Colorectal carcinoma peritoneal metastases-derived organoids: results and perspective of a model for tailoring hyperthermic intraperitoneal chemotherapy from bench-to-bedside.
Chemotherapy
Colorectal cancer
HIPEC
Organoids
Peritoneal metastases
Personalized medicine
Tailored therapies
Journal
Journal of experimental & clinical cancer research : CR
ISSN: 1756-9966
Titre abrégé: J Exp Clin Cancer Res
Pays: England
ID NLM: 8308647
Informations de publication
Date de publication:
02 May 2024
02 May 2024
Historique:
received:
04
01
2024
accepted:
19
04
2024
medline:
3
5
2024
pubmed:
3
5
2024
entrez:
2
5
2024
Statut:
epublish
Résumé
Peritoneal metastases from colorectal cancer (CRCPM) are related to poor prognosis. Cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC) have been reported to improve survival, but peritoneal recurrence rates are still high and there is no consensus on the drug of choice for HIPEC. The aim of this study was to use patient derived organoids (PDO) to build a relevant CRCPM model to improve HIPEC efficacy in a comprehensive bench-to-bedside strategy. Oxaliplatin (L-OHP), cisplatin (CDDP), mitomycin-c (MMC) and doxorubicin (DOX) were used to mimic HIPEC on twelve PDO lines derived from twelve CRCPM patients, using clinically relevant concentrations. After chemotherapeutic interventions, cell viability was assessed with a luminescent assay, and the obtained dose-response curves were used to determine the half-maximal inhibitory concentrations. Also, induction of apoptosis by different HIPEC interventions on PDOs was studied by evaluating CASPASE3 cleavage. Response to drug treatments varied considerably among PDOs. The two schemes with better response at clinically relevant concentrations included MMC alone or combined with CDDP. L-OHP showed relative efficacy only when administered at low concentrations over a long perfusion period. PDOs showed that the short course/high dose L-OHP scheme did not appear to be an effective choice for HIPEC in CRCPM. HIPEC administered under hyperthermia conditions enhanced the effect of chemotherapy drugs against cancer cells, affecting PDO viability and apoptosis. Finally, PDO co-cultured with cancer-associated fibroblast impacted HIPEC treatments by increasing PDO viability and reducing CASPASES activity. Our study suggests that PDOs could be a reliable in vitro model to evaluate HIPEC schemes at individual-patient level and to develop more effective treatment strategies for CRCPM.
Sections du résumé
BACKGROUND
BACKGROUND
Peritoneal metastases from colorectal cancer (CRCPM) are related to poor prognosis. Cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC) have been reported to improve survival, but peritoneal recurrence rates are still high and there is no consensus on the drug of choice for HIPEC. The aim of this study was to use patient derived organoids (PDO) to build a relevant CRCPM model to improve HIPEC efficacy in a comprehensive bench-to-bedside strategy.
METHODS
METHODS
Oxaliplatin (L-OHP), cisplatin (CDDP), mitomycin-c (MMC) and doxorubicin (DOX) were used to mimic HIPEC on twelve PDO lines derived from twelve CRCPM patients, using clinically relevant concentrations. After chemotherapeutic interventions, cell viability was assessed with a luminescent assay, and the obtained dose-response curves were used to determine the half-maximal inhibitory concentrations. Also, induction of apoptosis by different HIPEC interventions on PDOs was studied by evaluating CASPASE3 cleavage.
RESULTS
RESULTS
Response to drug treatments varied considerably among PDOs. The two schemes with better response at clinically relevant concentrations included MMC alone or combined with CDDP. L-OHP showed relative efficacy only when administered at low concentrations over a long perfusion period. PDOs showed that the short course/high dose L-OHP scheme did not appear to be an effective choice for HIPEC in CRCPM. HIPEC administered under hyperthermia conditions enhanced the effect of chemotherapy drugs against cancer cells, affecting PDO viability and apoptosis. Finally, PDO co-cultured with cancer-associated fibroblast impacted HIPEC treatments by increasing PDO viability and reducing CASPASES activity.
CONCLUSIONS
CONCLUSIONS
Our study suggests that PDOs could be a reliable in vitro model to evaluate HIPEC schemes at individual-patient level and to develop more effective treatment strategies for CRCPM.
Identifiants
pubmed: 38698446
doi: 10.1186/s13046-024-03052-5
pii: 10.1186/s13046-024-03052-5
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
132Subventions
Organisme : Ministero della Salute
ID : RF-2019-12370456
Organisme : Ministero della Salute
ID : 5x1000 funds 2015
Organisme : MUR
ID : 5x1000 funds 2019
Informations de copyright
© 2024. The Author(s).
Références
Guaglio M, Baratti D, Kusamura S, Reis ACV, Montenovo M, Bartolini V, et al. Impact of Previous Gynecologic Surgical Procedures on Outcomes of Non-Gynecologic Peritoneal Malignancies Mimicking Ovarian Cancer: Less Is More? Ann Surg Oncol. 2021;28(5):2899–908.
pubmed: 33641011
doi: 10.1245/s10434-021-09587-7
Baratti D, Kusamura S, Pietrantonio F, Guaglio M, Niger M, Deraco M, et al. Progress in treatments for colorectal cancer peritoneal metastases during the years 2010–2015. A systematic review. Crit Rev Oncol Hematol. 2016;100:209–22.
pubmed: 26867984
doi: 10.1016/j.critrevonc.2016.01.017
Cervantes A, Adam R, Rosello S, et al. Metastatic colorectal cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol. 2023;34:10–32.
pubmed: 36307056
doi: 10.1016/j.annonc.2022.10.003
Quénet F, Elias D, Roca L, Goéré D, Ghouti L, Pocard M, et al. Cytoreductive surgery plus hyperthermic intraperitoneal chemotherapy versus cyoreductive surgery alone for colorectal peritoneal metastases (PRODIGE 7): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2021;22(2):256–66.
pubmed: 33476595
doi: 10.1016/S1470-2045(20)30599-4
Ukegjini K, Guidi M, Lehmann K, Suvweg K, Putora PM, Cihoric N, et al. Current research and development in hyperthermic intraperitoneal chemotherapy (HIPEC) a cross-sectional analysis of clinical trials registered on ClinicalTrials.gov. Cancers (Basel). 2023;15(7):1926.
pubmed: 37046587
pmcid: 10093244
doi: 10.3390/cancers15071926
Yang XJ, Huang CQ, Suo T, Mei LJ, Yang GL, Cheng FL, et al. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy improves survival of patients with peritoneal carcinomatosis from gastric cancer: final results of phase III randomized clinical trial. Ann Surg Oncol. 2011;18(6):1575–81.
pubmed: 21431408
pmcid: 3087875
doi: 10.1245/s10434-011-1631-5
Van Driel WJ, Koole SN, Sikorska K, Schagen van Leeuwen JH, Schreuder HWR, Hermans RHM, et al. Hyperthermic intraperitoneal chemotherapy in ovarian cancer. N Engl J Med. 2018;378(3):230–40.
pubmed: 29342393
doi: 10.1056/NEJMoa1708618
Arjona-Sanchez A, Espinosa-Redondo E, Gutiérrez-Calvo A, Segura-Sampedro JJ, Pérez-Viejo E, Concepciòn-Martin V, et al. Efficacy and safety of intraoperative hyperthermic intraperitoneal chemotherapy for locally advanced colon cancer: A phase III randomized clinical trial. JAMA Surg. 2023;158:683–91.
pubmed: 37099280
pmcid: 10134040
doi: 10.1001/jamasurg.2023.0662
Celeen W. HIPEC with oxaliplatin for colorectal peritoneal metastasis: The end of the road? Eur J Surg Oncol. 2019;45(3):400–2.
doi: 10.1016/j.ejso.2018.10.542
Sachs N, de Ligt J, Kopper O, Gogola E, Bounova G, Weeber F, et al. A Living Biobank of Breast Cancer Organoids Captures Disease Heterogeneity. Cell. 2018;172(1–2):373–86.e10.
pubmed: 29224780
doi: 10.1016/j.cell.2017.11.010
Lee SH, Hu W, Matulay JT, Silva MV, Owczarek TB, Kim K, et al. Tumor Evolution and Drug Response in Patient-Derived Organoid Models of Bladder Cancer. Cell. 2018;173(2):515–28.e17.
pubmed: 29625057
pmcid: 5890941
doi: 10.1016/j.cell.2018.03.017
Hill SJ, Decker B, Roberts EA, Horowitz NS, Muto MG, Worley MJ Jr, et al. Prediction of DNA Repair Inhibitor Response in Short-Term Patient-Derived Ovarian Cancer Organoids. Cancer Discov. 2018;8(11):1404–21.
pubmed: 30213835
pmcid: 6365285
doi: 10.1158/2159-8290.CD-18-0474
Tiriac H, Belleau P, Engle DD, Plenker D, Deschênes A, Somerville TDD, et al. Organoid Profiling Identifies Common Responders to Chemotherapy in Pancreatic Cancer. Cancer Discov. 2018;8(9):1112–29.
pubmed: 29853643
pmcid: 6125219
doi: 10.1158/2159-8290.CD-18-0349
Vlachogiannis G, Hedayat S, Vatsiou A, Jamin Y, Fernández-Mateos J, Khan K, et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science. 2018;359(6378):920–6.
pubmed: 29472484
pmcid: 6112415
doi: 10.1126/science.aao2774
Pauli C, Hopkins BD, Prandi D, Shaw R, Fedrizzi T, Sboner A, et al. Personalized In Vitro and In Vivo Cancer Models to Guide Precision Medicine. Cancer Discov. 2017;7(5):462–77.
pubmed: 28331002
pmcid: 5413423
doi: 10.1158/2159-8290.CD-16-1154
Tuveson D, Clevers H. Cancer modeling meets human organoid technology. Science. 2018;364(6444):952–5.
doi: 10.1126/science.aaw6985
Shaked Y. The pro-tumorigenic host response to cancer therapies. Nat Rev Cancer. 2019;19(12):667–85.
pubmed: 31645711
doi: 10.1038/s41568-019-0209-6
Varinelli L, Guaglio M, Brich S, Zanutto S, Belfiore A, Zanardi F, et al. Decellularized Normal and Tumor Extracellular Matrix as Scaffold for Cancer Organoid Cultures of Colorectal Peritoneal Metastases. J Moll Cell Biol. 2023;14(11):mjac064.
doi: 10.1093/jmcb/mjac064
Fujii M, Shimokawa M, Date S, Takano A, Matano M, Nanki K, et al. A Colorectal Tumor Organoid Library Demonstrates Progressive Loss of Niche Factor Requirements during Tumorigenesis. Cell Stem Cell. 2016;18(6):827–38.
pubmed: 27212702
doi: 10.1016/j.stem.2016.04.003
Walerskirchen N, Müller C, Ramos C, Zeindl S, Stang S, Herzog D, et al. Metastatic colorectal carcinoma-associated fibroblast have immunosuppressive properties related to increased IGFBP2 expression. Cancer Lett. 2022;1(540):215737.
doi: 10.1016/j.canlet.2022.215737
Strating E, Verhagen MP, Wensink E, Dünnebach E, Wijler L, Aranguren I, et al. Co-cultures of colon cancer cells and cancer-associated fibroblasts recapitulate the aggressive features of mesenchymal-like colon cancer. Front Immunol. 2023;16(14):1053920.
doi: 10.3389/fimmu.2023.1053920
Baratti D, Kusamura S, Azmi N, Guaglio M, Montenovo M, Deraco M. Colorectal Peritoneal Metastases Treated by Perioperative Systemic Chemotherapy and Cytoreductive Surgery With or Without Mitomycin C-Based HIPEC: A Comparative Study Using the Peritoneal Surface Disease Severity Score (PSDSS). Ann Surg Oncol. 2020;27(1):98–106.
pubmed: 31691116
doi: 10.1245/s10434-019-07935-2
Bhatt A, de Hingh I, Van Der Speeten K, Hubner M, Deraco M, Bakrin N, et al. HIPEC Methodology and Regimens: The Need for an Expert Consensus. Ann Surg Oncol. 2021;28(13):9098–113.
pubmed: 34142293
doi: 10.1245/s10434-021-10193-w
van Eden WJ, Kok NFM, Woensdregt K, Huitema ADR, Boot H, Aalbers AGJ. Safety of intraperitoneal Mitomycin C versus intraperitoneal oxaliplatin in patients with peritoneal carcinomatosis of colorectal cancer undergoing cytoreductive surgery and HIPEC. Eur J Surg Oncol. 2018;44(2):220–7.
pubmed: 29258720
doi: 10.1016/j.ejso.2017.10.216
Kuijpers AMJ, Mirck B, Aalbers AGJ. Cytoreduction and HIPEC in the Netherlands: nationwide long-term outcome following the Dutch protocol. Ann Surg Oncol. 2013;20(13):4224–30.
pubmed: 23897008
pmcid: 3827901
doi: 10.1245/s10434-013-3145-9
Drost J, Clevers H. Organoids in cancer research. Nat Rev Cancer. 2018;18:407–18.
pubmed: 29692415
doi: 10.1038/s41568-018-0007-6
Kamb A. What’s wrong with our cancer models? Nat Rev Drug Discov. 2005;4(2):161–5.
pubmed: 15688078
doi: 10.1038/nrd1635
Ubink I, Bolhaqueiro ACF, Elias SG, Raats DAE, Constantinides A, Peters NA, et al. Organoids from colorectal peritoneal metastases as a platform for improving hyperthermic intraperitoneal chemotherapy. Br J Surg. 2019;106:1404–14.
pubmed: 31197820
doi: 10.1002/bjs.11206
Forsythe SD, Sasikumar S, Moaven O, Sivakumar H, Shen P, Levine EA, et al. Personalized Identification of Optimal HIPEC Perfusion Protocol in Patient-Derived Tumor Organoid Platform. Ann Surg Oncol. 2020;27(13):4950–60.
pubmed: 32632882
pmcid: 7674215
doi: 10.1245/s10434-020-08790-2
Cleelen W, Ramsay RG, Narasimhan V, Heriot AG, De Wever O. Targeting the Tumor Microenvironment in Colorectal Peritoneal Metastases. Trends in Cancer. 2020;6(3):236–46.
doi: 10.1016/j.trecan.2019.12.008
Pereira F, Serrano A, Manzanedo I, Pérez-Viejo E, González-Moreno S, González-Bayón L, et al. GECOP-MMC: phase IV randomized clinical trial to evaluate the efficacy of hyperthermic intraperitoneal chemotherapy (HIPEC) with mytomicin-C after complete surgical cytoreduction in patients with colon cancer peritoneal metastases. BMC Cancer. 2022;22(1):536.
pubmed: 35549912
pmcid: 9097342
doi: 10.1186/s12885-022-09572-7
Guerra-Londono CE, Tarazona CG, Sánchez-Monroy JA, Heppell O, Guerra-Londono JJ, Shah R. The Role of Hyperthermia in the Treatment of Peritoneal Surface Malignancies. Curr Oncol Rep. 2022;24(7):875–87.
pubmed: 35325402
doi: 10.1007/s11912-022-01275-3
Bushati M, Rovers KP, Sommariva A, Sugarbaker PH, Morris DL, Yonemura Y, et al. The current practice of cytoreductive surgery and HIPEC for colorectal peritoneal metastases: Results of a worldwide web-based survey of the Peritoneal Surface Oncology Group International (PSOGI). Eur J Surg Oncol. 2018;44(12):1942–8.
pubmed: 30075978
doi: 10.1016/j.ejso.2018.07.003
Santullo F, Pacelli F, Abatini C, Attalla El, Halabieh M, Fortunato G, Lodoli C, et al. Cytoreduction and hyperthermic intraperitoneal chemotherapy for pseudomyxoma peritonei of appendiceal origin: a single center experience. Front Surg. 2021;8:715119.
pubmed: 34513915
pmcid: 8427490
doi: 10.3389/fsurg.2021.715119
Helderman R, Löke DR, Verhoeff J, Rodermond HM, van Bochove GGW, Boon M, et al. The Temperature-Dependent Effectiveness of Platinum-Based Drugs Mitomycin-C and 5-FU during Hyperthermic Intraperitoneal Chemotherapy (HIPEC) in Colorectal Cancer Cell Lines. Cells. 2020;9(8):1775.
pubmed: 32722384
pmcid: 7464333
doi: 10.3390/cells9081775
Jacquet P, Averbach A, Stuart OA, Chang D, Sugarbaker PH. Hyperthermic intraperitoneal doxorubicin: pharmacokinetics, metabolism, and tissue distribution in a rat model. Cancer Chemother Pharmacol. 1998;41(2):147–54.
pubmed: 9443628
doi: 10.1007/s002800050721
Xie F, Van Bocxlaer J, Colin P, Carlier C, Van Kerschaver O, Weerts J, et al. PKPD Modeling and Dosing Considerations in Advanced Ovarian Cancer Patients Treated with Cisplatin-Based Intraoperative Intraperitoneal Chemotherapy. AAPS J. 2020;22(5):96.
pubmed: 32710204
doi: 10.1208/s12248-020-00489-2
Dewey WC. Arrhenius relationships from the molecule and cell to the clinic. Int J Hyperth. 2009;25(1):3–20.
doi: 10.1080/02656730902747919
Papaccio F, García-Mico B, Gimeno-Valiente F, Cabeza-Segura M, Gambardella V, Gutiérrez-Bravo MF, et al. Proteotranscriptomic analysis of advanced colorectal cancer patient derived organoids for drug sensitivity prediction. J Exp Clin Cancer Res. 2023;42(1):8.
pubmed: 36604765
pmcid: 9817273
doi: 10.1186/s13046-022-02591-z
Hamidi H, Ivaska J. Every step of the way: integrins in cancer progression and metastasis. Nat Rev Cancer. 2018;18:533–48.
pubmed: 30002479
pmcid: 6629548
doi: 10.1038/s41568-018-0038-z
Brabletz T, Kalluri R, Nieto AM, Weinberg RA. EMT in cancer. Nat Rev Cancer. 2018;18:128–34.
pubmed: 29326430
doi: 10.1038/nrc.2017.118
Lemoine L, Sugarbaker P, Van der Speeten K. Pathophysiology of colorectal peritoneal carcinomatosis: Role of the peritoneum. World J Gastroenterol. 2016;22:7692–707.
pubmed: 27678351
pmcid: 5016368
doi: 10.3748/wjg.v22.i34.7692
Cox TR. The matrix in cancer. Nat Rev Cancer. 2021;21(4):217–38.
pubmed: 33589810
doi: 10.1038/s41568-020-00329-7
Janssen E, Subtil B, de la Jara OF, Verheul HMW, Tauriello DVF. Combinatorial immunotherapies for metastatic colorectal cancer. Cancers (Basel). 2020;12(7):1875.
pubmed: 32664619
doi: 10.3390/cancers12071875
Roulis M, Kaklamanos A, Schernthanner M, Bielecki P, Zhao J, Kaffe E, et al. Paracrine orchestration of intestinal tumorigenesis by a mesenchymal niche. Nature. 2020;580(7804):524–9.
pubmed: 32322056
pmcid: 7490650
doi: 10.1038/s41586-020-2166-3
Becker WR, Nevins SA, Chen DC, Chiu R, Horning AM, Guha TK, et al. Single-cell analyses define a continuum of cell state and composition changes in the malignant transformation of polyps to colorectal cancer. Nat Genet. 2022;54(7):985–95.
pubmed: 35726067
pmcid: 9279149
doi: 10.1038/s41588-022-01088-x
Pape J, Magdeldin T, Stamati K, Nyga A, Loizidou M, Emberton M, et al. Cancer-associated fibroblasts mediate cancer progression and remodel the tumortumoroid stroma. Br J cancer. 2020;123(7):1178–90.
pubmed: 32641866
pmcid: 7524802
doi: 10.1038/s41416-020-0973-9
Hurtado P, Martinez-Pena I, Pineiro R. Dangerous liaisons: circulating tumor cells (CTCs) and cancer-associated fibroblasts (CAFs). Cancers (Basel). 2020;12(10):2861.
pubmed: 33027902
doi: 10.3390/cancers12102861
Su S, Chen J, Yao H, Liu J, Yu S, Lao L, et al. CD10(+)GPR77(+) cancer-associated fibroblasts promote cancer formation and chemoresistance by sustaining cancer stemness. Cell. 2018;172(4):841–56.e16.
pubmed: 29395328
doi: 10.1016/j.cell.2018.01.009
Garvey CM, Lau R, Sanchez A, Sun RX, Fong EJ, Doche ME, et al. Anti-EGFR therapy induces EGF secretion by cancer-associated fibroblasts to confer colorectal cancer chemoresistance. Cancers (Basel). 2020;12(6):1393.
pubmed: 32481658
doi: 10.3390/cancers12061393
Barrett R, Pure E. Cancer-associated fibroblasts: key determinants of tumor immunity and immunotherapy. Curr Opin Immunol. 2020;64:80–7.
pubmed: 32402828
pmcid: 8228400
doi: 10.1016/j.coi.2020.03.004
Monteran L, Erez N. The dark side of fibroblasts: cancer-associated fibroblasts as mediators of immunosuppression in the tumor microenvironment. Front Immunol. 2019;10:1835.
pubmed: 31428105
pmcid: 6688105
doi: 10.3389/fimmu.2019.01835
Kieffer Y, Hocine HR, Gentric G, Pelon F, Bernard C, Bourachot B, et al. Single-cell analysis reveals fibroblast clusters linked to immunotherapy resistance in cancer. Cancer Discov. 2020;10(9):1330–51.
pubmed: 32434947
doi: 10.1158/2159-8290.CD-19-1384
Huang H, Wang Z, Zhang Y, Pradhan RN, Ganguly D, Chandra R, et al. Mesothelial cell-derived antigen-presenting cancer-associated fibroblasts induce expansion of regulatory T cells in pancreatic cancer. Cancer Cell. 2022;40(6):656–73.e7.
pubmed: 35523176
pmcid: 9197998
doi: 10.1016/j.ccell.2022.04.011
Ferreira LP, Gaspar VM, Mano JF. Decellularized Extracellular Matrix for Bioengineering Physiomimetic 3D in Vitro Tumor Models. Trends Biotechnol. 2020;38(12):1397–414.
pubmed: 32416940
doi: 10.1016/j.tibtech.2020.04.006
Papaccio F, Cabeza-Segura M, Garcia-Micò B, Tarazona N, Roda D, Castillo J, et al. Will Organoids Fill the Gap towards Functional Precision Medicine?. J Pers Med. 2022;12(11):1939.
pubmed: 36422115
pmcid: 9695811
doi: 10.3390/jpm12111939