Augmented fluoroscopy-guided dye localization for small pulmonary nodules in hybrid operating room: intrathoracic stamping versus transbronchial marking.
Augmented fluoroscopy
Bronchoscopic lung marking
Hybrid operating room
Lung cancer
Pleural stamping
Pulmonary nodules
Journal
International journal of computer assisted radiology and surgery
ISSN: 1861-6429
Titre abrégé: Int J Comput Assist Radiol Surg
Pays: Germany
ID NLM: 101499225
Informations de publication
Date de publication:
02 May 2024
02 May 2024
Historique:
received:
09
12
2023
accepted:
10
04
2024
medline:
2
5
2024
pubmed:
2
5
2024
entrez:
2
5
2024
Statut:
aheadofprint
Résumé
We developed a novel augmented fluoroscopy-guided intrathoracic stamping technique for localizing small pulmonary nodules in the hybrid operating room. We conducted an observational study to investigate the feasibility of this technique and retrospectively compared two augmented fluoroscopy-guided approaches: intrathoracic and transbronchial. From August 2020 to March 2023, consecutive patients underwent single-stage augmented fluoroscopy-guided localization under general anaesthesia. This included intrathoracic stamping and bronchoscopic lung marking, followed by thoracoscopic resection in a hybrid operating room. Comparative analyses were performed between the two groups. The data of 50 patients in the intrathoracic stamping and 67 patients in the bronchoscopic lung marking groups were analysed. No significant difference was noted in demographic data between the groups, except a larger lesion depth in the bronchoscopic lung marking group (14.7 ± 11.7 vs 11.0 ± 5.8 mm, p = 0.029). Dye localization was successfully performed in 49 intrathoracic stamping group patients (98.0%) and 67 bronchoscopic lung marking group patients (100%). No major procedure-related complications occurred in either group; however, the time flow (total anaesthesia time/global operating room time) was longer, and the radiation exposure (fluoroscopy duration/total dose area product) was larger in the bronchoscopic lung marking group. Augmented fluoroscopic stamping localization under intubated general anaesthesia is feasible and safe, providing an alternative with less global operating room time and lower radiation exposure for image-guided thoracoscopic surgery in the hybrid operating room.
Identifiants
pubmed: 38696085
doi: 10.1007/s11548-024-03146-7
pii: 10.1007/s11548-024-03146-7
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : National Taiwan University Hospital Hsin-Chu Branch
ID : 111-BIH008
Informations de copyright
© 2024. CARS.
Références
National Lung Screening Trial Research Team, Aberle DR, Adams AM, Berg CD, Black WC, Clapp JD, Fagerstrom RM, Gareen IF, Gatsonis C, Marcus PM, Sicks JD (2011) Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med 365:395–409. https://doi.org/10.1056/NEJMoa1102873
doi: 10.1056/NEJMoa1102873
Burzic A, O’Dowd EL, Baldwin DR (2022) The future of lung cancer screening: Current challenges and research priorities. Cancer Manag Res 14:637–645. https://doi.org/10.2147/CMAR.S293877
doi: 10.2147/CMAR.S293877
pubmed: 35210860
pmcid: 8859535
Lin MW, Chen JS (2016) Image-guided techniques for localizing pulmonary nodules in thoracoscopic surgery. J Thorac Dis 8:S749-S755. https://doi.org/10.21037/jtd.2016.09.71
National Comprehensive Cancer Network (2020) NCCN Clinical Practice Guidelines in Oncology: Lung Cancer Screening; Version 1.2020. www.nccn.org/professionals/physician_gls/f_guidelines.asp . Accessed 6 July 2023
Zhao ZR, Lau RW, Ng CS (2016) Hybrid theatre and alternative localization techniques in conventional and single-port video-assisted thoracoscopic surgery. J Thorac Dis 8:S319-327. https://doi.org/10.3978/j.issn.2072-1439.2016.02.27
doi: 10.3978/j.issn.2072-1439.2016.02.27
pubmed: 27014480
pmcid: 4783729
Yang SM, Ko WC, Lin MW, Hsu HH, Chan CY, Wu IH, Chang YC, Chen JS (2016) Image-guided thoracoscopic surgery with dye localization in a hybrid operating room. J Thorac Dis 8:S681–S689. https://doi.org/10.21037/jtd.2016.09.55
doi: 10.21037/jtd.2016.09.55
pubmed: 28066670
pmcid: 5179344
Lempel JK, Raymond DP (2019) Intraoperative percutaneous microcoil localization of small peripheral pulmonary nodules using cone-beam CT in a hybrid operating room. AJR Am J Roentgenol 213:778–781. https://doi.org/10.2214/AJR.19.21175
doi: 10.2214/AJR.19.21175
pubmed: 31166753
Leow OQY, Chao YK (2019) Individualized strategies for intraoperative localization of non-palpable pulmonary nodules in a hybrid operating room. Front Surg 6:32. https://doi.org/10.3389/fsurg.2019.00032
