Multiscale and multimodal imaging for three-dimensional vascular and histomorphological organ structure analysis of the pancreas.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
02 May 2024
Historique:
received: 12 11 2023
accepted: 20 04 2024
medline: 3 5 2024
pubmed: 3 5 2024
entrez: 2 5 2024
Statut: epublish

Résumé

Exocrine and endocrine pancreas are interconnected anatomically and functionally, with vasculature facilitating bidirectional communication. Our understanding of this network remains limited, largely due to two-dimensional histology and missing combination with three-dimensional imaging. In this study, a multiscale 3D-imaging process was used to analyze a porcine pancreas. Clinical computed tomography, digital volume tomography, micro-computed tomography and Synchrotron-based propagation-based imaging were applied consecutively. Fields of view correlated inversely with attainable resolution from a whole organism level down to capillary structures with a voxel edge length of 2.0 µm. Segmented vascular networks from 3D-imaging data were correlated with tissue sections stained by immunohistochemistry and revealed highly vascularized regions to be intra-islet capillaries of islets of Langerhans. Generated 3D-datasets allowed for three-dimensional qualitative and quantitative organ and vessel structure analysis. Beyond this study, the method shows potential for application across a wide range of patho-morphology analyses and might possibly provide microstructural blueprints for biotissue engineering.

Identifiants

pubmed: 38698049
doi: 10.1038/s41598-024-60254-9
pii: 10.1038/s41598-024-60254-9
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

10136

Subventions

Organisme : Horizon 2020 Framework Programme
ID : E!12021
Organisme : Heidelberger Stiftung Chirurgie
ID : 2020/393

Informations de copyright

© 2024. The Author(s).

