Neurological affection and serum neurofilament light chain in wild type transthyretin amyloidosis.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
02 May 2024
Historique:
received: 05 01 2024
accepted: 17 04 2024
medline: 3 5 2024
pubmed: 3 5 2024
entrez: 2 5 2024
Statut: epublish

Résumé

In contrast to inherited transthyretin amyloidosis (A-ATTRv), neuropathy is not a classic leading symptom of wild type transthyretin amyloidosis (A-ATTRwt). However, neurological symptoms are increasingly relevant in A-ATTRwt as well. To better understand the role of neurological symptoms in A-ATTRwt, A-ATTRwt patients were prospectively characterized at Amyloidosis Center Charité Berlin (ACCB) between 2018 and 2023 using detailed neurological examination, quality of life questionnaires, and analysis of age- and BMI-adapted serum neurofilament light chain (NFL) levels. 16 out of 73 (21.9%) patients presented with a severe neuropathy which we defined by a Neuropathy Impairment Score (NIS) of 20 or more. In this group, quality of life was reduced, peripheral neuropathy was more severe, and spinal stenosis and joint replacements were frequent. Age- and BMI matched serum NFL levels were markedly elevated in patients with a NIS ≥ 20. We therefore conclude that highly abnormal values in neuropathy scores such as the NIS occur in A-ATTRwt, and have an important impact on quality of life. Both peripheral neuropathy and spinal canal stenosis are likely contributors. Serum NFL may serve as a biomarker for neurological affection in patients with A-ATTRwt. It will be important to consider neurological aspects of A-ATTRwt for diagnosis, clinical follow-up, and future treatment development.

Identifiants

pubmed: 38698025
doi: 10.1038/s41598-024-60025-6
pii: 10.1038/s41598-024-60025-6
doi:

Substances chimiques

Neurofilament Proteins 0
neurofilament protein L 0
Biomarkers 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

10111

Informations de copyright

© 2024. The Author(s).

Références

Ruberg, F. L. et al. Transthyretin amyloid cardiomyopathy: JACC state-of-the-art review. J. Am. Coll. Cardiol. 73, 2872–2891. https://doi.org/10.1016/j.medcle.2020.06.033 (2019).
doi: 10.1016/j.medcle.2020.06.033 pubmed: 31171094 pmcid: 6724183
Kleefeld, F. et al. Same same, but different? The neurological presentation of wildtype transthyretin (ATTRwt) amyloidosis. Amyloid 0, 1–10. https://doi.org/10.1080/13506129.2021.2014448 (2022).
doi: 10.1080/13506129.2021.2014448
Živković, S., Soman, P. & Lacomis, D. Late-onset peripheral neuropathy in patients with wild type transthyretin amyloidosis (wtATTR). Amyloid 27, 142–143. https://doi.org/10.1080/13506129.2019.1697224 (2020).
doi: 10.1080/13506129.2019.1697224 pubmed: 31782666
Campagnolo, M. et al. Peripheral nerve involvement in wild-type transthyretin amyloidosis. Neurol. Sci. https://doi.org/10.1007/s10072-022-06459-0 (2022).
doi: 10.1007/s10072-022-06459-0 pubmed: 36260260
Russell, A. et al. Utility of neuropathy screening for wild-type transthyretin amyloidosis patients. Can. J. Neurol. Sci. 48, 607–615. https://doi.org/10.1017/cjn.2020.271 (2021).
doi: 10.1017/cjn.2020.271 pubmed: 33342448
Papagianni, A. et al. Clinical and apparative investigation of large and small nerve fiber impairment in mixed cohort of ATTR-amyloidosis: Impact on patient management and new insights in wild-type. Amyloid 29, 14–22. https://doi.org/10.1080/13506129.2021.1976751 (2022).
doi: 10.1080/13506129.2021.1976751 pubmed: 34632904
Wajnsztajn Yungher, F. et al. Peripheral neuropathy symptoms in wild type transthyretin amyloidosis. J. Peripher. Nerv. Syst. 25, 265–272. https://doi.org/10.1111/jns.12403 (2020).
doi: 10.1111/jns.12403 pubmed: 32627282
Lam, L., Margeta, M. & Layzer, R. Amyloid polyneuropathy caused by wild-type transthyretin. Muscle Nerve 52, 146–149. https://doi.org/10.1002/mus.24563 (2015).
doi: 10.1002/mus.24563 pubmed: 25557530
Ungericht, M. et al. Amyloid myopathy: expanding the clinical spectrum of transthyretin amyloidosis—case report and literature review. J. Nucl. Cardiol. https://doi.org/10.1007/s12350-022-02990-x (2022).
doi: 10.1007/s12350-022-02990-x pubmed: 35581484 pmcid: 10371878
Pinto, M. V. et al. Transthyretin amyloidosis: Putting myopathy on the map. Muscle Nerve 61, 95–100. https://doi.org/10.1002/mus.26723 (2020).
doi: 10.1002/mus.26723 pubmed: 31587306
Koike, H. & Katsuno, M. Transthyretin amyloidosis: Update on the clinical spectrum, pathogenesis, and disease-modifying therapies. Neurol. Ther. 9, 317–333. https://doi.org/10.1007/s40120-020-00210-7 (2020).
doi: 10.1007/s40120-020-00210-7 pubmed: 32948978 pmcid: 7500251
Louwsma, J. et al. Neurofilament light chain, a biomarker for polyneuropathy in systemic amyloidosis. Amyloid 28, 50–55. https://doi.org/10.1080/13506129.2020.1815696 (2021).
doi: 10.1080/13506129.2020.1815696 pubmed: 32883119
Loser, V. et al. Serum neurofilament light chain as a reliable biomarker of hereditary transthyretin-related amyloidosis—A Swiss reference center experience. J. Peripher. Nerv. Syst. https://doi.org/10.1111/jns.12524 (2022).
doi: 10.1111/jns.12524 pubmed: 36471582
Ticau, S. et al. Neurofilament light chain as a biomarker of hereditary transthyretin-mediated amyloidosis. Neurology 96, e412–e422. https://doi.org/10.1212/WNL.0000000000011090 (2021).
doi: 10.1212/WNL.0000000000011090 pubmed: 33087494 pmcid: 7884985
Eldhagen, P. et al. Transthyretin amyloid deposits in lumbar spinal stenosis and assessment of signs of systemic amyloidosis. J. Intern. Med. 289, 895–905. https://doi.org/10.1111/joim.13222 (2021).
doi: 10.1111/joim.13222 pubmed: 33274477 pmcid: 8248398
Boyle, R. P., Sharan, J. & Schwartz, G. Carpal tunnel syndrome in transthyretin cardiac amyloidosis: Implications and protocol for diagnosis and treatment. Cureus 13, e14546. https://doi.org/10.7759/cureus.14546 (2021).
doi: 10.7759/cureus.14546 pubmed: 34017661 pmcid: 8130635
Nakagawa, M. et al. Carpal tunnel syndrome: A common initial symptom of systemic wild-type ATTR (ATTRwt) amyloidosis. Amyloid 23, 58–63. https://doi.org/10.3109/13506129.2015.1135792 (2016).
doi: 10.3109/13506129.2015.1135792 pubmed: 26852880
Hviid, C. V. B., Knudsen, C. S. & Parkner, T. Reference interval and preanalytical properties of serum neurofilament light chain in Scandinavian adults. Scand. J. Clin. Lab. Investig. 80, 291–295. https://doi.org/10.1080/00365513.2020.1730434 (2020).
doi: 10.1080/00365513.2020.1730434
Benkert, P. et al. Serum neurofilament light chain for individual prognostication of disease activity in people with multiple sclerosis: A retrospective modelling and validation study. Lancet Neurol. 21, 246–257. https://doi.org/10.1016/S1474-4422(22)00009-6 (2022).
doi: 10.1016/S1474-4422(22)00009-6 pubmed: 35182510
Gaetani, L. et al. Neurofilament light chain as a biomarker in neurological disorders. J. Neurol. Neurosurg. Psychiatry https://doi.org/10.1136/jnnp-2018-320106 (2019).
doi: 10.1136/jnnp-2018-320106 pubmed: 30967444
Bouche, P. Neuropathy of the elderly. Rev. Neurol. 176, 733–738. https://doi.org/10.1016/j.neurol.2019.11.007 (2020).
doi: 10.1016/j.neurol.2019.11.007 pubmed: 32980155
Kroi, F. et al. Estimating the gender distribution of patients with wild-type transthyretin amyloid cardiomyopathy: A systematic review and meta-analysis. Cardiol. Ther. 10, 41–55. https://doi.org/10.1007/s40119-020-00205-3 (2021).
doi: 10.1007/s40119-020-00205-3 pubmed: 33315233
Ioannou, A. et al. Stratifying disease progression in patients with cardiac ATTR amyloidosis. J. Am. Coll. Cardiol. 83, 1276–1291. https://doi.org/10.1016/j.jacc.2023.12.036 (2024).
doi: 10.1016/j.jacc.2023.12.036 pubmed: 38530684 pmcid: 11004588
Tozza, S. et al. The neuropathy in hereditary transthyretin amyloidosis: A narrative review. J. Peripher. Nerv. Syst. 26, 155–159. https://doi.org/10.1111/jns.12451 (2021).
doi: 10.1111/jns.12451 pubmed: 33960565 pmcid: 8360044
Dyck, P. J. B. et al. Development of measures of polyneuropathy impairment in hATTR amyloidosis: From NIS to mNIS + 7. J. Neurol. Sci. 405, 116424. https://doi.org/10.1016/j.jns.2019.116424 (2019).
doi: 10.1016/j.jns.2019.116424 pubmed: 31445300
Sueyoshi, T. et al. Wild-type transthyretin-derived amyloidosis in various ligaments and tendons. Hum. Pathol. 42, 1259–1264. https://doi.org/10.1016/j.humpath.2010.11.017 (2011).
doi: 10.1016/j.humpath.2010.11.017 pubmed: 21334722
George, K. M. et al. Increased thickness of lumbar spine ligamentum flavum in wild-type transthyretin amyloidosis. J. Clin. Neurosci. 84, 33–37. https://doi.org/10.1016/j.jocn.2020.11.029 (2021).
doi: 10.1016/j.jocn.2020.11.029 pubmed: 33485595
Rubin, J. et al. Hip and knee arthroplasty are common among patients with transthyretin cardiac amyloidosis, occurring years before cardiac amyloid diagnosis: Can we identify affected patients earlier?. Amyloid 24, 226–230. https://doi.org/10.1080/13506129.2017.1375908 (2017).
doi: 10.1080/13506129.2017.1375908 pubmed: 28906148
Takanashi, T. et al. Synovial deposition of wild-type transthyretin-derived amyloid in knee joint osteoarthritis patients. Amyloid 20, 151–155. https://doi.org/10.3109/13506129.2013.803190 (2013).
doi: 10.3109/13506129.2013.803190 pubmed: 23734638
Gu, Y. J. et al. Clinical and laboratory characteristics of patients having amyloidogenic transthyretin deposition in osteoarthritic knee joints. J. Zhejiang Univ. Sci. B 15, 92–99. https://doi.org/10.1631/jzus.B1300046 (2014).
doi: 10.1631/jzus.B1300046 pubmed: 24390749 pmcid: 3891123
Goffin, Y. et al. Amyloidosis of the joints: evidence that human hip capsules have a unique predisposition for amyloid of the senile systemic type. Appl. Pathol. 3, 88–95 (1985).
pubmed: 3915948
Fernandes, A. et al. Clinicopathological correlations of sural nerve biopsies in TTR Val30Met familial amyloid polyneuropathy. BRAIN AIN Commun. 1, 1–13. https://doi.org/10.1093/braincomms/fcz032 (2019).
doi: 10.1093/braincomms/fcz032
Simmons, Z. et al. Low diagnostic yield of sural nerve biopsy in patients with peripheral neuropathy and primary amyloidosis. J. Neurol. Sci. 120, 60–63. https://doi.org/10.1016/0022-510X(93)90025-T (1993).
doi: 10.1016/0022-510X(93)90025-T pubmed: 7507161
Simmons, Z. & Specht, C. S. The neuromuscular manifestations of amyloidosis. J. Clin. Neuromuscul. Dis. 11, 145–157. https://doi.org/10.1097/CND.0b013e3181d05994 (2010).
doi: 10.1097/CND.0b013e3181d05994 pubmed: 20215989
Carroll, A. et al. Novel approaches to diagnosis and management of hereditary transthyretin amyloidosis. J. Neurol. Neurosurg. Psychiatry https://doi.org/10.1136/jnnp-2021-327909 (2022).
doi: 10.1136/jnnp-2021-327909 pubmed: 35256455
Wollenweber, T. et al. Does [99mTc]-3,3-diphosphono-1,2-propanodicarboxylic acid (DPD) soft tissue uptake allow the identification of patients with the diagnosis of cardiac transthyretin-related (ATTR) amyloidosis with higher risk for polyneuropathy?. J. Nucl. Cardiol. https://doi.org/10.1007/s12350-022-02986-7 (2022).
doi: 10.1007/s12350-022-02986-7 pubmed: 36513919 pmcid: 10371940
Ungericht, M. & Poelzl, G. Correlation between DPD soft tissue uptake and polyneuropathy in ATTR amyloidosis. J. Nucl. Cardiol. https://doi.org/10.1007/s12350-023-03217-3 (2023).
doi: 10.1007/s12350-023-03217-3 pubmed: 36764985
Capo, X. et al. Neurofilament light chain levels increase with age and are associated with worst physical function and body composition in men but not in women https://doi.org/10.20944/preprints202307.1227.v1 (2023).
Tang, R. et al. Association of neurofilament light chain with renal function: Mechanisms and clinical implications. Alzheimer’s Res. Ther. 14, 1–12. https://doi.org/10.1186/s13195-022-01134-0 (2022).
doi: 10.1186/s13195-022-01134-0
Perugini, E. et al. Noninvasive etiologic diagnosis of cardiac amyloidosis using 99mTc-3,3-diphosphono-1,2-propanodicarboxylic acid scintigraphy. J. Am. Coll. Cardiol. 46, 1076–1084. https://doi.org/10.1016/j.jacc.2005.05.073 (2005).
doi: 10.1016/j.jacc.2005.05.073 pubmed: 16168294
Adams, D. et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N. Engl. J. Med. 379, 11–21. https://doi.org/10.1056/nejmoa1716153 (2018).
doi: 10.1056/nejmoa1716153 pubmed: 29972753
Benson, M. D. et al. Inotersen treatment for patients with hereditary transthyretin amyloidosis. N. Engl. J. Med. https://doi.org/10.1056/NEJMoa1716793 (2018).
doi: 10.1056/NEJMoa1716793 pubmed: 30380387 pmcid: 5972517
Obici, L. et al. Quality of life outcomes in APOLLO, the phase 3 trial of the RNAi therapeutic patisiran in patients with hereditary transthyretin-mediated amyloidosis. Amyloid 27, 153–162. https://doi.org/10.1080/13506129.2020.1730790 (2020).
doi: 10.1080/13506129.2020.1730790 pubmed: 32131641
Vinik, E. J. et al. The development and validation of the Norfolk QOL-DN, a new measure of patients’ perception of the effects of diabetes and diabetic neuropathy. Diabetes Technol. Ther. 7, 497–508. https://doi.org/10.1089/dia.2005.7.497 (2005).
doi: 10.1089/dia.2005.7.497 pubmed: 15929681
Vinik, E. J. et al. Norfolk QOL-DN: Validation of a patient reported outcome measure in transthyretin familial amyloid polyneuropathy. J. Peripher. Nerv. Syst. 19, 104–114. https://doi.org/10.1111/jns5.12059 (2014).
doi: 10.1111/jns5.12059 pubmed: 24738700
Van Nes, S. I. et al. Rasch-built Overall Disability Scale (R-ODS) for immune-mediated peripheral neuropathies. Neurology 76, 337–345. https://doi.org/10.1212/WNL.0b013e318208824b (2011).
doi: 10.1212/WNL.0b013e318208824b pubmed: 21263135
Schatka, I. et al. An optimized imaging protocol for [99mTc]Tc-DPD scintigraphy and SPECT/CT quantification in cardiac transthyretin (ATTR) amyloidosis. J. Nucl. Cardiol. 28, 2483–2496. https://doi.org/10.1007/s12350-021-02715-6 (2021).
doi: 10.1007/s12350-021-02715-6 pubmed: 34331215 pmcid: 8709821

Auteurs

Helena F Pernice (HF)

Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Amyloidosis Center Charité Berlin (ACCB), Charitéplatz 1, 10117, Berlin, Germany.
Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology and Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany.
Berlin Institute of Health at Charité (BIH)-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.

Adrian L Knorz (AL)

Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Amyloidosis Center Charité Berlin (ACCB), Charitéplatz 1, 10117, Berlin, Germany.
Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology and Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany.

Paul J Wetzel (PJ)

Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Amyloidosis Center Charité Berlin (ACCB), Charitéplatz 1, 10117, Berlin, Germany.
Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology and Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany.

Carolin Herrmann (C)

Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Biometry and Clinical Epidemiology, Charitéplatz 1, 10117, Berlin, Germany.

Harisa Muratovic (H)

Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Amyloidosis Center Charité Berlin (ACCB), Charitéplatz 1, 10117, Berlin, Germany.
Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology and Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany.

Finn Rieber (F)

Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Amyloidosis Center Charité Berlin (ACCB), Charitéplatz 1, 10117, Berlin, Germany.

Eleonora Asaad (E)

Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Amyloidosis Center Charité Berlin (ACCB), Charitéplatz 1, 10117, Berlin, Germany.
Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology and Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany.

Gunnar Fiß (G)

Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Amyloidosis Center Charité Berlin (ACCB), Charitéplatz 1, 10117, Berlin, Germany.
Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology and Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany.

Gina Barzen (G)

Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Amyloidosis Center Charité Berlin (ACCB), Charitéplatz 1, 10117, Berlin, Germany.
Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Charitéplatz 1, 10117, Berlin, Germany.
DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.

Elisabeth Blüthner (E)

Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Amyloidosis Center Charité Berlin (ACCB), Charitéplatz 1, 10117, Berlin, Germany.
Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Medical Clinic m.S. Hepatology and Gastroenterology CCM/CVK, Berlin, Germany.

Fabian Knebel (F)

Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Amyloidosis Center Charité Berlin (ACCB), Charitéplatz 1, 10117, Berlin, Germany.
Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Charitéplatz 1, 10117, Berlin, Germany.
Klinik für Innere Medizin mit Schwerpunkt Kardiologie, Sana Klinikum Lichtenberg, Berlin, Germany.

Sebastian Spethmann (S)

Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Amyloidosis Center Charité Berlin (ACCB), Charitéplatz 1, 10117, Berlin, Germany.
Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Charitéplatz 1, 10117, Berlin, Germany.
DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.

Daniel Messroghli (D)

Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Amyloidosis Center Charité Berlin (ACCB), Charitéplatz 1, 10117, Berlin, Germany.
Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.
Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Augustenburger Platz 1, 13353, Berlin, Germany.

Bettina Heidecker (B)

Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Amyloidosis Center Charité Berlin (ACCB), Charitéplatz 1, 10117, Berlin, Germany.
Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.
Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Hindenburgdamm 30, 12203, Berlin, Germany.
Berlin Institute of Health at Charité (BIH)-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.

Anna Brand (A)

Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Amyloidosis Center Charité Berlin (ACCB), Charitéplatz 1, 10117, Berlin, Germany.
Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Charitéplatz 1, 10117, Berlin, Germany.
DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.

Christoph Wetz (C)

Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Amyloidosis Center Charité Berlin (ACCB), Charitéplatz 1, 10117, Berlin, Germany.
Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Nuclear Medicine, Hindenburgdamm 30, 12203, Berlin, Germany.

Carsten Tschöpe (C)

Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Amyloidosis Center Charité Berlin (ACCB), Charitéplatz 1, 10117, Berlin, Germany.
Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.
Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Augustenburger Platz 1, 13353, Berlin, Germany.
Berlin Institute of Health at Charité (BIH)-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.

Katrin Hahn (K)

Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Amyloidosis Center Charité Berlin (ACCB), Charitéplatz 1, 10117, Berlin, Germany. katrin.hahn@charite.de.
Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology and Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany. katrin.hahn@charite.de.
Berlin Institute of Health at Charité (BIH)-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany. katrin.hahn@charite.de.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH