Neurological affection and serum neurofilament light chain in wild type transthyretin amyloidosis.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
02 May 2024
02 May 2024
Historique:
received:
05
01
2024
accepted:
17
04
2024
medline:
3
5
2024
pubmed:
3
5
2024
entrez:
2
5
2024
Statut:
epublish
Résumé
In contrast to inherited transthyretin amyloidosis (A-ATTRv), neuropathy is not a classic leading symptom of wild type transthyretin amyloidosis (A-ATTRwt). However, neurological symptoms are increasingly relevant in A-ATTRwt as well. To better understand the role of neurological symptoms in A-ATTRwt, A-ATTRwt patients were prospectively characterized at Amyloidosis Center Charité Berlin (ACCB) between 2018 and 2023 using detailed neurological examination, quality of life questionnaires, and analysis of age- and BMI-adapted serum neurofilament light chain (NFL) levels. 16 out of 73 (21.9%) patients presented with a severe neuropathy which we defined by a Neuropathy Impairment Score (NIS) of 20 or more. In this group, quality of life was reduced, peripheral neuropathy was more severe, and spinal stenosis and joint replacements were frequent. Age- and BMI matched serum NFL levels were markedly elevated in patients with a NIS ≥ 20. We therefore conclude that highly abnormal values in neuropathy scores such as the NIS occur in A-ATTRwt, and have an important impact on quality of life. Both peripheral neuropathy and spinal canal stenosis are likely contributors. Serum NFL may serve as a biomarker for neurological affection in patients with A-ATTRwt. It will be important to consider neurological aspects of A-ATTRwt for diagnosis, clinical follow-up, and future treatment development.
Identifiants
pubmed: 38698025
doi: 10.1038/s41598-024-60025-6
pii: 10.1038/s41598-024-60025-6
doi:
Substances chimiques
Neurofilament Proteins
0
neurofilament protein L
0
Biomarkers
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
10111Informations de copyright
© 2024. The Author(s).
Références
Ruberg, F. L. et al. Transthyretin amyloid cardiomyopathy: JACC state-of-the-art review. J. Am. Coll. Cardiol. 73, 2872–2891. https://doi.org/10.1016/j.medcle.2020.06.033 (2019).
doi: 10.1016/j.medcle.2020.06.033
pubmed: 31171094
pmcid: 6724183
Kleefeld, F. et al. Same same, but different? The neurological presentation of wildtype transthyretin (ATTRwt) amyloidosis. Amyloid 0, 1–10. https://doi.org/10.1080/13506129.2021.2014448 (2022).
doi: 10.1080/13506129.2021.2014448
Živković, S., Soman, P. & Lacomis, D. Late-onset peripheral neuropathy in patients with wild type transthyretin amyloidosis (wtATTR). Amyloid 27, 142–143. https://doi.org/10.1080/13506129.2019.1697224 (2020).
doi: 10.1080/13506129.2019.1697224
pubmed: 31782666
Campagnolo, M. et al. Peripheral nerve involvement in wild-type transthyretin amyloidosis. Neurol. Sci. https://doi.org/10.1007/s10072-022-06459-0 (2022).
doi: 10.1007/s10072-022-06459-0
pubmed: 36260260
Russell, A. et al. Utility of neuropathy screening for wild-type transthyretin amyloidosis patients. Can. J. Neurol. Sci. 48, 607–615. https://doi.org/10.1017/cjn.2020.271 (2021).
doi: 10.1017/cjn.2020.271
pubmed: 33342448
Papagianni, A. et al. Clinical and apparative investigation of large and small nerve fiber impairment in mixed cohort of ATTR-amyloidosis: Impact on patient management and new insights in wild-type. Amyloid 29, 14–22. https://doi.org/10.1080/13506129.2021.1976751 (2022).
doi: 10.1080/13506129.2021.1976751
pubmed: 34632904
Wajnsztajn Yungher, F. et al. Peripheral neuropathy symptoms in wild type transthyretin amyloidosis. J. Peripher. Nerv. Syst. 25, 265–272. https://doi.org/10.1111/jns.12403 (2020).
doi: 10.1111/jns.12403
pubmed: 32627282
Lam, L., Margeta, M. & Layzer, R. Amyloid polyneuropathy caused by wild-type transthyretin. Muscle Nerve 52, 146–149. https://doi.org/10.1002/mus.24563 (2015).
doi: 10.1002/mus.24563
pubmed: 25557530
Ungericht, M. et al. Amyloid myopathy: expanding the clinical spectrum of transthyretin amyloidosis—case report and literature review. J. Nucl. Cardiol. https://doi.org/10.1007/s12350-022-02990-x (2022).
doi: 10.1007/s12350-022-02990-x
pubmed: 35581484
pmcid: 10371878
Pinto, M. V. et al. Transthyretin amyloidosis: Putting myopathy on the map. Muscle Nerve 61, 95–100. https://doi.org/10.1002/mus.26723 (2020).
doi: 10.1002/mus.26723
pubmed: 31587306
Koike, H. & Katsuno, M. Transthyretin amyloidosis: Update on the clinical spectrum, pathogenesis, and disease-modifying therapies. Neurol. Ther. 9, 317–333. https://doi.org/10.1007/s40120-020-00210-7 (2020).
doi: 10.1007/s40120-020-00210-7
pubmed: 32948978
pmcid: 7500251
Louwsma, J. et al. Neurofilament light chain, a biomarker for polyneuropathy in systemic amyloidosis. Amyloid 28, 50–55. https://doi.org/10.1080/13506129.2020.1815696 (2021).
doi: 10.1080/13506129.2020.1815696
pubmed: 32883119
Loser, V. et al. Serum neurofilament light chain as a reliable biomarker of hereditary transthyretin-related amyloidosis—A Swiss reference center experience. J. Peripher. Nerv. Syst. https://doi.org/10.1111/jns.12524 (2022).
doi: 10.1111/jns.12524
pubmed: 36471582
Ticau, S. et al. Neurofilament light chain as a biomarker of hereditary transthyretin-mediated amyloidosis. Neurology 96, e412–e422. https://doi.org/10.1212/WNL.0000000000011090 (2021).
doi: 10.1212/WNL.0000000000011090
pubmed: 33087494
pmcid: 7884985
Eldhagen, P. et al. Transthyretin amyloid deposits in lumbar spinal stenosis and assessment of signs of systemic amyloidosis. J. Intern. Med. 289, 895–905. https://doi.org/10.1111/joim.13222 (2021).
doi: 10.1111/joim.13222
pubmed: 33274477
pmcid: 8248398
Boyle, R. P., Sharan, J. & Schwartz, G. Carpal tunnel syndrome in transthyretin cardiac amyloidosis: Implications and protocol for diagnosis and treatment. Cureus 13, e14546. https://doi.org/10.7759/cureus.14546 (2021).
doi: 10.7759/cureus.14546
pubmed: 34017661
pmcid: 8130635
Nakagawa, M. et al. Carpal tunnel syndrome: A common initial symptom of systemic wild-type ATTR (ATTRwt) amyloidosis. Amyloid 23, 58–63. https://doi.org/10.3109/13506129.2015.1135792 (2016).
doi: 10.3109/13506129.2015.1135792
pubmed: 26852880
Hviid, C. V. B., Knudsen, C. S. & Parkner, T. Reference interval and preanalytical properties of serum neurofilament light chain in Scandinavian adults. Scand. J. Clin. Lab. Investig. 80, 291–295. https://doi.org/10.1080/00365513.2020.1730434 (2020).
doi: 10.1080/00365513.2020.1730434
Benkert, P. et al. Serum neurofilament light chain for individual prognostication of disease activity in people with multiple sclerosis: A retrospective modelling and validation study. Lancet Neurol. 21, 246–257. https://doi.org/10.1016/S1474-4422(22)00009-6 (2022).
doi: 10.1016/S1474-4422(22)00009-6
pubmed: 35182510
Gaetani, L. et al. Neurofilament light chain as a biomarker in neurological disorders. J. Neurol. Neurosurg. Psychiatry https://doi.org/10.1136/jnnp-2018-320106 (2019).
doi: 10.1136/jnnp-2018-320106
pubmed: 30967444
Bouche, P. Neuropathy of the elderly. Rev. Neurol. 176, 733–738. https://doi.org/10.1016/j.neurol.2019.11.007 (2020).
doi: 10.1016/j.neurol.2019.11.007
pubmed: 32980155
Kroi, F. et al. Estimating the gender distribution of patients with wild-type transthyretin amyloid cardiomyopathy: A systematic review and meta-analysis. Cardiol. Ther. 10, 41–55. https://doi.org/10.1007/s40119-020-00205-3 (2021).
doi: 10.1007/s40119-020-00205-3
pubmed: 33315233
Ioannou, A. et al. Stratifying disease progression in patients with cardiac ATTR amyloidosis. J. Am. Coll. Cardiol. 83, 1276–1291. https://doi.org/10.1016/j.jacc.2023.12.036 (2024).
doi: 10.1016/j.jacc.2023.12.036
pubmed: 38530684
pmcid: 11004588
Tozza, S. et al. The neuropathy in hereditary transthyretin amyloidosis: A narrative review. J. Peripher. Nerv. Syst. 26, 155–159. https://doi.org/10.1111/jns.12451 (2021).
doi: 10.1111/jns.12451
pubmed: 33960565
pmcid: 8360044
Dyck, P. J. B. et al. Development of measures of polyneuropathy impairment in hATTR amyloidosis: From NIS to mNIS + 7. J. Neurol. Sci. 405, 116424. https://doi.org/10.1016/j.jns.2019.116424 (2019).
doi: 10.1016/j.jns.2019.116424
pubmed: 31445300
Sueyoshi, T. et al. Wild-type transthyretin-derived amyloidosis in various ligaments and tendons. Hum. Pathol. 42, 1259–1264. https://doi.org/10.1016/j.humpath.2010.11.017 (2011).
doi: 10.1016/j.humpath.2010.11.017
pubmed: 21334722
George, K. M. et al. Increased thickness of lumbar spine ligamentum flavum in wild-type transthyretin amyloidosis. J. Clin. Neurosci. 84, 33–37. https://doi.org/10.1016/j.jocn.2020.11.029 (2021).
doi: 10.1016/j.jocn.2020.11.029
pubmed: 33485595
Rubin, J. et al. Hip and knee arthroplasty are common among patients with transthyretin cardiac amyloidosis, occurring years before cardiac amyloid diagnosis: Can we identify affected patients earlier?. Amyloid 24, 226–230. https://doi.org/10.1080/13506129.2017.1375908 (2017).
doi: 10.1080/13506129.2017.1375908
pubmed: 28906148
Takanashi, T. et al. Synovial deposition of wild-type transthyretin-derived amyloid in knee joint osteoarthritis patients. Amyloid 20, 151–155. https://doi.org/10.3109/13506129.2013.803190 (2013).
doi: 10.3109/13506129.2013.803190
pubmed: 23734638
Gu, Y. J. et al. Clinical and laboratory characteristics of patients having amyloidogenic transthyretin deposition in osteoarthritic knee joints. J. Zhejiang Univ. Sci. B 15, 92–99. https://doi.org/10.1631/jzus.B1300046 (2014).
doi: 10.1631/jzus.B1300046
pubmed: 24390749
pmcid: 3891123
Goffin, Y. et al. Amyloidosis of the joints: evidence that human hip capsules have a unique predisposition for amyloid of the senile systemic type. Appl. Pathol. 3, 88–95 (1985).
pubmed: 3915948
Fernandes, A. et al. Clinicopathological correlations of sural nerve biopsies in TTR Val30Met familial amyloid polyneuropathy. BRAIN AIN Commun. 1, 1–13. https://doi.org/10.1093/braincomms/fcz032 (2019).
doi: 10.1093/braincomms/fcz032
Simmons, Z. et al. Low diagnostic yield of sural nerve biopsy in patients with peripheral neuropathy and primary amyloidosis. J. Neurol. Sci. 120, 60–63. https://doi.org/10.1016/0022-510X(93)90025-T (1993).
doi: 10.1016/0022-510X(93)90025-T
pubmed: 7507161
Simmons, Z. & Specht, C. S. The neuromuscular manifestations of amyloidosis. J. Clin. Neuromuscul. Dis. 11, 145–157. https://doi.org/10.1097/CND.0b013e3181d05994 (2010).
doi: 10.1097/CND.0b013e3181d05994
pubmed: 20215989
Carroll, A. et al. Novel approaches to diagnosis and management of hereditary transthyretin amyloidosis. J. Neurol. Neurosurg. Psychiatry https://doi.org/10.1136/jnnp-2021-327909 (2022).
doi: 10.1136/jnnp-2021-327909
pubmed: 35256455
Wollenweber, T. et al. Does [99mTc]-3,3-diphosphono-1,2-propanodicarboxylic acid (DPD) soft tissue uptake allow the identification of patients with the diagnosis of cardiac transthyretin-related (ATTR) amyloidosis with higher risk for polyneuropathy?. J. Nucl. Cardiol. https://doi.org/10.1007/s12350-022-02986-7 (2022).
doi: 10.1007/s12350-022-02986-7
pubmed: 36513919
pmcid: 10371940
Ungericht, M. & Poelzl, G. Correlation between DPD soft tissue uptake and polyneuropathy in ATTR amyloidosis. J. Nucl. Cardiol. https://doi.org/10.1007/s12350-023-03217-3 (2023).
doi: 10.1007/s12350-023-03217-3
pubmed: 36764985
Capo, X. et al. Neurofilament light chain levels increase with age and are associated with worst physical function and body composition in men but not in women https://doi.org/10.20944/preprints202307.1227.v1 (2023).
Tang, R. et al. Association of neurofilament light chain with renal function: Mechanisms and clinical implications. Alzheimer’s Res. Ther. 14, 1–12. https://doi.org/10.1186/s13195-022-01134-0 (2022).
doi: 10.1186/s13195-022-01134-0
Perugini, E. et al. Noninvasive etiologic diagnosis of cardiac amyloidosis using 99mTc-3,3-diphosphono-1,2-propanodicarboxylic acid scintigraphy. J. Am. Coll. Cardiol. 46, 1076–1084. https://doi.org/10.1016/j.jacc.2005.05.073 (2005).
doi: 10.1016/j.jacc.2005.05.073
pubmed: 16168294
Adams, D. et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N. Engl. J. Med. 379, 11–21. https://doi.org/10.1056/nejmoa1716153 (2018).
doi: 10.1056/nejmoa1716153
pubmed: 29972753
Benson, M. D. et al. Inotersen treatment for patients with hereditary transthyretin amyloidosis. N. Engl. J. Med. https://doi.org/10.1056/NEJMoa1716793 (2018).
doi: 10.1056/NEJMoa1716793
pubmed: 30380387
pmcid: 5972517
Obici, L. et al. Quality of life outcomes in APOLLO, the phase 3 trial of the RNAi therapeutic patisiran in patients with hereditary transthyretin-mediated amyloidosis. Amyloid 27, 153–162. https://doi.org/10.1080/13506129.2020.1730790 (2020).
doi: 10.1080/13506129.2020.1730790
pubmed: 32131641
Vinik, E. J. et al. The development and validation of the Norfolk QOL-DN, a new measure of patients’ perception of the effects of diabetes and diabetic neuropathy. Diabetes Technol. Ther. 7, 497–508. https://doi.org/10.1089/dia.2005.7.497 (2005).
doi: 10.1089/dia.2005.7.497
pubmed: 15929681
Vinik, E. J. et al. Norfolk QOL-DN: Validation of a patient reported outcome measure in transthyretin familial amyloid polyneuropathy. J. Peripher. Nerv. Syst. 19, 104–114. https://doi.org/10.1111/jns5.12059 (2014).
doi: 10.1111/jns5.12059
pubmed: 24738700
Van Nes, S. I. et al. Rasch-built Overall Disability Scale (R-ODS) for immune-mediated peripheral neuropathies. Neurology 76, 337–345. https://doi.org/10.1212/WNL.0b013e318208824b (2011).
doi: 10.1212/WNL.0b013e318208824b
pubmed: 21263135
Schatka, I. et al. An optimized imaging protocol for [99mTc]Tc-DPD scintigraphy and SPECT/CT quantification in cardiac transthyretin (ATTR) amyloidosis. J. Nucl. Cardiol. 28, 2483–2496. https://doi.org/10.1007/s12350-021-02715-6 (2021).
doi: 10.1007/s12350-021-02715-6
pubmed: 34331215
pmcid: 8709821