Lovero, G., Caggiano, G., & Montagna, M. T. (2015). Mineral water or tap water? An endless debate. Annali Di Igiene: Medicina Preventiva e Di Comunità, 27(1), 58–65. https://doi.org/10.7416/ai.2015.2023
doi: 10.7416/ai.2015.2023
de Lambert, J. R., Walsh, J. F., Scher, D. P., Firnstahl, A. D., & Borchardt, M. A. (2021). Microbial pathogens and contaminants of emerging concern in groundwater at an urban subsurface stormwater infiltration site. Science of the Total Environment, 775, 145738. https://doi.org/10.1016/j.scitotenv.2021.145738
doi: 10.1016/j.scitotenv.2021.145738
Dévier, M. H., Le Menach, K., Viglino, L., Di Gioia, L., Lachassagne, P., & Budzinski, H. (2013). Ultra-trace analysis of hormones, pharmaceutical substances, alkylphenols and phthalates in two French natural mineral waters. Science of the Total Environment, 443, 621–632. https://doi.org/10.1016/j.scitotenv.2012.10.015
doi: 10.1016/j.scitotenv.2012.10.015
Dinelli, E., Lima, A., Albanese, S., Birke, M., Cicchella, D., Giaccio, L., Valera, P., & De Vivo, B. (2012). Comparative study between bottled mineral and tap water in Italy. Journal of Geochemical Exploration, 112, 368–389. https://doi.org/10.1016/j.gexplo.2011.11.002
doi: 10.1016/j.gexplo.2011.11.002
Dinelli, E., Lima, A., De Vivo, B., Albanese, S., Cicchella, D., & Valera, P. (2010). Hydrogeochemical analysis on Italian bottled mineral waters: Effects of geology. Journal of Geochemical Exploration, 107(3), 317–335. https://doi.org/10.1016/j.gexplo.2010.06.004
doi: 10.1016/j.gexplo.2010.06.004
Dippong, T., Hoaghia, M. A., Mihali, C., Cical, E., & Calugaru, M. (2020). Human health risk assessment of some bottled waters from Romania. Environmental Pollution. https://doi.org/10.1016/j.envpol.2020.115409
doi: 10.1016/j.envpol.2020.115409
Directive. (2003). Commission Directive 2003/40/EC of 16 May 2003 establishing the list, concentration limits and labelling requirements for the constituents of natural mineral waters and the conditions for using ozone-enriched air for the treatment of natural mineral waters and spring waters. Official Journal of the European Union.
Directive. (2006). Directive 2006/118/EC of the European Parliament and of the Council of 12 December 2006 on the protection of groundwater against pollution and deterioration. Official Journal of the European Union.
Directive. (2009). Directive 2009/54/EC of the European Parliament and of the Council of 18 June 2009 on the exploitation and marketing of natural mineral waters. Official Journal of the European Union.
Directive. (2020). Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the quality of water intended for human consumption. Official Journal of the European Union.
Doria, M. F. (2006). Bottled water versus tap water: Understanding consumer’s preferences. Journal of Water and Health, 4(2), 271–276. https://doi.org/10.2166/wh.2006.008
doi: 10.2166/wh.2006.008
Dueñas-Moreno, J., Mora, A., Cervantes-Avilés, P., & Mahlknecht, J. (2022). Groundwater contamination pathways of phthalates and bisphenol A: origin, characteristics, transport, and fate—A review. In Environment International. https://doi.org/10.1016/j.envint.2022.107550
doi: 10.1016/j.envint.2022.107550
Edokpayi, J. N., Enitan, A. M., Mutileni, N., & Odiyo, J. O. (2018). Evaluation of water quality and human risk assessment due to heavy metals in groundwater around Muledane area of Vhembe District, Limpopo Province South Africa. Chemistry Central Journal, 12(1), 1–16. https://doi.org/10.1186/s13065-017-0369-y
doi: 10.1186/s13065-017-0369-y
Egbueri, J. C., & Mgbenu, C. N. (2020). Chemometric analysis for pollution source identification and human health risk assessment of water resources in Ojoto Province, southeast Nigeria. Applied Water Science. https://doi.org/10.1007/s13201-020-01180-9
doi: 10.1007/s13201-020-01180-9
Fallahzadeh, R. A., Ghaneian, M. T., Miri, M., & Dashti, M. M. (2017). Spatial analysis and health risk assessment of heavy metals concentration in drinking water resources. Environmental Science and Pollution Research, 24(32), 24790–24802. https://doi.org/10.1007/s11356-017-0102-3
doi: 10.1007/s11356-017-0102-3
Felipe-Sotelo, M., Henshall-Bell, E. R., Evans, N. D. M., & Read, D. (2015). Comparison of the chemical composition of British and Continental European bottled waters by multivariate analysis. Journal of Food Composition and Analysis, 39, 33–42. https://doi.org/10.1016/j.jfca.2014.10.014
doi: 10.1016/j.jfca.2014.10.014
Gao, J., Li, Z., Chen, Z., Zhou, Y., Liu, W., Wang, L., & Zhou, J. (2021). Deterioration of groundwater quality along an increasing intensive land use pattern in a small catchment. Agricultural Water Management. https://doi.org/10.1016/j.agwat.2021.106953
doi: 10.1016/j.agwat.2021.106953
ISO. (1989). ISO 9297:1989—Water Quality—Determination of Chloride—Silver Nitrate Titration with Chromate Indicator (Mohr’s method). Geneva: International Organization for Standardization.
ISO. (1994). ISO 9963–1:1994—Water Quality—Determination of Alkalinity—Part 1: Determination of Total and Composite Alkalinity. Geneva: International Organization for Standardization.
ISO. (2007). ISO 11885—Water quality—Determination of Selected Elements by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). Geneva: International Organization for Standardization.
ISO. (2016a). ISO 17034:2016—General Requirements for the Competence of Reference Material Producers. Geneva: International Organization for Standardization.
ISO. (2016b). ISO 17294–2—Water Quality—Application of Inductively Coupled Plasma Mass Spectrometry (ICP-MS)—Part 2: Determination of Selected Elements Including Uranium Isotopes. Geneva: International Organization for Standardization.
ISO. (2017). ISO/IEC 17025:2017—General requirements for the competence of testing and calibration laboratories.
Jaiswal, D. K., Kumar, N., & Yadav, R. R. (2022). Analytical solution for transport of pollutant from time-dependent locations along groundwater. Journal of Hydrology, 610, 127826. https://doi.org/10.1016/j.jhydrol.2022.127826
doi: 10.1016/j.jhydrol.2022.127826
Jarosz, M., Rychlik, E., Stoś, K., & Charzewska, J. (Eds.). (2020). Normy żywienia dla populacji Polski i ich zastosowanie. Narodowy Instytut Zdrowia Publicznego—Państwowy Zakład Higieny.
K’oreje, K., Okoth, M., Van Langenhove, H., & Demeestere, K. (2022). Occurrence and point-of-use treatment of contaminants of emerging concern in groundwater of the Nzoia River basin Kenya. Environmental Pollution, 297, 118725. https://doi.org/10.1016/j.envpol.2021.118725
doi: 10.1016/j.envpol.2021.118725
Koroša, A., & Mali, N. (2022). Control of organic contaminants in groundwater by passive sampling and multivariate statistical analysis. Journal of Environmental Management. https://doi.org/10.1016/j.jenvman.2022.115440
doi: 10.1016/j.jenvman.2022.115440
Lake, I. R., Lovett, A. A., Hiscock, K. M., Betson, M., Foley, A., Sünnenberg, G., Evers, S., & Fletcher, S. (2003). Evaluating factors influencing groundwater vulnerability to nitrate pollution: Developing the potential of GIS. Journal of Environmental Management, 68(3), 315–328. https://doi.org/10.1016/S0301-4797(03)00095-1
doi: 10.1016/S0301-4797(03)00095-1
Lapworth, D. J., Lopez, B., Laabs, V., Kozel, R., Wolter, R., Ward, R., Vargas Amelin, E., Besien, T., Claessen, J., Delloye, F., Ferretti, E., & Grath, J. (2019). Developing a groundwater watch list for substances of emerging concern: A European perspective. Environmental Research Letters, 14(3), 035004. https://doi.org/10.1088/1748-9326/aaf4d7
doi: 10.1088/1748-9326/aaf4d7
Le Coadou, L., Le Ménach, K., Labadie, P., Dévier, M. H., Pardon, P., Augagneur, S., & Budzinski, H. (2017). Quality survey of natural mineral water and spring water sold in France: Monitoring of hormones, pharmaceuticals, pesticides, perfluoroalkyl substances, phthalates, and alkylphenols at the ultra-trace level. Science of the Total Environment, 603–604, 651–662. https://doi.org/10.1016/j.scitotenv.2016.11.174
doi: 10.1016/j.scitotenv.2016.11.174
Li, J., Chen, Y., Lu, H., & Zhai, W. (2021). Spatial distribution of heavy metal contamination and uncertainty-based human health risk in the aquatic environment using multivariate statistical method. Environmental Science and Pollution Research, 28, 22804–22822. https://doi.org/10.1007/s11356-020-12212-x/Published
doi: 10.1007/s11356-020-12212-x/Published
Li, J., Zhou, B., Liu, Y., Yang, Q., & Cai, W. (2008). Influence of the coexisting contaminants on bisphenol A sorption and desorption in soil. Journal of Hazardous Materials, 151(2–3), 389–393. https://doi.org/10.1016/j.jhazmat.2007.06.001
doi: 10.1016/j.jhazmat.2007.06.001
Li, X., Ying, G. G., Su, H. C., Yang, X. B., & Wang, L. (2010). Simultaneous determination and assessment of 4-nonylphenol, bisphenol A and triclosan in tap water, bottled water and baby bottles. Environment International, 36(6), 557–562. https://doi.org/10.1016/j.envint.2010.04.009
doi: 10.1016/j.envint.2010.04.009
Lukač Reberski, J., Terzić, J., Maurice, L. D., & Lapworth, D. J. (2022). Emerging organic contaminants in karst groundwater: A global level assessment. In Journal of Hydrology. https://doi.org/10.1016/j.jhydrol.2021.127242
doi: 10.1016/j.jhydrol.2021.127242
Lyubomirova, V., Mihaylova, V., & Djingova, R. (2020). Chemical characterization of Bulgarian bottled mineral waters. Journal of Food Composition and Analysis, 93, 103595. https://doi.org/10.1016/j.jfca.2020.103595
doi: 10.1016/j.jfca.2020.103595
Maggioni, S., Balaguer, P., Chiozzotto, C., & Benfenati, E. (2013). Screening of endocrine-disrupting phenols, herbicides, steroid estrogens, and estrogenicity in drinking water from the waterworks of 35 Italian cities and from PET-bottled mineral water. Environmental Science and Pollution Research, 20(3), 1649–1660. https://doi.org/10.1007/s11356-012-1075-x
doi: 10.1007/s11356-012-1075-x
Miller, J., & Miller, J. C. (2018). Statistics and Chemometrics for Analytical Chemistry. London: Pearson education.
Mirzabeygi, M., Abbasnia, A., Yunesian, M., Nodehi, R. N., Yousefi, N., Hadi, M., & Mahvi, A. H. (2017). Heavy metal contamination and health risk assessment in drinking water of Sistan and Baluchistan, Southeastern Iran. Human and Ecological Risk Assessment, 23(8), 1893–1905. https://doi.org/10.1080/10807039.2017.1322895
doi: 10.1080/10807039.2017.1322895
Mohammadi, A. A., Zarei, A., Majidi, S., Ghaderpoury, A., Hashempour, Y., Saghi, M. H., Alinejad, A., Yousefi, M., Hosseingholizadeh, N., & Ghaderpoori, M. (2019). Carcinogenic and non-carcinogenic health risk assessment of heavy metals in drinking water of Khorramabad Iran. Methodsx, 6, 1642–1651. https://doi.org/10.1016/j.mex.2019.07.017
doi: 10.1016/j.mex.2019.07.017
Mooney, D., Richards, K. G., Danaher, M., Grant, J., Gill, L., Mellander, P. E., & Coxon, C. E. (2020). An investigation of anticoccidial veterinary drugs as emerging organic contaminants in groundwater. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2020.141116
doi: 10.1016/j.scitotenv.2020.141116
Mukherjee, I., & Singh, U. K. (2022). Environmental fate and health exposures of the geogenic and anthropogenic contaminants in potable groundwater of Lower Ganga Basin. India. Geoscience Frontiers, 13(3), 101365.
doi: 10.1016/j.gsf.2022.101365
Pan, Z., Lu, W., Wang, H., & Bai, Y. (2023). Groundwater contaminant source identification based on an ensemble learning search framework associated with an auto xgboost surrogate. Environmental Modelling and Software. https://doi.org/10.1016/j.envsoft.2022.105588
doi: 10.1016/j.envsoft.2022.105588
Peh, Z., Šorša, A., & Halamić, J. (2010). Composition and variation of major and trace elements in Croatian bottled waters. Journal of Geochemical Exploration, 107(3), 227–237. https://doi.org/10.1016/j.gexplo.2010.02.002
doi: 10.1016/j.gexplo.2010.02.002
Quansah, F., Okoe, A., & Angenu, B. (2015). Factors affecting ghanaian consumers’ purchasing decision of bottled water. International Journal of Marketing Studies. https://doi.org/10.5539/ijms.v7n5p76
doi: 10.5539/ijms.v7n5p76
Reimann, C., Birke, M., & Filzmoser, P. (2010). Bottled drinking water: Water contamination from bottle materials (glass, hard PET, soft PET), the influence of colour and acidification. Applied Geochemistry, 25(7), 1030–1046. https://doi.org/10.1016/j.apgeochem.2010.04.009
doi: 10.1016/j.apgeochem.2010.04.009
Reimann, C., Birke, M., & Filzmoser, P. (2012). Temperature-dependent leaching of chemical elements from mineral water bottle materials. Applied Geochemistry, 27(8), 1492–1498. https://doi.org/10.1016/j.apgeochem.2012.05.003
doi: 10.1016/j.apgeochem.2012.05.003
Reimann, C., Grimstvedt, A., Frengstad, B., & Finne, T. E. (2007). White HDPE bottles as source of serious contamination of water samples with Ba and Zn. Science of the Total Environment, 374(2–3), 292–296. https://doi.org/10.1016/j.scitotenv.2006.12.035
doi: 10.1016/j.scitotenv.2006.12.035
Report. (2021). Bottled Water Market Size, Share & Trends Analysis Report By Product (Purified, Mineral, Spring, Sparkling, Distilled), By Region (North America, Asia Pacific, Europe, CSA, MEA), And Segment Forecasts, 2021–2028.
RMH. (2011). Regulation of the Minister of Health of 31 March 2011 on natural mineral waters, spring waters and table waters.
Rusiniak, P., Kmiecik, E., Wątor, K., Duda, R., & Bugno, R. (2021). Pharmaceuticals and personal care products in the urban groundwater–preliminary monitoring (case study: Kraków, Southern Poland). Urban Water Journal, 18(5), 364–374. https://doi.org/10.1080/1573062X.2021.1893354
doi: 10.1080/1573062X.2021.1893354
Shehu, Z., Nyakairu, G. W. A., Tebandeke, E., & Odume, O. N. (2022). Overview of African water resources contamination by contaminants of emerging concern. Science of the Total Environment, 852, 158303. https://doi.org/10.1016/j.scitotenv.2022.158303
doi: 10.1016/j.scitotenv.2022.158303
Smedley, P. L. (2010). A survey of the inorganic chemistry of bottled mineral waters from the British Isles. Applied Geochemistry, 25(12), 1872–1888. https://doi.org/10.1016/j.apgeochem.2010.10.003
doi: 10.1016/j.apgeochem.2010.10.003
Stanhope, J., Weinstein, P., & Cook, A. (2018). Do natural spring waters in Australia and New Zealand affect health? A systematic review. Journal of Water and Health, 16(1), 1–13. https://doi.org/10.2166/wh.2017.209
doi: 10.2166/wh.2017.209
Stefano, P. H. P., Roisenberg, A., Santos, M. R., Dias, M. A., & Montagner, C. C. (2022). Unraveling the occurrence of contaminants of emerging concern in groundwater from urban setting: A combined multidisciplinary approach and self-organizing maps. Chemosphere, 299, 134395.
doi: 10.1016/j.chemosphere.2022.134395
Theodorsson-Norheim, E. (1986). Kruskal–Wallis test: BASIC computer program to perform nonparametric one-way analysis of variance and multiple comparisons on ranks of several independent samples.
U.S. EPA. (1989). Risk Assessment Guidance for Superfund (RAGS): Part A. http://www.epa.gov/swerrims/riskassessment/risk_superfund.html
U.S. EPA. (2002). National recommended water quality criteria.
U.S. EPA. (2003). Framework for Cumulative Risk Assessment.
U.S. EPA. (2006b). Provisional Peer Reviewed Toxicity Values for Iron and Compounds.
U.S. EPA. (2006a). Provisional Peer Reviewed Toxicity Values for Aluminium.
U.S. EPA. (2019). Guidelines for Human Exposure Assessment Risk Assessment. www.epa.gov/risk
Umoafia, N., Joseph, A., Edet, U., Nwaokorie, F., Henshaw, O., Edet, B., Asanga, E., Mbim, E., Chikwado, C., & Obeten, H. (2023). Deterioration of the quality of packaged potable water (bottled water) exposed to sunlight for a prolonged period: An implication for public health. Food and Chemical Toxicology, 175, 113728. https://doi.org/10.1016/j.fct.2023.113728
doi: 10.1016/j.fct.2023.113728
Vareda, J. P., Valente, A. J. M., & Durães, L. (2019). Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: A review. In Journal of Environmental Management, 246, 101–118. https://doi.org/10.1016/j.jenvman.2019.05.126
doi: 10.1016/j.jenvman.2019.05.126
Vrba, J. (2003). Intensive use of groundwater. Challenges and opportunities.
Wang, H., Liu, Z., Tang, Z., Zhang, J., Yin, H., Dang, Z., Wu, P. X., & Liu, Y. (2020a). Bisphenol analogues in Chinese bottled water: Quantification and potential risk analysis. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2020.136583
doi: 10.1016/j.scitotenv.2020.136583
Wang, H., Liu, Z., Zhang, J., Huang, R. P., Yin, H., & Dang, Z. (2020b). Human exposure of bisphenol A and its analogues: Understandings from human urinary excretion data and wastewater-based epidemiology. Environmental Science and Pollution Research, 27(3), 3247–3256. https://doi.org/10.1007/s11356-019-07111-9
doi: 10.1007/s11356-019-07111-9
Wątor, K., Rusiniak, P., Martyna, A., Kmiecik, E., & Postawa, A. (2021). Human health risk assessment of trace elements in tap water and the factors influencing its value. Minerals. https://doi.org/10.3390/min11111291
doi: 10.3390/min11111291
Westerhoff, P., Prapaipong, P., Shock, E., & Hillaireau, A. (2008). Antimony leaching from polyethylene terephthalate (PET) plastic used for bottled drinking water. Water Research, 42(3), 551–556. https://doi.org/10.1016/j.watres.2007.07.048
doi: 10.1016/j.watres.2007.07.048
Zeng, J., Tabelin, C. B., Gao, W., Tang, L., Luo, X., Ke, W., Jiang, J., & Xue, S. (2023). Heterogeneous distributions of heavy metals in the soil-groundwater system empowers the knowledge of the pollution migration at a smelting site. Chemical Engineering Journal. https://doi.org/10.1016/j.cej.2022.140307
doi: 10.1016/j.cej.2022.140307
Zhao, M., Jiang, Y., Jia, Y., Lian, X., Feng, F., Shang, C., Zang, Y., & Xi, B. (2023). Anthropogenic perturbation enhances the release of geogenic Mn to groundwater: Evidence from hydrogeochemical characteristics. Science of the Total Environment, 891, 164450. https://doi.org/10.1016/j.scitotenv.2023.164450
doi: 10.1016/j.scitotenv.2023.164450
Zheng, X., Zhao, W., Yan, X., Shu, T., Xiong, Q., & Chen, F. (2015). Pollution characteristics and health risk assessment of airborne heavy metals collected from Beijing bus stations. International Journal of Environmental Research and Public Health, 12(8), 9658–9671. https://doi.org/10.3390/ijerph120809658
doi: 10.3390/ijerph120809658

Auteurs

Katarzyna Wątor (K)

AGH University of Krakow, Mickiewicza 30 Av., 30-055, Kraków, Poland. katarzyna.wator@agh.edu.pl.

Piotr Rusiniak (P)

AGH University of Krakow, Mickiewicza 30 Av., 30-055, Kraków, Poland.

Ewa Kmiecik (E)

AGH University of Krakow, Mickiewicza 30 Av., 30-055, Kraków, Poland.

Ryszard Bugno (R)

Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 30-343, Kraków, Poland.

Vesna Ristić Vakanjac (V)

Faculty of Mining and Geology, University of Belgrade, Đušina 7, Beograde, Serbia.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH