Multiscale and multimodal imaging for three-dimensional vascular and histomorphological organ structure analysis of the pancreas.
Computed tomography
Imaging
Islets of Langerhans
Pancreas
Synchrotron
Vascularization
Virtual histology
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
02 May 2024
02 May 2024
Historique:
received:
12
11
2023
accepted:
20
04
2024
medline:
3
5
2024
pubmed:
3
5
2024
entrez:
2
5
2024
Statut:
epublish
Résumé
Exocrine and endocrine pancreas are interconnected anatomically and functionally, with vasculature facilitating bidirectional communication. Our understanding of this network remains limited, largely due to two-dimensional histology and missing combination with three-dimensional imaging. In this study, a multiscale 3D-imaging process was used to analyze a porcine pancreas. Clinical computed tomography, digital volume tomography, micro-computed tomography and Synchrotron-based propagation-based imaging were applied consecutively. Fields of view correlated inversely with attainable resolution from a whole organism level down to capillary structures with a voxel edge length of 2.0 µm. Segmented vascular networks from 3D-imaging data were correlated with tissue sections stained by immunohistochemistry and revealed highly vascularized regions to be intra-islet capillaries of islets of Langerhans. Generated 3D-datasets allowed for three-dimensional qualitative and quantitative organ and vessel structure analysis. Beyond this study, the method shows potential for application across a wide range of patho-morphology analyses and might possibly provide microstructural blueprints for biotissue engineering.
Identifiants
pubmed: 38698049
doi: 10.1038/s41598-024-60254-9
pii: 10.1038/s41598-024-60254-9
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
10136Subventions
Organisme : Horizon 2020 Framework Programme
ID : E!12021
Organisme : Heidelberger Stiftung Chirurgie
ID : 2020/393
Informations de copyright
© 2024. The Author(s).
Références
Villasenor, A. & Cleaver, O. Crosstalk between the developing pancreas and its blood vessels: an evolving dialog. Semin Cell Dev. Biol. 23, 685–692. https://doi.org/10.1016/j.semcdb.2012.06.003 (2012).
doi: 10.1016/j.semcdb.2012.06.003
pubmed: 22728668
pmcid: 4372237
Jansson, L. & Carlsson, P. O. Pancreatic blood flow with special emphasis on blood perfusion of the islets of Langerhans. Compr. Physiol. 9, 799–837. https://doi.org/10.1002/cphy.c160050 (2019).
doi: 10.1002/cphy.c160050
pubmed: 30892693
Dybala, M. P. et al. Integrated pancreatic blood flow: Bidirectional microcirculation between endocrine and exocrine pancreas. Diabetes 69, 1439–1450. https://doi.org/10.2337/db19-1034 (2020).
doi: 10.2337/db19-1034
pubmed: 32198213
pmcid: 7306124
Dybala, M. P., Gebien, L. R., Reyna, M. E., Yu, Y. & Hara, M. Implications of Integrated pancreatic microcirculation: Crosstalk between endocrine and exocrine compartments. Diabetes 69, 2566–2574. https://doi.org/10.2337/db20-0810 (2020).
doi: 10.2337/db20-0810
pubmed: 33148810
pmcid: 7679783
Overton, D. L. & Mastracci, T. L. Exocrine-endocrine crosstalk: The influence of pancreatic cellular communications on organ growth, function and disease. Front. Endocrinol. (Lausanne) 13, 904004. https://doi.org/10.3389/fendo.2022.904004 (2022).
doi: 10.3389/fendo.2022.904004
pubmed: 35769082
Rickels, M. R., Norris, A. W. & Hull, R. L. A tale of two pancreases: Exocrine pathology and endocrine dysfunction. Diabetologia 63, 2030–2039. https://doi.org/10.1007/s00125-020-05210-8 (2020).
doi: 10.1007/s00125-020-05210-8
pubmed: 32894313
pmcid: 7646259
Lu, J. et al. Association between pancreatic atrophy and loss of insulin secretory capacity in patients with type 2 diabetes mellitus. J. Diabetes Res. 2019, 6371231. https://doi.org/10.1155/2019/6371231 (2019).
doi: 10.1155/2019/6371231
pubmed: 31467928
pmcid: 6701290
Virostko, J. et al. Pancreas volume declines during the first year after diagnosis of type 1 diabetes and exhibits altered diffusion at disease onset. Diabetes Care 42, 248–257. https://doi.org/10.2337/dc18-1507 (2019).
doi: 10.2337/dc18-1507
pubmed: 30552135
Almaca, J. & Caicedo, A. Blood flow in the pancreatic islet: Not so isolated anymore. Diabetes 69, 1336–1338. https://doi.org/10.2337/dbi20-0016 (2020).
doi: 10.2337/dbi20-0016
pubmed: 32561621
pmcid: 7306118
Chung, K. M. et al. Endocrine-exocrine signaling drives obesity-associated pancreatic ductal adenocarcinoma. Cell 181, 832–847. https://doi.org/10.1016/j.cell.2020.03.062 (2020).
doi: 10.1016/j.cell.2020.03.062
pubmed: 32304665
pmcid: 7266008
Javeed, N. et al. Pancreatic cancer-derived exosomes cause paraneoplastic beta-cell dysfunction. Clin. Cancer Res. 21, 1722–1733. https://doi.org/10.1158/1078-0432.CCR-14-2022 (2015).
doi: 10.1158/1078-0432.CCR-14-2022
pubmed: 25355928
Mateus Goncalves, L. & Almaca, J. Functional characterization of the human islet microvasculature using living pancreas slices. Front. Endocrinol. (Lausanne) 11, 602519. https://doi.org/10.3389/fendo.2020.602519 (2020).
doi: 10.3389/fendo.2020.602519
pubmed: 33519711
Xiong, Y. et al. Islet vascularization is regulated by primary endothelial cilia via VEGF-A-dependent signaling. Elife https://doi.org/10.7554/eLife.56914 (2020).
doi: 10.7554/eLife.56914
pubmed: 33258773
pmcid: 7707815
Canzano, J. S. et al. Islet microvasculature alterations with loss of beta-cells in patients with type 1 diabetes. J. Histochem. Cytochem. 67, 41–52. https://doi.org/10.1369/0022155418778546 (2019).
doi: 10.1369/0022155418778546
pubmed: 29771178
El-Gohary, Y. et al. Three-dimensional analysis of the islet vasculature. Anat. Rec. (Hoboken) 295, 1473–1481. https://doi.org/10.1002/ar.22530 (2012).
doi: 10.1002/ar.22530
pubmed: 22807267
Pinkert-Leetsch, D. et al. Three-dimensional analysis of human pancreatic cancer specimens by phase-contrast based X-ray tomography - the next dimension of diagnosis. Cancer Imaging 23, 43. https://doi.org/10.1186/s40644-023-00559-6 (2023).
doi: 10.1186/s40644-023-00559-6
pubmed: 37131262
pmcid: 10152799
Strotton, M. C. et al. Optimising complementary soft tissue synchrotron X-ray microtomography for reversibly-stained central nervous system samples. Sci. Rep. 8, 12017. https://doi.org/10.1038/s41598-018-30520-8 (2018).
doi: 10.1038/s41598-018-30520-8
pubmed: 30104610
pmcid: 6089931
Katsamenis, O. L. et al. X-ray micro-computed tomography for nondestructive three-dimensional (3D) X-ray histology. Am. J. Pathol. 189, 1608–1620. https://doi.org/10.1016/j.ajpath.2019.05.004 (2019).
doi: 10.1016/j.ajpath.2019.05.004
pubmed: 31125553
pmcid: 6680277
Metscher, B. D. MicroCT for developmental biology: A versatile tool for high-contrast 3D imaging at histological resolutions. Dev. Dyn. 238, 632–640. https://doi.org/10.1002/dvdy.21857 (2009).
doi: 10.1002/dvdy.21857
pubmed: 19235724
Wagner, W. L. et al. Microvascular changes in COVID-19. Radiologe 60, 934–942. https://doi.org/10.1007/s00117-020-00743-w (2020).
doi: 10.1007/s00117-020-00743-w
pubmed: 32857175
pmcid: 7453182
Saccomano, M. et al. Synchrotron inline phase contrast microCT enables detailed virtual histology of embedded soft-tissue samples with and without staining. J. Synchrotron. Radiat. 25, 1153–1161. https://doi.org/10.1107/S1600577518005489 (2018).
doi: 10.1107/S1600577518005489
pubmed: 29979177
Leyssens, L., Pestiaux, C. & Kerckhofs, G. A review of ex vivo x-ray microfocus computed tomography-based characterization of the cardiovascular system. Int. J. Mol. Sci. https://doi.org/10.3390/ijms22063263 (2021).
doi: 10.3390/ijms22063263
pubmed: 33806852
pmcid: 8004599
Gorczyca, J., Litwin, J. A., Pitynski, K. & Miodonski, A. J. Vascular system of human fetal pancreas demonstrated by corrosion casting and scanning electron microscopy. Anat. Sci. Int. 85, 235–240. https://doi.org/10.1007/s12565-010-0084-4 (2010).
doi: 10.1007/s12565-010-0084-4
pubmed: 20437124
Gorczyca, J. et al. The vascular microarchitecture of the human fetal pancreas: A corrosion casting and scanning electron microscopy study. Pancreas 46, 124–130. https://doi.org/10.1097/MPA.0000000000000719 (2017).
doi: 10.1097/MPA.0000000000000719
pubmed: 27846135
Grothausmann, R. et al. Combination of microCT and light microscopy for generation-specific stereological analysis of pulmonary arterial branches: A proof-of-concept study. Histochem. Cell Biol. 155, 227–239. https://doi.org/10.1007/s00418-020-01946-x (2021).
doi: 10.1007/s00418-020-01946-x
pubmed: 33263790
Labode, J. et al. Evaluation of classifications of the monopodial bronchopulmonary vasculature using clustering methods. Histochem. Cell Biol 158, 435–445. https://doi.org/10.1007/s00418-022-02116-x (2022).
doi: 10.1007/s00418-022-02116-x
pubmed: 35739424
pmcid: 9630218
Ochs, M. & Weibel, E. R. in Fishman’s Pulmonary Diseases and Disorders, 5e (eds Michael A. Grippi et al.) (McGraw-Hill Education, 2015).
Horsfield, K. Axial pathways compared with complete data in morphological studies of the lung. Respir. Physiol. 55, 317–324. https://doi.org/10.1016/0034-5687(84)90054-9 (1984).
doi: 10.1016/0034-5687(84)90054-9
pubmed: 6739988
Strahler, A. N. Quantitative analysis of watershed geomorphology. Eos Trans. Am. Geophys. Union 38, 913–920 (1957).
doi: 10.1029/TR038i006p00913
Fraley, C. & Raftery, A. E. Bayesian regularization for normal mixture estimation and model-based clustering. J. Classif. 24, 155–181. https://doi.org/10.1007/s00357-007-0004-5 (2007).
doi: 10.1007/s00357-007-0004-5
Frohn, J. et al. 3D virtual histology of human pancreatic tissue by multiscale phase-contrast X-ray tomography. J. Synchrotron Radiat. 27, 1707–1719. https://doi.org/10.1107/S1600577520011327 (2020).
doi: 10.1107/S1600577520011327
pubmed: 33147198
pmcid: 7642968
Mei, X. et al. Vascular supply of the human spiral ganglion: novel three-dimensional analysis using synchrotron phase-contrast imaging and histology. Sci. Rep. 10, 5877. https://doi.org/10.1038/s41598-020-62653-0 (2020).
doi: 10.1038/s41598-020-62653-0
pubmed: 32245997
pmcid: 7125215
Murakami, T., Hitomi, S., Ohtsuka, A., Taguchi, T. & Fujita, T. Pancreatic insulo-acinar portal systems in humans, rats, and some other mammals: Scanning electron microscopy of vascular casts. Microsc. Res. Tech. 37, 478–488. https://doi.org/10.1002/(SICI)1097-0029(19970601)37:5/6%3c478::AID-JEMT10%3e3.0.CO;2-N (1997).
doi: 10.1002/(SICI)1097-0029(19970601)37:5/6<478::AID-JEMT10>3.0.CO;2-N
pubmed: 9220425
Steiner, D. J., Kim, A., Miller, K. & Hara, M. Pancreatic islet plasticity: Interspecies comparison of islet architecture and composition. Islets 2, 135–145. https://doi.org/10.4161/isl.2.3.11815 (2010).
doi: 10.4161/isl.2.3.11815
pubmed: 20657742
Helke, K. L., Ezell, P. C., Duran-Struuck, R. & Swindle, M. M. in Laboratory Animal Medicine (Third Edition) (eds James G. Fox et al.) 695–769 (Academic Press, 2015).
Hsu, C.-Y. et al. Gap-free segmentation of vascular networks with automatic image processing pipeline. Comput. Biol. Med. 82, 29–39. https://doi.org/10.1016/j.compbiomed.2017.01.012 (2017).
doi: 10.1016/j.compbiomed.2017.01.012
pubmed: 28135646
Wang, Y. et al. VC-Net: Deep volume-composition networks for segmentation and visualization of highly sparse and noisy image data. IEEE Trans. Vis. Comput. Gr. 27, 1301–1311. https://doi.org/10.1109/TVCG.2020.3030374 (2021).
doi: 10.1109/TVCG.2020.3030374
Albers, J. et al. Elastic transformation of histological slices allows precise co-registration with microCT data sets for a refined virtual histology approach. Sci. Rep. 11, 10846. https://doi.org/10.1038/s41598-021-89841-w (2021).
doi: 10.1038/s41598-021-89841-w
pubmed: 34035350
pmcid: 8149420
Walsh, C. L. et al. Imaging intact human organs with local resolution of cellular structures using hierarchical phase-contrast tomography. Nat. Methods 18, 1532–1541. https://doi.org/10.1038/s41592-021-01317-x (2021).
doi: 10.1038/s41592-021-01317-x
pubmed: 34737453
pmcid: 8648561
Kelch, I. D. et al. Organ-wide 3D-imaging and topological analysis of the continuous microvascular network in a murine lymph node. Sci. Rep. 5, 16534. https://doi.org/10.1038/srep16534 (2015).
doi: 10.1038/srep16534
pubmed: 26567707
pmcid: 4645097
Mertz, J. Optical sectioning microscopy with planar or structured illumination. Nat. Methods 8, 811–819. https://doi.org/10.1038/nmeth.1709 (2011).
doi: 10.1038/nmeth.1709
pubmed: 21959136
Sands, G. B. et al. Automated imaging of extended tissue volumes using confocal microscopy. Microsc. Res. Tech. 67, 227–239. https://doi.org/10.1002/jemt.20200 (2005).
doi: 10.1002/jemt.20200
pubmed: 16170824
Fowler, J. L. et al. Three-dimensional analysis of the human pancreas. Endocrinology 159, 1393–1400. https://doi.org/10.1210/en.2017-03076 (2018).
doi: 10.1210/en.2017-03076
pubmed: 29390052
pmcid: 5839749
Tian, T., Yang, Z. & Li, X. Tissue clearing technique: Recent progress and biomedical applications. J. Anat. 238, 489–507. https://doi.org/10.1111/joa.13309 (2021).
doi: 10.1111/joa.13309
pubmed: 32939792
Fu, Y. Y. et al. Three-dimensional optical method for integrated visualization of mouse islet microstructure and vascular network with subcellular-level resolution. J. Biomed. Opt. 15, 046018. https://doi.org/10.1117/1.3470241 (2010).
doi: 10.1117/1.3470241
pubmed: 20799820
pmcid: 3188637
Glorieux, L. et al. Development of a 3D atlas of the embryonic pancreas for topological and quantitative analysis of heterologous cell interactions. Development https://doi.org/10.1242/dev.199655 (2022).
doi: 10.1242/dev.199655
pubmed: 35037942
pmcid: 8918780
Takeuchi, A. & Suzuki, Y. Recent progress in synchrotron radiation 3D–4D nano-imaging based on X-ray full-field microscopy. Microscopy (Oxf) 69, 259–279. https://doi.org/10.1093/jmicro/dfaa022 (2020).
doi: 10.1093/jmicro/dfaa022
pubmed: 32373929
Hu, B. C. The human body at cellular resolution: The NIH human biomolecular Atlas Program. Nature 574, 187–192. https://doi.org/10.1038/s41586-019-1629-x (2019).
doi: 10.1038/s41586-019-1629-x
Goligorsky, M. S. Vascular endothelium in diabetes. Am. J. Physiol. Renal. Physiol. 312, F266–F275. https://doi.org/10.1152/ajprenal.00473.2016 (2017).
doi: 10.1152/ajprenal.00473.2016
pubmed: 27852610
Salg, G. A. et al. Toward 3D-bioprinting of an endocrine pancreas: A building-block concept for bioartificial insulin-secreting tissue. J, Tissue Eng. 13, 20417314221091030. https://doi.org/10.1177/20417314221091033 (2022).
doi: 10.1177/20417314221091033
pubmed: 35462988
Salg, G. A. et al. The emerging field of pancreatic tissue engineering: A systematic review and evidence map of scaffold materials and scaffolding techniques for insulin-secreting cells. J. Tissue Eng. 10, 2041731419884708. https://doi.org/10.1177/2041731419884708 (2019).
doi: 10.1177/2041731419884708
pubmed: 31700597
pmcid: 6823987
Salg, G. A., Blaeser, A., Gerhardus, J. S., Hackert, T. & Kenngott, H. G. Vascularization in Bioartificial parenchymal tissue: bioink and bioprinting strategies. Int. J. Mol. Sci https://doi.org/10.3390/ijms23158589 (2022).
doi: 10.3390/ijms23158589
pubmed: 35955720
pmcid: 9369172
Kilkenny, C., Browne, W., Cuthill, I. C., Emerson, M. & Altman, D. G. Animal research: Reporting in vivo experiments: The ARRIVE guidelines. Br. J. Pharmacol. 160, 1577–1579. https://doi.org/10.1111/j.1476-5381.2010.00872.x (2010).
doi: 10.1111/j.1476-5381.2010.00872.x
pubmed: 20649561
pmcid: 2936830
Studier-Fischer, A. et al. Spectral organ fingerprints for machine learning-based intraoperative tissue classification with hyperspectral imaging in a porcine model. Sci. Rep. 12, 11028. https://doi.org/10.1038/s41598-022-15040-w (2022).
doi: 10.1038/s41598-022-15040-w
pubmed: 35773276
pmcid: 9247052
Studier-Fischer, A. et al. HeiPorSPECTRAL - the Heidelberg porcine HyperSPECTRAL imaging dataset of 20 physiological organs. Sci. Data 10, 414. https://doi.org/10.1038/s41597-023-02315-8 (2023).
doi: 10.1038/s41597-023-02315-8
pubmed: 37355750
pmcid: 10290660
Cao, Y. et al. Three-dimensional imaging of microvasculature in the rat spinal cord following injury. Sci. Rep. 5, 12643. https://doi.org/10.1038/srep12643 (2015).
doi: 10.1038/srep12643
pubmed: 26220842
pmcid: 4518284
Dullin, C. et al. Multiscale biomedical imaging at the SYRMEP beamline of Elettra - closing the gap between preclinical research and patient applications. Phys. Open 6, 100050. https://doi.org/10.1016/j.physo.2020.100050 (2021).
doi: 10.1016/j.physo.2020.100050
Paganin, D., Mayo, S. C., Gureyev, T. E., Miller, P. R. & Wilkins, S. W. Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J. Microsc. 206, 33–40. https://doi.org/10.1046/j.1365-2818.2002.01010.x (2002).
doi: 10.1046/j.1365-2818.2002.01010.x
pubmed: 12000561
Brun, F. et al. Enhanced and flexible software tools for x-ray computed tomography at the Italian synchrotron radiation facility elettra. Fund. Inf. 141, 233–243. https://doi.org/10.3233/FI-2015-1273 (2015).
doi: 10.3233/FI-2015-1273
Schwarz, G. Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978).
doi: 10.1214/aos/1176344136
Davies, D. L. & Bouldin, D. W. A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell. 1, 224–227 (1979).
doi: 10.1109/TPAMI.1979.4766909
pubmed: 21868852
Dunn, J. C. Well-separated clusters and optimal fuzzy partitions. J. Cybern. 4, 95–104. https://doi.org/10.1080/01969727408546059 (1974).
doi: 10.1080/01969727408546059