doi: 10.3389/fsurg.2019.00032
pubmed: 31245381
pmcid: 6579822
Park CH, Han K, Hur J, Lee SM, Lee JW, Hwang SH, Seo JS, Lee KH, Kwon W, Kim TH, Choi BW (2017) Comparative effectiveness and safety of preoperative lung localization for pulmonary nodules: a systematic review and meta-analysis. Chest 151:316–328. https://doi.org/10.1016/j.chest.2016.09.017
doi: 10.1016/j.chest.2016.09.017
pubmed: 27717643
Chi CL, Gao X, Tai CC, Chao YK (2022) Preoperative percutaneous localization of multiple ipsilateral pulmonary nodules: a systematic review. Formos J Surg 55:81–86. https://doi.org/10.4103/fjs.fjs_108_22
doi: 10.4103/fjs.fjs_108_22
Starnes SL, Wolujewicz M, Guitron J, Williams V, Scheler J, Ristagno R (2018) Radiotracer localization of nonpalpable pulmonary nodules: a single-centre experience. J Thorac Cardiovasc Surg 156:1986–1992. https://doi.org/10.1016/j.jtcvs.2018.03.152
doi: 10.1016/j.jtcvs.2018.03.152
pubmed: 29778333
Saito Y (2022) Recent advances in electromagnetic navigation bronchoscopy for localization of peripheral pulmonary nodules. J Thorac Dis 14:802–804. https://doi.org/10.21037/jtd-22-179
doi: 10.21037/jtd-22-179
pubmed: 35572872
pmcid: 9096292
Yang SM, Yu KL, Lin JH, Lin KS, Liu YL, Sun SE, Meng LH, Ko HJ (2019) Cumulative experience of preoperative real-time augmented fluoroscopy-guided endobronchial dye marking for small pulmonary nodules: an analysis of 30 initial patients. J Formos Med Assoc 118:1232–1238. https://doi.org/10.1016/j.jfma.2019.04.017
doi: 10.1016/j.jfma.2019.04.017
pubmed: 31097282
Hogarth DK (2018) Use of augmented fluoroscopic imaging during diagnostic bronchoscopy. Future Oncol 14:2247–2252. https://doi.org/10.2217/fon-2017-0686
doi: 10.2217/fon-2017-0686
pubmed: 29661040
Cicenia J, Bhadra K, Sethi S, Nader DA, Whitten P, Hogarth DK (2021) Augmented fluoroscopy: a new and novel navigation platform for peripheral bronchoscopy. J Bronchology Interv Pulmonol 28:116–123. https://doi.org/10.1097/LBR.0000000000000722
doi: 10.1097/LBR.0000000000000722
pubmed: 33105419
Yang SM, Yu KL, Lin KH, Liu YL, Sun SE, Meng LH, Ko HJ (2020) Real-time augmented fluoroscopy-guided lung marking for thoracoscopic resection of small pulmonary nodules. Surg Endosc 34:477–484. https://doi.org/10.1007/s00464-019-06972-y
doi: 10.1007/s00464-019-06972-y
pubmed: 31309308
Kawada M, Okubo T, Poudel S, Suzuki Y, Kawarada Y, Kitashiro S, Okushiba S, Katoh H (2013) A new marking technique for peripheral lung nodules avoiding pleural puncture: the intrathoracic stamping method. Interact Cardiovasc Thorac Surg 16:381–383. https://doi.org/10.1093/icvts/ivs521
doi: 10.1093/icvts/ivs521
pubmed: 23243032
Yang SM, Chung WY, Ko HJ, Chen LC, Chang LK, Chang HC, Kuo SW, Ho MC (2023) Single-stage augmented fluoroscopic bronchoscopy localization and thoracoscopic resection of small pulmonary nodules in a hybrid operating room. Eur J Cardiothorac Surg 63:ezac541. https://doi.org/10.1093/ejcts/ezac541
doi: 10.1093/ejcts/ezac541
Yang SM, Yu KL, Lin KS, Liu YL, Sun SE, Meng LH, Ko HJ (2020) Localization of small pulmonary nodules using augmented fluoroscopic bronchoscopy: experience from 100 consecutive cases. World J Surg 44:2418–2425. https://doi.org/10.1007/s00268-020-05434-0
doi: 10.1007/s00268-020-05434-0
pubmed: 32095854
Kamiyoshihara M, Ibe T, Kawatani N, Ohsawa F, Yoshikawa R, Shimizu K (2016) A convenient method for identifying a small pulmonary nodule using a dyed swab and geometric mapping. J Thorac Dis 44:2418–2425. https://doi.org/10.21037/jtd.2016.08.62
doi: 10.21037/jtd.2016.08.62
Fujikawa R, Otsuki Y, Nakamura H, Funai K, Nakamura T (2020) Marking method for peripheral non-palpable pulmonary nodules using a mobile computed tomography scanner with a navigation system. Gen Thorac Cardiovas Surg 68:1220–1223. https://doi.org/10.1007/s11748-020-01332-3
doi: 10.1007/s11748-020-01332-3
Saito Y, Watanabe T, Kanamoto Y, Asami M, Yokote F, Dejima H, Morooka H, Ibi T, Yamauchi Y, Takahashi N, Ikeya T, Sakao Y, Kawamura M (2022) A pilot study of intraoperative localization of peripheral small pulmonary tumors by cone-beam computed tomography: sandwich marking technique. J Thorac Dis 14:2845–2854. https://doi.org/10.21037/jtd-22-190
doi: 10.21037/jtd-22-190
pubmed: 36071773
pmcid: 9442511
Nagano M, Sato M (2023) Ten-year outcome and development of virtual-assisted lung mapping in thoracic surgery. Cancers (Basel) 15:1971. https://doi.org/10.3390/cancers15071971
doi: 10.3390/cancers15071971
pubmed: 37046632