Références

Villasenor, A. & Cleaver, O. Crosstalk between the developing pancreas and its blood vessels: an evolving dialog. Semin Cell Dev. Biol. 23, 685–692. https://doi.org/10.1016/j.semcdb.2012.06.003 (2012).
doi: 10.1016/j.semcdb.2012.06.003 pubmed: 22728668 pmcid: 4372237
Jansson, L. & Carlsson, P. O. Pancreatic blood flow with special emphasis on blood perfusion of the islets of Langerhans. Compr. Physiol. 9, 799–837. https://doi.org/10.1002/cphy.c160050 (2019).
doi: 10.1002/cphy.c160050 pubmed: 30892693
Dybala, M. P. et al. Integrated pancreatic blood flow: Bidirectional microcirculation between endocrine and exocrine pancreas. Diabetes 69, 1439–1450. https://doi.org/10.2337/db19-1034 (2020).
doi: 10.2337/db19-1034 pubmed: 32198213 pmcid: 7306124
Dybala, M. P., Gebien, L. R., Reyna, M. E., Yu, Y. & Hara, M. Implications of Integrated pancreatic microcirculation: Crosstalk between endocrine and exocrine compartments. Diabetes 69, 2566–2574. https://doi.org/10.2337/db20-0810 (2020).
doi: 10.2337/db20-0810 pubmed: 33148810 pmcid: 7679783
Overton, D. L. & Mastracci, T. L. Exocrine-endocrine crosstalk: The influence of pancreatic cellular communications on organ growth, function and disease. Front. Endocrinol. (Lausanne) 13, 904004. https://doi.org/10.3389/fendo.2022.904004 (2022).
doi: 10.3389/fendo.2022.904004 pubmed: 35769082
Rickels, M. R., Norris, A. W. & Hull, R. L. A tale of two pancreases: Exocrine pathology and endocrine dysfunction. Diabetologia 63, 2030–2039. https://doi.org/10.1007/s00125-020-05210-8 (2020).
doi: 10.1007/s00125-020-05210-8 pubmed: 32894313 pmcid: 7646259
Lu, J. et al. Association between pancreatic atrophy and loss of insulin secretory capacity in patients with type 2 diabetes mellitus. J. Diabetes Res. 2019, 6371231. https://doi.org/10.1155/2019/6371231 (2019).
doi: 10.1155/2019/6371231 pubmed: 31467928 pmcid: 6701290
Virostko, J. et al. Pancreas volume declines during the first year after diagnosis of type 1 diabetes and exhibits altered diffusion at disease onset. Diabetes Care 42, 248–257. https://doi.org/10.2337/dc18-1507 (2019).
doi: 10.2337/dc18-1507 pubmed: 30552135
Almaca, J. & Caicedo, A. Blood flow in the pancreatic islet: Not so isolated anymore. Diabetes 69, 1336–1338. https://doi.org/10.2337/dbi20-0016 (2020).
doi: 10.2337/dbi20-0016 pubmed: 32561621 pmcid: 7306118
Chung, K. M. et al. Endocrine-exocrine signaling drives obesity-associated pancreatic ductal adenocarcinoma. Cell 181, 832–847. https://doi.org/10.1016/j.cell.2020.03.062 (2020).
doi: 10.1016/j.cell.2020.03.062 pubmed: 32304665 pmcid: 7266008
Javeed, N. et al. Pancreatic cancer-derived exosomes cause paraneoplastic beta-cell dysfunction. Clin. Cancer Res. 21, 1722–1733. https://doi.org/10.1158/1078-0432.CCR-14-2022 (2015).
doi: 10.1158/1078-0432.CCR-14-2022 pubmed: 25355928
Mateus Goncalves, L. & Almaca, J. Functional characterization of the human islet microvasculature using living pancreas slices. Front. Endocrinol. (Lausanne) 11, 602519. https://doi.org/10.3389/fendo.2020.602519 (2020).
doi: 10.3389/fendo.2020.602519 pubmed: 33519711
Xiong, Y. et al. Islet vascularization is regulated by primary endothelial cilia via VEGF-A-dependent signaling. Elife https://doi.org/10.7554/eLife.56914 (2020).
doi: 10.7554/eLife.56914 pubmed: 33258773 pmcid: 7707815
Canzano, J. S. et al. Islet microvasculature alterations with loss of beta-cells in patients with type 1 diabetes. J. Histochem. Cytochem. 67, 41–52. https://doi.org/10.1369/0022155418778546 (2019).
doi: 10.1369/0022155418778546 pubmed: 29771178
El-Gohary, Y. et al. Three-dimensional analysis of the islet vasculature. Anat. Rec. (Hoboken) 295, 1473–1481. https://doi.org/10.1002/ar.22530 (2012).
doi: 10.1002/ar.22530 pubmed: 22807267
Pinkert-Leetsch, D. et al. Three-dimensional analysis of human pancreatic cancer specimens by phase-contrast based X-ray tomography - the next dimension of diagnosis. Cancer Imaging 23, 43. https://doi.org/10.1186/s40644-023-00559-6 (2023).
doi: 10.1186/s40644-023-00559-6 pubmed: 37131262 pmcid: 10152799
Strotton, M. C. et al. Optimising complementary soft tissue synchrotron X-ray microtomography for reversibly-stained central nervous system samples. Sci. Rep. 8, 12017. https://doi.org/10.1038/s41598-018-30520-8 (2018).
doi: 10.1038/s41598-018-30520-8 pubmed: 30104610 pmcid: 6089931
Katsamenis, O. L. et al. X-ray micro-computed tomography for nondestructive three-dimensional (3D) X-ray histology. Am. J. Pathol. 189, 1608–1620. https://doi.org/10.1016/j.ajpath.2019.05.004 (2019).
doi: 10.1016/j.ajpath.2019.05.004 pubmed: 31125553 pmcid: 6680277
Metscher, B. D. MicroCT for developmental biology: A versatile tool for high-contrast 3D imaging at histological resolutions. Dev. Dyn. 238, 632–640. https://doi.org/10.1002/dvdy.21857 (2009).
doi: 10.1002/dvdy.21857 pubmed: 19235724
Wagner, W. L. et al. Microvascular changes in COVID-19. Radiologe 60, 934–942. https://doi.org/10.1007/s00117-020-00743-w (2020).
doi: 10.1007/s00117-020-00743-w pubmed: 32857175 pmcid: 7453182
Saccomano, M. et al. Synchrotron inline phase contrast microCT enables detailed virtual histology of embedded soft-tissue samples with and without staining. J. Synchrotron. Radiat. 25, 1153–1161. https://doi.org/10.1107/S1600577518005489 (2018).
doi: 10.1107/S1600577518005489 pubmed: 29979177
Leyssens, L., Pestiaux, C. & Kerckhofs, G. A review of ex vivo x-ray microfocus computed tomography-based characterization of the cardiovascular system. Int. J. Mol. Sci. https://doi.org/10.3390/ijms22063263 (2021).
doi: 10.3390/ijms22063263 pubmed: 33806852 pmcid: 8004599
Gorczyca, J., Litwin, J. A., Pitynski, K. & Miodonski, A. J. Vascular system of human fetal pancreas demonstrated by corrosion casting and scanning electron microscopy. Anat. Sci. Int. 85, 235–240. https://doi.org/10.1007/s12565-010-0084-4 (2010).
doi: 10.1007/s12565-010-0084-4 pubmed: 20437124
Gorczyca, J. et al. The vascular microarchitecture of the human fetal pancreas: A corrosion casting and scanning electron microscopy study. Pancreas 46, 124–130. https://doi.org/10.1097/MPA.0000000000000719 (2017).
doi: 10.1097/MPA.0000000000000719 pubmed: 27846135
Grothausmann, R. et al. Combination of microCT and light microscopy for generation-specific stereological analysis of pulmonary arterial branches: A proof-of-concept study. Histochem. Cell Biol. 155, 227–239. https://doi.org/10.1007/s00418-020-01946-x (2021).
doi: 10.1007/s00418-020-01946-x pubmed: 33263790
Labode, J. et al. Evaluation of classifications of the monopodial bronchopulmonary vasculature using clustering methods. Histochem. Cell Biol 158, 435–445. https://doi.org/10.1007/s00418-022-02116-x (2022).
doi: 10.1007/s00418-022-02116-x pubmed: 35739424 pmcid: 9630218
Ochs, M. & Weibel, E. R. in Fishman’s Pulmonary Diseases and Disorders, 5e (eds Michael A. Grippi et al.) (McGraw-Hill Education, 2015).
Horsfield, K. Axial pathways compared with complete data in morphological studies of the lung. Respir. Physiol. 55, 317–324. https://doi.org/10.1016/0034-5687(84)90054-9 (1984).
doi: 10.1016/0034-5687(84)90054-9 pubmed: 6739988
Strahler, A. N. Quantitative analysis of watershed geomorphology. Eos Trans. Am. Geophys. Union 38, 913–920 (1957).
doi: 10.1029/TR038i006p00913
Fraley, C. & Raftery, A. E. Bayesian regularization for normal mixture estimation and model-based clustering. J. Classif. 24, 155–181. https://doi.org/10.1007/s00357-007-0004-5 (2007).
doi: 10.1007/s00357-007-0004-5
Frohn, J. et al. 3D virtual histology of human pancreatic tissue by multiscale phase-contrast X-ray tomography. J. Synchrotron Radiat. 27, 1707–1719. https://doi.org/10.1107/S1600577520011327 (2020).
doi: 10.1107/S1600577520011327 pubmed: 33147198 pmcid: 7642968
Mei, X. et al. Vascular supply of the human spiral ganglion: novel three-dimensional analysis using synchrotron phase-contrast imaging and histology. Sci. Rep. 10, 5877. https://doi.org/10.1038/s41598-020-62653-0 (2020).
doi: 10.1038/s41598-020-62653-0 pubmed: 32245997 pmcid: 7125215
Murakami, T., Hitomi, S., Ohtsuka, A., Taguchi, T. & Fujita, T. Pancreatic insulo-acinar portal systems in humans, rats, and some other mammals: Scanning electron microscopy of vascular casts. Microsc. Res. Tech. 37, 478–488. https://doi.org/10.1002/(SICI)1097-0029(19970601)37:5/6%3c478::AID-JEMT10%3e3.0.CO;2-N (1997).
doi: 10.1002/(SICI)1097-0029(19970601)37:5/6<478::AID-JEMT10>3.0.CO;2-N pubmed: 9220425
Steiner, D. J., Kim, A., Miller, K. & Hara, M. Pancreatic islet plasticity: Interspecies comparison of islet architecture and composition. Islets 2, 135–145. https://doi.org/10.4161/isl.2.3.11815 (2010).
doi: 10.4161/isl.2.3.11815 pubmed: 20657742
Helke, K. L., Ezell, P. C., Duran-Struuck, R. & Swindle, M. M. in Laboratory Animal Medicine (Third Edition) (eds James G. Fox et al.) 695–769 (Academic Press, 2015).
Hsu, C.-Y. et al. Gap-free segmentation of vascular networks with automatic image processing pipeline. Comput. Biol. Med. 82, 29–39. https://doi.org/10.1016/j.compbiomed.2017.01.012 (2017).
doi: 10.1016/j.compbiomed.2017.01.012 pubmed: 28135646
Wang, Y. et al. VC-Net: Deep volume-composition networks for segmentation and visualization of highly sparse and noisy image data. IEEE Trans. Vis. Comput. Gr. 27, 1301–1311. https://doi.org/10.1109/TVCG.2020.3030374 (2021).
doi: 10.1109/TVCG.2020.3030374
Albers, J. et al. Elastic transformation of histological slices allows precise co-registration with microCT data sets for a refined virtual histology approach. Sci. Rep. 11, 10846. https://doi.org/10.1038/s41598-021-89841-w (2021).
doi: 10.1038/s41598-021-89841-w pubmed: 34035350 pmcid: 8149420
Walsh, C. L. et al. Imaging intact human organs with local resolution of cellular structures using hierarchical phase-contrast tomography. Nat. Methods 18, 1532–1541. https://doi.org/10.1038/s41592-021-01317-x (2021).
doi: 10.1038/s41592-021-01317-x pubmed: 34737453 pmcid: 8648561
Kelch, I. D. et al. Organ-wide 3D-imaging and topological analysis of the continuous microvascular network in a murine lymph node. Sci. Rep. 5, 16534. https://doi.org/10.1038/srep16534 (2015).
doi: 10.1038/srep16534 pubmed: 26567707 pmcid: 4645097
Mertz, J. Optical sectioning microscopy with planar or structured illumination. Nat. Methods 8, 811–819. https://doi.org/10.1038/nmeth.1709 (2011).
doi: 10.1038/nmeth.1709 pubmed: 21959136
Sands, G. B. et al. Automated imaging of extended tissue volumes using confocal microscopy. Microsc. Res. Tech. 67, 227–239. https://doi.org/10.1002/jemt.20200 (2005).
doi: 10.1002/jemt.20200 pubmed: 16170824
Fowler, J. L. et al. Three-dimensional analysis of the human pancreas. Endocrinology 159, 1393–1400. https://doi.org/10.1210/en.2017-03076 (2018).
doi: 10.1210/en.2017-03076 pubmed: 29390052 pmcid: 5839749
Tian, T., Yang, Z. & Li, X. Tissue clearing technique: Recent progress and biomedical applications. J. Anat. 238, 489–507. https://doi.org/10.1111/joa.13309 (2021).
doi: 10.1111/joa.13309 pubmed: 32939792
Fu, Y. Y. et al. Three-dimensional optical method for integrated visualization of mouse islet microstructure and vascular network with subcellular-level resolution. J. Biomed. Opt. 15, 046018. https://doi.org/10.1117/1.3470241 (2010).
doi: 10.1117/1.3470241 pubmed: 20799820 pmcid: 3188637
Glorieux, L. et al. Development of a 3D atlas of the embryonic pancreas for topological and quantitative analysis of heterologous cell interactions. Development https://doi.org/10.1242/dev.199655 (2022).
doi: 10.1242/dev.199655 pubmed: 35037942 pmcid: 8918780
Takeuchi, A. & Suzuki, Y. Recent progress in synchrotron radiation 3D–4D nano-imaging based on X-ray full-field microscopy. Microscopy (Oxf) 69, 259–279. https://doi.org/10.1093/jmicro/dfaa022 (2020).
doi: 10.1093/jmicro/dfaa022 pubmed: 32373929
Hu, B. C. The human body at cellular resolution: The NIH human biomolecular Atlas Program. Nature 574, 187–192. https://doi.org/10.1038/s41586-019-1629-x (2019).
doi: 10.1038/s41586-019-1629-x
Goligorsky, M. S. Vascular endothelium in diabetes. Am. J. Physiol. Renal. Physiol. 312, F266–F275. https://doi.org/10.1152/ajprenal.00473.2016 (2017).
doi: 10.1152/ajprenal.00473.2016 pubmed: 27852610
Salg, G. A. et al. Toward 3D-bioprinting of an endocrine pancreas: A building-block concept for bioartificial insulin-secreting tissue. J, Tissue Eng. 13, 20417314221091030. https://doi.org/10.1177/20417314221091033 (2022).
doi: 10.1177/20417314221091033 pubmed: 35462988
Salg, G. A. et al. The emerging field of pancreatic tissue engineering: A systematic review and evidence map of scaffold materials and scaffolding techniques for insulin-secreting cells. J. Tissue Eng. 10, 2041731419884708. https://doi.org/10.1177/2041731419884708 (2019).
doi: 10.1177/2041731419884708 pubmed: 31700597 pmcid: 6823987
Salg, G. A., Blaeser, A., Gerhardus, J. S., Hackert, T. & Kenngott, H. G. Vascularization in Bioartificial parenchymal tissue: bioink and bioprinting strategies. Int. J. Mol. Sci https://doi.org/10.3390/ijms23158589 (2022).
doi: 10.3390/ijms23158589 pubmed: 35955720 pmcid: 9369172
Kilkenny, C., Browne, W., Cuthill, I. C., Emerson, M. & Altman, D. G. Animal research: Reporting in vivo experiments: The ARRIVE guidelines. Br. J. Pharmacol. 160, 1577–1579. https://doi.org/10.1111/j.1476-5381.2010.00872.x (2010).
doi: 10.1111/j.1476-5381.2010.00872.x pubmed: 20649561 pmcid: 2936830
Studier-Fischer, A. et al. Spectral organ fingerprints for machine learning-based intraoperative tissue classification with hyperspectral imaging in a porcine model. Sci. Rep. 12, 11028. https://doi.org/10.1038/s41598-022-15040-w (2022).
doi: 10.1038/s41598-022-15040-w pubmed: 35773276 pmcid: 9247052
Studier-Fischer, A. et al. HeiPorSPECTRAL - the Heidelberg porcine HyperSPECTRAL imaging dataset of 20 physiological organs. Sci. Data 10, 414. https://doi.org/10.1038/s41597-023-02315-8 (2023).
doi: 10.1038/s41597-023-02315-8 pubmed: 37355750 pmcid: 10290660
Cao, Y. et al. Three-dimensional imaging of microvasculature in the rat spinal cord following injury. Sci. Rep. 5, 12643. https://doi.org/10.1038/srep12643 (2015).
doi: 10.1038/srep12643 pubmed: 26220842 pmcid: 4518284
Dullin, C. et al. Multiscale biomedical imaging at the SYRMEP beamline of Elettra - closing the gap between preclinical research and patient applications. Phys. Open 6, 100050. https://doi.org/10.1016/j.physo.2020.100050 (2021).
doi: 10.1016/j.physo.2020.100050
Paganin, D., Mayo, S. C., Gureyev, T. E., Miller, P. R. & Wilkins, S. W. Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J. Microsc. 206, 33–40. https://doi.org/10.1046/j.1365-2818.2002.01010.x (2002).
doi: 10.1046/j.1365-2818.2002.01010.x pubmed: 12000561
Brun, F. et al. Enhanced and flexible software tools for x-ray computed tomography at the Italian synchrotron radiation facility elettra. Fund. Inf. 141, 233–243. https://doi.org/10.3233/FI-2015-1273 (2015).
doi: 10.3233/FI-2015-1273
Schwarz, G. Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978).
doi: 10.1214/aos/1176344136
Davies, D. L. & Bouldin, D. W. A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell. 1, 224–227 (1979).
doi: 10.1109/TPAMI.1979.4766909 pubmed: 21868852
Dunn, J. C. Well-separated clusters and optimal fuzzy partitions. J. Cybern. 4, 95–104. https://doi.org/10.1080/01969727408546059 (1974).
doi: 10.1080/01969727408546059

Auteurs

Gabriel Alexander Salg (GA)

Clinic for General-, Visceral- and Transplantation Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany. gabriel.salg@med.uni-heidelberg.de.
Medical Faculty, Heidelberg University, Heidelberg, Germany. gabriel.salg@med.uni-heidelberg.de.

Verena Steinle (V)

Clinic for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany.
Division of Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.

Jonas Labode (J)

Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.

Willi Wagner (W)

Clinic for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany.
Translational Lung Research Center, Member of the German Center for Lung Research, University of Heidelberg, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany.

Alexander Studier-Fischer (A)

Clinic for General-, Visceral- and Transplantation Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany.

Johanna Reiser (J)

Clinic for General-, Visceral- and Transplantation Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany.
Clinic for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany.

Elyes Farjallah (E)

Clinic for General-, Visceral- and Transplantation Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany.

Michelle Guettlein (M)

Clinic for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany.

Jonas Albers (J)

Hamburg Unit, European Molecular Biology Laboratory, c/o Deutsches Elektronen-Synchrotron DESY Hamburg, Notkestr. 85, 22607, Hamburg, Germany.

Tim Hilgenfeld (T)

Department of Neuroradiology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.

Nathalia A Giese (NA)

Clinic for General-, Visceral- and Transplantation Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany.

Wolfram Stiller (W)

Clinic for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany.
Translational Lung Research Center, Member of the German Center for Lung Research, University of Heidelberg, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany.

Felix Nickel (F)

Clinic for General-, Visceral- and Transplantation Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany.
Clinic for General-, Visceral- and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.

Martin Loos (M)

Clinic for General-, Visceral- and Transplantation Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany.

Christoph W Michalski (CW)

Clinic for General-, Visceral- and Transplantation Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany.

Hans-Ulrich Kauczor (HU)

Clinic for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany.
Translational Lung Research Center, Member of the German Center for Lung Research, University of Heidelberg, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany.

Thilo Hackert (T)

Clinic for General-, Visceral- and Transplantation Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany.
Clinic for General-, Visceral- and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.

Christian Dullin (C)

Clinic for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany.
Translational Lung Research Center, Member of the German Center for Lung Research, University of Heidelberg, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany.
Institute for Diagnostic and Interventional Radiology, University Medical Center Goettingen, Robert-Koch-Str. 40, Goettingen, Germany.
Translational Molecular Imaging, Max Planck Institute for Multidisciplinary Sciences, Hermann-Rein-Str. 3, Göttingen, Germany.

Philipp Mayer (P)

Clinic for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany.

Hannes Goetz Kenngott (HG)

Clinic for General-, Visceral- and Transplantation Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH