Plasticity mechanisms of genetically distinct Purkinje cells.
Purkinje cell
Zebrin‐II
differential gene expression
intrinsic excitability
intrinsic plasticity
long‐term plasticity
synaptic plasticity
Journal
BioEssays : news and reviews in molecular, cellular and developmental biology
ISSN: 1521-1878
Titre abrégé: Bioessays
Pays: United States
ID NLM: 8510851
Informations de publication
Date de publication:
02 May 2024
02 May 2024
Historique:
revised:
04
04
2024
received:
12
01
2024
accepted:
05
04
2024
medline:
3
5
2024
pubmed:
3
5
2024
entrez:
2
5
2024
Statut:
aheadofprint
Résumé
Despite its uniform appearance, the cerebellar cortex is highly heterogeneous in terms of structure, genetics and physiology. Purkinje cells (PCs), the principal and sole output neurons of the cerebellar cortex, can be categorized into multiple populations that differentially express molecular markers and display distinctive physiological features. Such features include action potential rate, but also their propensity for synaptic and intrinsic plasticity. However, the precise molecular and genetic factors that correlate with the differential physiological properties of PCs remain elusive. In this article, we provide a detailed overview of the cellular mechanisms that regulate PC activity and plasticity. We further perform a pathway analysis to highlight how molecular characteristics of specific PC populations may influence their physiology and plasticity mechanisms.
Identifiants
pubmed: 38697917
doi: 10.1002/bies.202400008
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e2400008Subventions
Organisme : Netherlands Organization for Scientific Research
ID : NWO-ALW824.02.001;CIDZ
Organisme : Dutch Organization for Medical Sciences
ID : ZonMW91120067;CIDZ
Organisme : Medical Neuro-Delta
ID : MD01092019-31082023;CIDZ
Organisme : INTENSE LSH-NWO
ID : TTW/00798883;CIDZ
Organisme : ERC-adv
ID : GA-294775 CIDZ
Organisme : ERC-POC
ID : 737619
Organisme : ERC-POC
ID : 768914;CIDZ
Organisme : NWO-Gravitation DBI2
ID : CIDZ
Organisme : the Van Raamsdonk Foundation
ID : CIDZ
Organisme : the NIN-Vriendenfonds for Albinism
ID : CIDZ
Organisme : EU Horizon 2020 project
ID : 779295;PJVDS,SMAS
Organisme : ImmunAID for bioinformatics support
ID : PJVDS,SMAS
Informations de copyright
© 2024 The Authors. BioEssays published by Wiley Periodicals LLC.
Références
Welsh, J. P., Lang, E. J., Suglhara, I., & Llinás, R. (1995). Dynamic organization of motor control within the olivocerebellar system. Nature, 374, 453.
Lang, E. J., Apps, R., Bengtsson, F., Cerminara, N. L., De Zeeuw, C. I., Ebner, T. J., Heck, D. H., Jaeger, D., Jörntell, H., Kawato, M., Otis, T. S., Ozyildirim, O., Popa, L. S., Reeves, A. M. B., Schweighofer, N., Sugihara, I., & Xiao, J. (2017). The roles of the olivocerebellar pathway in motor learning and motor control. A consensus paper. Cerebellum, 16, 230.
Marr, D. (1969). A theory of cerebellar cortex. The Journal of Physiology, 202, 437.
Ito, M. (1970). Neurophysiological aspects of the cerebellar motor control system. International Journal of Neurology, 7, 162.
Albus, J. S. (1971). A theory of cerebellar function. Mathematical Biosciences, 10, 25.
De Zeeuw, C. I., Koppen, J., Bregman, G. G., Runge, M., & Narain, D. (2023). Heterogeneous encoding of temporal stimuli in the cerebellar cortex. Nature Communications, 14, 7581.
Fujita, H., Kodama, T., & du Lac, S. (2020). Modular output circuits of the fastigial nucleus for diverse motor and nonmotor functions of the cerebellar vermis. eLife, 9, e58613.
Witter, L., Canto, C. B., Hoogland, T. M., De Gruijl, J. R., & De Zeeuw, C. I. (2013). Strength and timing of motor responses mediated by rebound firing in the cerebellar nuclei after Purkinje cell activation. Front Neural Circuits, 7, 133.
Lee, K. H., Mathews, P. J., Reeves, A. M. B., Choe, K. Y., Jami, S. A., Serrano, R. E., & Otis, T. S. (2015). Circuit mechanisms underlying motor memory formation in the cerebellum. Neuron, 86, 529.
Ito, M. (2001). Cerebellar long‐term depression: Characterization, signal transduction, and functional roles. Physiological Reviews, 81, 1143.
Napper, R. M. A., & Harvey, R. J. (1988). Number of parallel fiber synapses on an individual Purkinje cell in the cerebellum of the rat. Journal of Comparative Neurology, 274, 168.
Huang, C., Gammon, S. J., Dieterle, M., Huang, R. H., Likins, L., & Ricklefs, R. E. (2014). Dramatic increases in number of cerebellar granule‐cell‐Purkinje‐cell synapses across several mammals. Mammalian Biology, 79, 163.
Shinoda, Y., Sugiuchi, Y., Futami, T., & Izawa, R. (1992). Axon collaterals of mossy fibers from the pontine nucleus in the cerebellar dentate nucleus. Journal of Neurophysiology, 67, 547.
Broersen, R., Albergaria, C., Carulli, D., Carey, M. R., Canto, C. B., & De Zeeuw, C. I. (2023). Synaptic mechanisms for associative learning in the cerebellar nuclei. Nature Communications, 14, 7459.
Ito, M., & Kano, M. (1982). Long‐lasting depression of parallel fiber‐Purkinje cell transmission induced by conjunctive stimulation of parallel fibers and climbing fibers in the cerebellar cortex. Neuroscience Letters, 33, 253.
Ito, M., Sakurai, M., & Tongroach, P. (1982). Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells. The Journal of Physiology, 324, 113.
De Zeeuw, C. I., & Ten Brinke, M. M. (2015). Motor learning and the cerebellum. Cold Spring Harbor Perspectives in Biology, 7, a021683.
D'Angelo, E. (2014). The organization of plasticity in the cerebellar cortex: From synapses to control. Progress in Brain Research, 210, 31.
Gao, Z., Van Beugen, B. J., & De Zeeuw, C. I. (2012). Distributed synergistic plasticity and cerebellar learning. Nature Reviews Neuroscience, 13, 619.
Hansel, C., Linden, D. J., & D'angelo, E. (2001). Beyond parallel fiber LTD: The diversity of synaptic and non‐synaptic plasticity in the cerebellum. Nature Neuroscience, 4, 467.
Lev‐Ram, V., Wong, S. T., Storm, D. R., & Tsien, R. Y. (2002). A new form of cerebellar long‐term potentiation is postsynaptic and depends on nitric oxide but not cAMP. PNAS, 99, 8389.
Lev‐Ram, V., Mehta, S. B., Kleinfeld, D., & Tsien, R. Y. (2003). Reversing cerebellar long‐term depression. Proceedings of the National Academy of Sciences, 100, 15989.
Coesmans, M., Weber, J. T., De Zeeuw, C. I., & Hansel, C. (2004). Bidirectional parallel fiber plasticity in the cerebellum under climbing fiber control. Neuron, 44, 691.
Suvrathan, A., Payne, H. L., & Raymond, J. L. (2016). Timing rules for synaptic plasticity matched to behavioral function. Neuron, 92, 959.
He, Q., Duguid, I., Clark, B., Panzanelli, P., Patel, B., Thomas, P., Fritschy, J.‐M., & Smart, T. G. (2015). Interneuron‐ and GABA(A) receptor‐specific inhibitory synaptic plasticity in cerebellar Purkinje cells. Nature Communications, 6, 7364.
Kano, M., Rexhausen, U., Dreessen, J., & Konnerth, A. (1992). Synaptic excitation produces a long‐lasting rebound potentiation of inhibitory synaptic signals in cerebellar Purkinje cells. Nature, 356, 601.
Shim, H. G., Jang, D. C., Lee, J., Chung, G., Lee, S., Kim, Y. G., Jeon, D. E., & Kim, S. J. (2017). Long‐term depression of intrinsic excitability accompanied by synaptic depression in cerebellar Purkinje cells. Journal of Neuroscience, 37, 5659.
Voerman, S., Urbanus, B. H. A., Schonewille, M., White, J. J., De Zeeuw, C. I., & De Zeeuw, C. I. (2022). Postsynaptic plasticity of Purkinje cells in mice is determined by molecular identity. Communications Biology, 5, 1328.
Wadiche, J. I., & Jahr, C. E. (2005). Patterned expression of Purkinje cell glutamate transporters controls synaptic plasticity. Nature Neuroscience, 8, 1329.
De Zeeuw, C. I. (2021). Bidirectional learning in upbound and downbound microzones of the cerebellum. Nature Reviews Neuroscience, 22, 92.
Viet, N.‐M., Wang, T., Tran‐Anh, K., & Sugihara, I. (2022). Heterogeneity of intrinsic plasticity in cerebellar Purkinje cells linked with cortical molecular zones. iScience, 25, 103705.
Zhou, H., Lin, Z., Voges, K., Ju, C., Gao, Z., Bosman, L. W., Ruigrok, T., Hoebeek, F. E., De Zeeuw, C. I., & Schonewille, M. (2014). Cerebellar modules operate at different frequencies. eLife, 3, e02536.
Apps, R., Hawkes, R., Aoki, S., Bengtsson, F., Brown, A. M., Chen, G., Ebner, T. J., Isope, P., Jörntell, H., Lackey, E. P., Lawrenson, C., Lumb, B., Schonewille, M., Sillitoe, R. V., Spaeth, L., Sugihara, I., Valera, A., Voogd, J., Wylie, D. R., & Ruigrok, T. J. H. (2018). Cerebellar modules and their role as operational cerebellar processing units: A consensus paper [corrected]. Cerebellum (London, England), 17, 654.
Hawkes, R., & Herrup, K. (1995). Aldolase C/zebrin II and the regionalization of the cerebellum. Journal of Molecular Neuroscience, 6, 147.
Ruigrok, T. J. H. (2011). Ins and outs of cerebellar modules. Cerebellum (London, England), 10, 464.
Brochu, G., Maler, L., & Hawkes, R. (1990). Zebrin II: A polypeptide antigen expressed selectively by Purkinje cells reveals compartments in rat and fish cerebellum. Journal of Comparative Neurology, 291, 538.
Dehnes, Y., Chaudhry, F. A., Ullensvang, K., Lehre, K. P., Storm‐Mathisen, J., & Danbolt, N. C. (1998). The glutamate transporter EAAT4 in rat cerebellar Purkinje cells: A glutamate‐gated chloride channel concentrated near the synapse in parts of the dendritic membrane facing astroglia. Journal of Neuroscience, 18, 3606.
Sarna, J. R., Marzban, H., Watanabe, M., & Hawkes, R. (2006). Complementary stripes of phospholipase Cbeta3 and Cbeta4 expression by Purkinje cell subsets in the mouse cerebellum. Journal of Comparative Neurology, 496, 303.
Osorio, A., Mateos, J. M., Azkue, J. J., Benitez, R., Elezgarai, I., Bilbao, A., Diez, J., Puente, N., Kuhn, R., Knopfel, T., Hawkes, R., Donate‐Oliver, F., & Grandes, P. (2001). Parasagittal compartmentalization of the metabotropic glutamate receptor mGluR1b in the cerebellar cortex. European Journal of Anatomy, 5, 15.
Leto, K., Arancillo, M., Becker, E. B. E., Buffo, A., Chiang, C., Ding, B., Dobyns, W. B., Dusart, I., Haldipur, P., Hatten, M. E., Hoshino, M., Joyner, A. L., Kano, M., Kilpatrick, D. L., Koibuchi, N., Marino, S., Martinez, S., Millen, K. J., Millner, T. O., … Hawkes, R. (2016). Consensus paper: Cerebellar development. Cerebellum (London, England), 15, 789.
Chung, S.‐H., Marzban, H., Croci, L., Consalez, G. G., & Hawkes, R. (2008). Purkinje cell subtype specification in the cerebellar cortex: Early B‐cell factor 2 acts to repress the zebrin II‐positive Purkinje cell phenotype. Neuroscience, 153, 721.
Rodriques, S. G., Stickels, R. R., Goeva, A., Martin, C. A., Murray, E., Vanderburg, C. R., Welch, J., Chen, L. M., Chen, F., & Macosko, E. Z. (2019). Slide‐seq: A scalable technology for measuring genome‐wide expression at high spatial resolution. Science, 363, 1463.
Kozareva, V., Martin, C., Osorno, T., Rudolph, S., Guo, C., Vanderburg, C., Nadaf, N., Regev, A., Regehr, W. G., & Macosko, E. (2021). A transcriptomic atlas of mouse cerebellar cortex comprehensively defines cell types. Nature, 598, 214.
Chen, X., Du, Y., Broussard, G. J., Kislin, M., Yuede, C. M., Zhang, S., Dietmann, S., Gabel, H., Zhao, G., Wang, S. S.‐H., Zhang, X., & Bonni, A. (2022). Transcriptomic mapping uncovers Purkinje neuron plasticity driving learning. Nature, 605, 722.
Apsley, E. J., & Becker, E. B. E. (2022). Purkinje cell patterning— insights from single‐cell sequencing. Cells, 11, 2918.
Xiao, J., Cerminara, N. L., Kotsurovskyy, Y., Aoki, H., Burroughs, A., Wise, A. K., Luo, Y., Marshall, S. P., Sugihara, I., Apps, R., & Lang, E. J. (2014). Systematic regional variations in Purkinje cell spiking patterns. PLoS ONE, 9, e105633.
Beekhof, G. C., & Schonewille, M. (2023). Lobule‐related action potential shape‐ and history‐dependent current integration in purkinje cells of adult and developing mice. Cells, 12, 623.
Paukert, M., Huang, Y. H., Tanaka, K., Rothstein, J. D., & Bergles, D. E. (2010). Zones of enhanced glutamate release from climbing fibers in the mammalian cerebellum. Journal of Neuroscience, 30, 7290.
Wang, X., Chen, G., Gao, W., & Ebner, T. J. (2011). Parasagittally aligned, mGluR1‐dependent patches are evoked at long latencies by parallel fiber stimulation in the mouse cerebellar cortex in vivo. Journal of Neurophysiology, 105, 1732.
Gallimore, A. R., Kim, T., Tanaka‐Yamamoto, K., & De Schutter, E. (2018). Switching on depression and potentiation in the cerebellum. Cell Reports, 22, 722.
Shim, H. G., Lee, Y.‐S., & Kim, S. J. (2018). The emerging concept of intrinsic plasticity: Activity‐dependent modulation of intrinsic excitability in cerebellar purkinje cells and motor learning. Experimental Neurobiology, 27, 139.
Wang, Y. T., & Linden, D. J. (2000). Expression of cerebellar long‐term depression requires postsynaptic clathrin‐mediated endocytosis. Neuron, 25, 635.
Chung, H. J., Steinberg, J. P., Huganir, R. L., & Linden, D. J. (2003). Requirement of AMPA receptor GluR2 phosphorylation for cerebellar long‐term depression. Science, 300, 1751.
Huang, Y., Man, H.‐Y., Sekine‐Aizawa, Y., Han, Y., Juluri, K., Luo, H., Cheah, J., Lowenstein, C., Huganir, R. L., & Snyder, S. H. (2005). S‐nitrosylation of N‐ethylmaleimide sensitive factor mediates surface expression of AMPA receptors. Neuron, 46, 533.
Gutierrez‐Castellanos, N., Da Silva‐Matos, C. M., Zhou, K., Canto, C. B., Renner, M. C., Koene, L. M. C., Ozyildirim, O., Sprengel, R., Kessels, H. W., & De Zeeuw, C. I. (2017). Motor learning requires Purkinje cell synaptic potentiation through activation of AMPA‐receptor subunit GluA3. Neuron, 93, 409.
Tatsukawa, T., Chimura, T., Miyakawa, H., & Yamaguchi, K. (2006). Involvement of basal protein kinase C and extracellular signal‐regulated kinase 1/2 activities in constitutive internalization of AMPA receptors in cerebellar Purkinje cells. Journal of Neuroscience, 26, 4820.
Finch, E. A., & Augustine, G. J. (1998). Local calcium signalling by inositol‐1,4,5‐trisphosphate in Purkinje cell dendrites. Nature, 396, 753.
Crepel, F., & Krupa, M. (1988). Activation of protein kinase C induces a long‐term depression of glutamate sensitivity of cerebellar Purkinje cells. An in vitro study. Brain Research, 458, 397.
Huang, K.‐P. (1989). The mechanism of protein kinase C activation. Trends in Neuroscience (Tins), 12, 425.
Belmeguenai, A., & Hansel, C. (2005). A role for protein phosphatases 1, 2A, and 2B in cerebellar long‐term potentiation. Journal of Neuroscience, 25, 10768.
Lin, Z., Wu, B., Paul, M. W., Li, K. W., Yao, Y., Smal, I., Proietti Onori, M., Hasanbegovic, H., Bezstarosti, K., Demmers, J., Houtsmuller, A. B., Meijering, E., Hoebeek, F. E., Schonewille, M., Smit, A. B., Gao, Z., & De Zeeuw, C. I. (2021). Protein phosphatase 2B dual function facilitates synaptic integrity and motor learning. Journal of Neuroscience, 41, 5579.
Wang, D.‐J., Su, L.‐D., Wang, Y.‐N., Yang, D., Sun, C.‐L., Zhou, L., Wang, X.‐X., & Shen, Y. (2014). Long‐term potentiation at cerebellar parallel fiber‐Purkinje cell synapses requires presynaptic and postsynaptic signaling cascades. Journal of Neuroscience, 34, 2355.
Zamora Chimal, C. G., & De Schutter, E. (2018). Ca(2+) requirements for long‐term depression are frequency sensitive in Purkinje cells. Frontiers in Molecular Neuroscience, 11, 438.
Van Woerden, G. M., Hoebeek, F. E., Gao, Z., Nagaraja, R. Y., Hoogenraad, C. C., Kushner, S. A., Hansel, C., De Zeeuw, C. I., & Elgersma, Y. (2009). betaCaMKII controls the direction of plasticity at parallel fiber‐Purkinje cell synapses. Nature Neuroscience, 12, 823.
Tanaka, K., & Augustine, G. J. (2008). A positive feedback signal transduction loop determines timing of cerebellar long‐term depression. Neuron, 59, 608.
Nguyen‐Minh, V. T., Tran‐Anh, K., Luo, Y., & Sugihara, I. (2018). Electrophysiological excitability and parallel fiber synaptic properties of zebrin‐positive and ‐negative Purkinje cells in Lobule VIII of the mouse cerebellar slice. Frontiers in Cellular Neuroscience, 12, 513.
Malinow, R., & Malenka, R. C. (2002). AMPA receptor trafficking and synaptic plasticity. Annual Review of Neuroscience, 25, 103.
Anggono, V., & Huganir, R. L. (2012). Regulation of AMPA receptor trafficking and synaptic plasticity. Current Opinion in Neurobiology, 22, 461.
Lambolez, B., Audinat, E., Bochet, P., Crépel, F., & Rossier, J. (1992). AMPA receptor subunits expressed by single Purkinje cells. Neuron, 9, 247.
Xia, J., Chung, H. J., Wihler, C., Huganir, R. L., & Linden, D. J. (2000). Cerebellar long‐term depression requires PKC‐regulated interactions between GluR2/3 and PDZ domain‐containing proteins. Neuron, 28, 499.
Takamiya, K., Mao, L., Huganir, R. L., & Linden, D. J. (2008). The glutamate receptor‐interacting protein family of GluR2‐binding proteins is required for long‐term synaptic depression expression in cerebellar Purkinje cells. Journal of Neuroscience, 28, 5752.
Hollmann, M., Hartley, M., & Heinemann, S. (1991). Ca2+ permeability of KA‐AMPA–gated glutamate receptor channels depends on subunit composition. Science, 252, 851.
Piochon, C., Irinopoulou, T., Brusciano, D., Bailly, Y., Mariani, J., & Levenes, C. (2007). NMDA receptor contribution to the climbing fiber response in the adult mouse Purkinje cell. Journal of Neuroscience, 27, 10797.
Piochon, C., Levenes, C., Ohtsuki, G., & Hansel, C. (2010). Purkinje cell NMDA receptors assume a key role in synaptic gain control in the mature cerebellum. Journal of Neuroscience, 30, 15330.
Schonewille, M., Girasole, A. E., Rostaing, P., Mailhes‐Hamon, C., Ayon, A., Nelson, A. B., Triller, A., Casado, M., De Zeeuw, C. I., & Bouvier, G. (2021). NMDARs in granule cells contribute to parallel fiber‐Purkinje cell synaptic plasticity and motor learning. PNAS, 118(37), e2102635118.
Bouvier, G., Higgins, D., Spolidoro, M., Carrel, D., Mathieu, B., Léna, C., Dieudonné, S., Barbour, B., Brunel, N., & Casado, M. (2016). Burst‐dependent bidirectional plasticity in the cerebellum is driven by presynaptic NMDA receptors. Cell Reports, 15, 104.
Surdin, T., Preissing, B., Rohr, L., Grömmke, M., Böke, H., Barcik, M., Azimi, Z., Jancke, D., Herlitze, S., Mark, M. D., & Siveke, I. (2023). Optogenetic activation of mGluR1 signaling in the cerebellum induces synaptic plasticity. iScience, 26, 105828.
Aiba, A., Kano, M., Chen, C., Stanton, M. E., Fox, G. D., Herrup, K., Zwingman, T. A., & Tonegawa, S. (1994). Deficient cerebellar long‐term depression and impaired motor learning in mGluR1 mutant mice. Cell, 79, 377–388.
Belmeguenai, A., Botta, P., Weber, J. T., Carta, M., De Ruiter, M., De Zeeuw, C. I., Valenzuela, C. F., & Hansel, C. (2008). Alcohol impairs long‐term depression at the cerebellar parallel fiber‐Purkinje cell synapse. Journal of Neurophysiology, 100, 3167.
Su, L.‐D., Sun, C.‐L., & Shen, Y. (2010). Ethanol acutely modulates mGluR1‐dependent long‐term depression in cerebellum. Alcoholism, Clinical and Experimental Research, 34, 1140.
Kano, M., Hashimoto, K., & Tabata, T. (2008). Type‐1 metabotropic glutamate receptor in cerebellar Purkinje cells: A key molecule responsible for long‐term depression, endocannabinoid signalling and synapse elimination. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 363, 2173.
Canepari, M., & Ogden, D. (2006). Kinetic, pharmacological and activity‐dependent separation of two Ca2+ signalling pathways mediated by type 1 metabotropic glutamate receptors in rat Purkinje neurones. The Journal of Physiology, 573, 65.
Tempia, F., Miniaci, M. C., Anchisi, D., & Strata, P. (1998). Postsynaptic current mediated by metabotropic glutamate receptors in cerebellar Purkinje cells. Journal of Neurophysiology, 80, 520.
Hartmann, J., Dragicevic, E., Adelsberger, H., Henning, H. A., Sumser, M., Abramowitz, J., Blum, R., Dietrich, A., Freichel, M., Flockerzi, V., Birnbaumer, L., & Konnerth, A. (2008). TRPC3 channels are required for synaptic transmission and motor coordination. Neuron, 59, 392.
Hartmann, J., & Konnerth, A. (2009). Mechanisms of metabotropic glutamate receptor‐mediated synaptic signalling in cerebellar Purkinje cells. Acta Physiologica, 195, 79.
Wu, B., Blot, F. G., Wong, A. B., Osório, C., Adolfs, Y., Pasterkamp, R. J., Hartmann, J., Becker, E. B., Boele, H. J., De Zeeuw, C. I., & Schonewille, M. (2019). TRPC3 is a major contributor to functional heterogeneity of cerebellar Purkinje cells. eLife, 8, e45590.
Sternweis, P. C., & Smrcka, A. V. (1993). G proteins in signal transduction: The regulation of phospholipase C. Ciba Foundation Symposium, 176, 96.
Slemmer, J. E., De Zeeuw, C. I., & Weber, J. T. (2005). Don't get too excited: Mechanisms of glutamate‐mediated Purkinje cell death. Progress in Brain Research, 148, 367.
Perkins, E. M., Clarkson, Y. L., Suminaite, D., Lyndon, A. R., Tanaka, K., Rothstein, J. D., Skehel, P. A., Wyllie, D. J. A., & Jackson, M. (2018). Loss of cerebellar glutamate transporters EAAT4 and GLAST differentially affects the spontaneous firing pattern and survival of Purkinje cells. Human Molecular Genetics, 27, 2614.
Chaudhry, F. A., Lehre, K. P., Lookeren Campagne, M. V., Ottersen, O. P., Danbolt, N. C., & Storm‐Mathisen, J. (1995). Glutamate transporters in glial plasma membranes: Highly differentiated localizations revealed by quantitative ultrastructural immunocytochemistry. Neuron, 15, 711.
Furuta, A., Martin, L. J., Lin, C.‐L. G., Dykes‐Hoberg, M., & Rothstein, J. D. (1997). Cellular and synaptic localization of the neuronal glutamate transporters excitatory amino acid transporter 3 and 4. Neuroscience, 81, 1031.
Petralia, R. S., Zhao, H.‐M., Wang, Y.‐X., & Wenthold, R. J. (1998). Variations in the tangential distribution of postsynaptic glutamate receptors in Purkinje cell parallel and climbing fiber synapses during development. Neuropharmacology, 37, 1321.
Yamasaki, M., Aiba, A., Kano, M., & Watanabe, M. (2021). mGluR1 signaling in cerebellar Purkinje cells: Subcellular organization and involvement in cerebellar function and disease. Neuropharmacology, 194, 108629.
Baude, A., Nusser, Z., Roberts, J. D. B., Mulvihill, E., Jeffrey Mcllhinney, R. A., & Somogyi, P. (1993). The metabotropic glutamate receptor (mGluR1 alpha) is concentrated at perisynaptic membrane of neuronal subpopulations as detected by immunogold reaction. Neuron, 11, 771.
Hansel, C., De Jeu, M., Belmeguenai, A., Houtman, S. H., Buitendijk, G. H. S., Andreev, D., De Zeeuw, C. I., & Elgersma, Y. (2006). alphaCaMKII Is essential for cerebellar LTD and motor learning. Neuron, 51, 835.
Beeson, K. A., Beeson, R., Westbrook, G. L., & Schnell, E. (2020). α2δ‐2 protein controls structure and function at the cerebellar climbing fiber synapse. Journal of Neuroscience, 40, 2403.
Moosmang, S., Haider, N., Klugbauer, N., Adelsberger, H., Langwieser, N., Müller, J., Stiess, M., Marais, E., Schulla, V., Lacinova, L., Goebbels, S., Nave, K.‐A., Storm, D. R., Hofmann, F., & Kleppisch, T. (2005). Role of hippocampal Cav1.2 Ca2+ channels in NMDA receptor‐independent synaptic plasticity and spatial memory. Journal of Neuroscience, 25, 9883.
Mckinney, B. C., Sze, W., Lee, B., & Murphy, G. G. (2009). Impaired long‐term potentiation and enhanced neuronal excitability in the amygdala of Ca(V)1.3 knockout mice. Neurobiology of Learning and Memory, 92, 519.
Marschallinger, J., Sah, A., Schmuckermair, C., Unger, M., Rotheneichner, P., Kharitonova, M., Waclawiczek, A., Gerner, P., Jaksch‐Bogensperger, H., Berger, S., Striessnig, J., Singewald, N., Couillard‐Despres, S., & Aigner, L. (2015). The L‐type calcium channel Cav1.3 is required for proper hippocampal neurogenesis and cognitive functions. Cell Calcium, 58, 606.
Lauffer, M., Wen, H., Myers, B., Plumb, A., Parker, K., & Williams, A. (2022). Deletion of the voltage‐gated calcium channel, Ca(V) 1.3, causes deficits in motor performance and associative learning. Genes, Brain, and Behavior, 21, e12791.
Furutama, D., Morita, N., Takano, R., Sekine, Y., Sadakata, T., Shinoda, Y., Hayashi, K., Mishima, Y., Mikoshiba, K., Hawkes, R., & Furuichi, T. (2010). Expression of the IP3R1 promoter‐driven nls‐lacZ transgene in Purkinje cell parasagittal arrays of developing mouse cerebellum. Journal of Neuroscience Research, 88, 2810.
Mouton, J., Ronjat, M., Jona, I., Villaz, M., Feltz, A., & Maulet, Y. (2001). Skeletal and cardiac ryanodine receptors bind to the Ca(2+)‐sensor region of dihydropyridine receptor alpha(1C) subunit. Febs Letters, 505, 441.
Hartmann, J., Karl, R. M., Alexander, R. P. D., Adelsberger, H., Brill, M. S., Rühlmann, C., Ansel, A., Sakimura, K., Baba, Y., Kurosaki, T., Misgeld, T., & Konnerth, A. (2014). STIM1 controls neuronal Ca2⁺ signaling, mGluR1‐dependent synaptic transmission, and cerebellar motor behavior. Neuron, 82, 635.
Ryu, C., Jang, D. C., Jung, D., Kim, Y. G., Shim, H. G., Ryu, H.‐H., Lee, Y.‐S., Linden, D. J., Worley, P. F., & Kim, S. J. (2017). STIM1 regulates somatic Ca(2+) signals and intrinsic firing properties of cerebellar Purkinje neurons. Journal of Neuroscience, 37, 8876.
Hosy, E., Piochon, C., Teuling, E., Rinaldo, L., & Hansel, C. (2011). SK2 channel expression and function in cerebellar Purkinje cells. The Journal of Physiology, 589, 3433.
Wei, P., Blundon, J. A., Rong, Y., Zakharenko, S. S., & Morgan, J. I. (2011). Impaired locomotor learning and altered cerebellar synaptic plasticity in pep‐19/PCP4‐null mice. Molecular and Cellular Biology, 31, 2838.
Walaas, S. I., Lai, Y., Gorelick, F. S., DeCamilli, P., Moretti, M., & Greengard, P. (1988). Cell‐specific localization of the alpha‐subunit of calcium/calmodulin‐dependent protein kinase II in Purkinje cells in rodent cerebellum. Brain Research, 464, 233.
Pinto, T. M., Schilstra, M. J., Roque, A. C., & Steuber, V. (2020). Binding of filamentous actin to CaMKII as potential Regulation mechanism of bidirectional synaptic plasticity by β CaMKII in cerebellar Purkinje cells. Scientific Reports, 10, 9019.
Blot, F. G. C., White, J. J., Van Hattem, A., Scotti, L., Balaji, V., Adolfs, Y., Pasterkamp, R. J., De Zeeuw, C. I., & Schonewille, M. (2023). Purkinje cell microzones mediate distinct kinematics of a single movement. Nature Communications, 14, 4358.
Thiagarajan, T. C., Piedras‐Renteria, E. S., & Tsien, R. W. (2002). alpha‐ and betaCaMKII. Inverse regulation by neuronal activity and opposing effects on synaptic strength. Neuron, 36, 1103.
De Zeeuw, C. I., Hansel, C., Bian, F., Koekkoek, S. K. E., Van Alphen, A. M., Linden, D. J., & Oberdick, J. (1998). Expression of a protein kinase C inhibitor in Purkinje cells blocks cerebellar LTD and adaptation of the vestibulo‐ocular reflex. Neuron, 20, 495.
Sakane, F., Imai, S.‐I., Kai, M., Yasuda, S., & Kanoh, H. (2007). Diacylglycerol kinases: Why so many of them? Biochimica Et Biophysica Acta, 1771, 793.
Lee, D., Kim, E., & Tanaka‐Yamamoto, K. (2016). Diacylglycerol kinases in the coordination of synaptic plasticity. Frontiers in Cell and Developmental Biology, 4, 92.
Lee, D., Yamamoto, Y., Kim, E., & Tanaka‐Yamamoto, K. (2015). Functional and physical interaction of diacylglycerol kinase ζ with protein kinase Cα is required for cerebellar long‐term depression. Journal of Neuroscience, 35, 15453.
Raman, I. M., & Bean, B. P. (1999). Ionic currents underlying spontaneous action potentials in isolated cerebellar Purkinje neurons. Journal of Neuroscience, 19, 1663.
Swensen, A. M., & Bean, B. P. (2003). Ionic mechanisms of burst firing in dissociated Purkinje neurons. Journal of Neuroscience, 23, 9650.
Raman, I. M., & Bean, B. P. (1997). Resurgent sodium current and action potential formation in dissociated cerebellar Purkinje neurons. Journal of Neuroscience, 17, 4517.
Womack, M. D., Chevez, C., & Khodakhah, K. (2004). Calcium‐activated potassium channels are selectively coupled to P/Q‐type calcium channels in cerebellar Purkinje neurons. Journal of Neuroscience, 24, 8818.
Edgerton, J. R., & Reinhart, P. H. (2003). Distinct contributions of small and large conductance Ca2+‐activated K+ channels to rat Purkinje neuron function. The Journal of Physiology, 548, 53.
Belmeguenai, A., Hosy, E., Bengtsson, F., Pedroarena, C. M., Piochon, C., Teuling, E., He, Q., Ohtsuki, G., De Jeu, M. T. G., Elgersma, Y., De Zeeuw, C. I., Jörntell, H., & Hansel, C. (2010). Intrinsic plasticity complements long‐term potentiation in parallel fiber input gain control in cerebellar Purkinje cells. Journal of Neuroscience, 30, 13630.
Ohtsuki, G., Piochon, C., Adelman, J. P., & Hansel, C. (2012). SK2 channel modulation contributes to compartment‐specific dendritic plasticity in cerebellar Purkinje cells. Neuron, 75, 108.
Grasselli, G., Boele, H.‐J., Titley, H. K., Bradford, N., Van Beers, L., Jay, L., Beekhof, G. C., Busch, S. E., De Zeeuw, C. I., Schonewille, M., & Hansel, C. (2020). SK2 channels in cerebellar Purkinje cells contribute to excitability modulation in motor‐learning‐specific memory traces. PLoS Biology, 18, e3000596.
Schonewille, M., Belmeguenai, A., Koekkoek, S. K., Houtman, S. H., Boele, H. J., Van Beugen, B. J., Gao, Z., Badura, A., Ohtsuki, G., Amerika, W. E., Hosy, E., Hoebeek, F. E., Elgersma, Y., Hansel, C., & De Zeeuw, C. I. (2010). Purkinje cell‐specific knockout of the protein phosphatase PP2B impairs potentiation and cerebellar motor learning. Neuron, 67, 618.
Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta‐Cepas, J., Simonovic, M., Doncheva, N. T., Morris, J. H., Bork, P., Jensen, L. J., & Mering, C. V. (2019). STRING v11: Protein‐protein association networks with increased coverage, supporting functional discovery in genome‐wide experimental datasets. Nucleic Acids Research, 47, D607.
Martin, E. A., Muralidhar, S., Wang, Z., Cervantes, D. C., Basu, R., Taylor, M. R., Hunter, J., Cutforth, T., Wilke, S. A., Ghosh, A., & Williams, M. E. (2015). The intellectual disability gene Kirrel3 regulates target‐specific mossy fiber synapse development in the hippocampus. eLife, 4, e09395.
Katzman, A., & Alberini, C. M. (2018). NLGN1 and NLGN2 in the prefrontal cortex: Their role in memory consolidation and strengthening. Current Opinion in Neurobiology, 48, 122.
Fujita, E., Tanabe, Y., Imhof, B. A., Momoi, M. Y., & Momoi, T. (2012). A complex of synaptic adhesion molecule CADM1, a molecule related to autism spectrum disorder, with MUPP1 in the cerebellum. Journal of Neurochemistry, 123, 886.
Yamagata, M., Duan, X., & Sanes, J. R. (2018). Cadherins interact with synaptic organizers to promote synaptic differentiation. Frontiers in Molecular Neuroscience, 11, 142.
Akaneya, Y., Sohya, K., Kitamura, A., Kimura, F., Washburn, C., Zhou, R., Ninan, I., Tsumoto, T., & Ziff, E. B. (2010). Ephrin‐A5 and EphA5 interaction induces synaptogenesis during early hippocampal development. PLoS ONE, 5, e12486.
Dyer, A. H., Vahdatpour, C., Sanfeliu, A., & Tropea, D. (2016). The role of Insulin‐Like Growth Factor 1 (IGF‐1) in brain development, maturation and neuroplasticity. Neuroscience, 325, 89.
Somel, M., Liu, X., Tang, L., Yan, Z., Hu, H., Guo, S., Jiang, X., Zhang, X., Xu, G., Xie, G., Li, N., Hu, Y., Chen, W., Pääbo, S., & Khaitovich, P. (2011). MicroRNA‐driven developmental remodeling in the brain distinguishes humans from other primates. PLoS Biology, 9, e1001214.
Qu, Z., Zhang, H., Huang, M., Shi, G., Liu, Z., Xie, P., Li, H., Wang, W., Xu, G., Zhang, Y., Yang, L., Huang, G., Takahashi, J. S., Zhang, W. J., & Xu, Y. (2016). Loss of ZBTB20 impairs circadian output and leads to unimodal behavioral rhythms. eLife, 5, e17171.
Li, H., Liu, G., Wan, X., Zhou, L., Qin, Z.‐B., Ma, X.‐H., Su, K., Liu, Y.‐J., Yuan, J., Wei, C.‐C., Ren, A.‐J., Chen, Y.‐X., Young, S. G., Zhang, H., Xie, Z., & Zhang, W. J. (2022). The zinc finger and BTB domain containing protein ZBTB20 regulates plasma triglyceride metabolism by repressing lipoprotein lipase gene transcription in hepatocytes. Hepatology, 75, 1169.
Sultan, F. A., & Day, J. J. (2011). Epigenetic mechanisms in memory and synaptic function. Epigenomics, 3, 157.
Levenson, J. M., O'riordan, K. J., Brown, K. D., Trinh, M. A., Molfese, D. L., & Sweatt, J. D. (2004). Regulation of histone acetylation during memory formation in the hippocampus. Journal of Biological Chemistry, 279, 40545.