Colorectal carcinoma peritoneal metastases-derived organoids: results and perspective of a model for tailoring hyperthermic intraperitoneal chemotherapy from bench-to-bedside.

Chemotherapy Colorectal cancer HIPEC Organoids Peritoneal metastases Personalized medicine Tailored therapies

Journal

Journal of experimental & clinical cancer research : CR
ISSN: 1756-9966
Titre abrégé: J Exp Clin Cancer Res
Pays: England
ID NLM: 8308647

Informations de publication

Date de publication:
02 May 2024
Historique:
received: 04 01 2024
accepted: 19 04 2024
medline: 3 5 2024
pubmed: 3 5 2024
entrez: 2 5 2024
Statut: epublish

Résumé

Peritoneal metastases from colorectal cancer (CRCPM) are related to poor prognosis. Cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC) have been reported to improve survival, but peritoneal recurrence rates are still high and there is no consensus on the drug of choice for HIPEC. The aim of this study was to use patient derived organoids (PDO) to build a relevant CRCPM model to improve HIPEC efficacy in a comprehensive bench-to-bedside strategy. Oxaliplatin (L-OHP), cisplatin (CDDP), mitomycin-c (MMC) and doxorubicin (DOX) were used to mimic HIPEC on twelve PDO lines derived from twelve CRCPM patients, using clinically relevant concentrations. After chemotherapeutic interventions, cell viability was assessed with a luminescent assay, and the obtained dose-response curves were used to determine the half-maximal inhibitory concentrations. Also, induction of apoptosis by different HIPEC interventions on PDOs was studied by evaluating CASPASE3 cleavage. Response to drug treatments varied considerably among PDOs. The two schemes with better response at clinically relevant concentrations included MMC alone or combined with CDDP. L-OHP showed relative efficacy only when administered at low concentrations over a long perfusion period. PDOs showed that the short course/high dose L-OHP scheme did not appear to be an effective choice for HIPEC in CRCPM. HIPEC administered under hyperthermia conditions enhanced the effect of chemotherapy drugs against cancer cells, affecting PDO viability and apoptosis. Finally, PDO co-cultured with cancer-associated fibroblast impacted HIPEC treatments by increasing PDO viability and reducing CASPASES activity. Our study suggests that PDOs could be a reliable in vitro model to evaluate HIPEC schemes at individual-patient level and to develop more effective treatment strategies for CRCPM.

Sections du résumé

BACKGROUND BACKGROUND
Peritoneal metastases from colorectal cancer (CRCPM) are related to poor prognosis. Cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC) have been reported to improve survival, but peritoneal recurrence rates are still high and there is no consensus on the drug of choice for HIPEC. The aim of this study was to use patient derived organoids (PDO) to build a relevant CRCPM model to improve HIPEC efficacy in a comprehensive bench-to-bedside strategy.
METHODS METHODS
Oxaliplatin (L-OHP), cisplatin (CDDP), mitomycin-c (MMC) and doxorubicin (DOX) were used to mimic HIPEC on twelve PDO lines derived from twelve CRCPM patients, using clinically relevant concentrations. After chemotherapeutic interventions, cell viability was assessed with a luminescent assay, and the obtained dose-response curves were used to determine the half-maximal inhibitory concentrations. Also, induction of apoptosis by different HIPEC interventions on PDOs was studied by evaluating CASPASE3 cleavage.
RESULTS RESULTS
Response to drug treatments varied considerably among PDOs. The two schemes with better response at clinically relevant concentrations included MMC alone or combined with CDDP. L-OHP showed relative efficacy only when administered at low concentrations over a long perfusion period. PDOs showed that the short course/high dose L-OHP scheme did not appear to be an effective choice for HIPEC in CRCPM. HIPEC administered under hyperthermia conditions enhanced the effect of chemotherapy drugs against cancer cells, affecting PDO viability and apoptosis. Finally, PDO co-cultured with cancer-associated fibroblast impacted HIPEC treatments by increasing PDO viability and reducing CASPASES activity.
CONCLUSIONS CONCLUSIONS
Our study suggests that PDOs could be a reliable in vitro model to evaluate HIPEC schemes at individual-patient level and to develop more effective treatment strategies for CRCPM.

Identifiants

pubmed: 38698446
doi: 10.1186/s13046-024-03052-5
pii: 10.1186/s13046-024-03052-5
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

132

Subventions

Organisme : Ministero della Salute
ID : RF-2019-12370456
Organisme : Ministero della Salute
ID : 5x1000 funds 2015
Organisme : MUR
ID : 5x1000 funds 2019

Informations de copyright

© 2024. The Author(s).

Références

Guaglio M, Baratti D, Kusamura S, Reis ACV, Montenovo M, Bartolini V, et al. Impact of Previous Gynecologic Surgical Procedures on Outcomes of Non-Gynecologic Peritoneal Malignancies Mimicking Ovarian Cancer: Less Is More? Ann Surg Oncol. 2021;28(5):2899–908.
pubmed: 33641011 doi: 10.1245/s10434-021-09587-7
Baratti D, Kusamura S, Pietrantonio F, Guaglio M, Niger M, Deraco M, et al. Progress in treatments for colorectal cancer peritoneal metastases during the years 2010–2015. A systematic review. Crit Rev Oncol Hematol. 2016;100:209–22.
pubmed: 26867984 doi: 10.1016/j.critrevonc.2016.01.017
Cervantes A, Adam R, Rosello S, et al. Metastatic colorectal cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol. 2023;34:10–32.
pubmed: 36307056 doi: 10.1016/j.annonc.2022.10.003
Quénet F, Elias D, Roca L, Goéré D, Ghouti L, Pocard M, et al. Cytoreductive surgery plus hyperthermic intraperitoneal chemotherapy versus cyoreductive surgery alone for colorectal peritoneal metastases (PRODIGE 7): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2021;22(2):256–66.
pubmed: 33476595 doi: 10.1016/S1470-2045(20)30599-4
Ukegjini K, Guidi M, Lehmann K, Suvweg K, Putora PM, Cihoric N, et al. Current research and development in hyperthermic intraperitoneal chemotherapy (HIPEC) a cross-sectional analysis of clinical trials registered on ClinicalTrials.gov. Cancers (Basel). 2023;15(7):1926.
pubmed: 37046587 pmcid: 10093244 doi: 10.3390/cancers15071926
Yang XJ, Huang CQ, Suo T, Mei LJ, Yang GL, Cheng FL, et al. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy improves survival of patients with peritoneal carcinomatosis from gastric cancer: final results of phase III randomized clinical trial. Ann Surg Oncol. 2011;18(6):1575–81.
pubmed: 21431408 pmcid: 3087875 doi: 10.1245/s10434-011-1631-5
Van Driel WJ, Koole SN, Sikorska K, Schagen van Leeuwen JH, Schreuder HWR, Hermans RHM, et al. Hyperthermic intraperitoneal chemotherapy in ovarian cancer. N Engl J Med. 2018;378(3):230–40.
pubmed: 29342393 doi: 10.1056/NEJMoa1708618
Arjona-Sanchez A, Espinosa-Redondo E, Gutiérrez-Calvo A, Segura-Sampedro JJ, Pérez-Viejo E, Concepciòn-Martin V, et al. Efficacy and safety of intraoperative hyperthermic intraperitoneal chemotherapy for locally advanced colon cancer: A phase III randomized clinical trial. JAMA Surg. 2023;158:683–91.
pubmed: 37099280 pmcid: 10134040 doi: 10.1001/jamasurg.2023.0662
Celeen W. HIPEC with oxaliplatin for colorectal peritoneal metastasis: The end of the road? Eur J Surg Oncol. 2019;45(3):400–2.
doi: 10.1016/j.ejso.2018.10.542
Sachs N, de Ligt J, Kopper O, Gogola E, Bounova G, Weeber F, et al. A Living Biobank of Breast Cancer Organoids Captures Disease Heterogeneity. Cell. 2018;172(1–2):373–86.e10.
pubmed: 29224780 doi: 10.1016/j.cell.2017.11.010
Lee SH, Hu W, Matulay JT, Silva MV, Owczarek TB, Kim K, et al. Tumor Evolution and Drug Response in Patient-Derived Organoid Models of Bladder Cancer. Cell. 2018;173(2):515–28.e17.
pubmed: 29625057 pmcid: 5890941 doi: 10.1016/j.cell.2018.03.017
Hill SJ, Decker B, Roberts EA, Horowitz NS, Muto MG, Worley MJ Jr, et al. Prediction of DNA Repair Inhibitor Response in Short-Term Patient-Derived Ovarian Cancer Organoids. Cancer Discov. 2018;8(11):1404–21.
pubmed: 30213835 pmcid: 6365285 doi: 10.1158/2159-8290.CD-18-0474
Tiriac H, Belleau P, Engle DD, Plenker D, Deschênes A, Somerville TDD, et al. Organoid Profiling Identifies Common Responders to Chemotherapy in Pancreatic Cancer. Cancer Discov. 2018;8(9):1112–29.
pubmed: 29853643 pmcid: 6125219 doi: 10.1158/2159-8290.CD-18-0349
Vlachogiannis G, Hedayat S, Vatsiou A, Jamin Y, Fernández-Mateos J, Khan K, et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science. 2018;359(6378):920–6.
pubmed: 29472484 pmcid: 6112415 doi: 10.1126/science.aao2774
Pauli C, Hopkins BD, Prandi D, Shaw R, Fedrizzi T, Sboner A, et al. Personalized In Vitro and In Vivo Cancer Models to Guide Precision Medicine. Cancer Discov. 2017;7(5):462–77.
pubmed: 28331002 pmcid: 5413423 doi: 10.1158/2159-8290.CD-16-1154
Tuveson D, Clevers H. Cancer modeling meets human organoid technology. Science. 2018;364(6444):952–5.
doi: 10.1126/science.aaw6985
Shaked Y. The pro-tumorigenic host response to cancer therapies. Nat Rev Cancer. 2019;19(12):667–85.
pubmed: 31645711 doi: 10.1038/s41568-019-0209-6
Varinelli L, Guaglio M, Brich S, Zanutto S, Belfiore A, Zanardi F, et al. Decellularized Normal and Tumor Extracellular Matrix as Scaffold for Cancer Organoid Cultures of Colorectal Peritoneal Metastases. J Moll Cell Biol. 2023;14(11):mjac064.
doi: 10.1093/jmcb/mjac064
Fujii M, Shimokawa M, Date S, Takano A, Matano M, Nanki K, et al. A Colorectal Tumor Organoid Library Demonstrates Progressive Loss of Niche Factor Requirements during Tumorigenesis. Cell Stem Cell. 2016;18(6):827–38.
pubmed: 27212702 doi: 10.1016/j.stem.2016.04.003
Walerskirchen N, Müller C, Ramos C, Zeindl S, Stang S, Herzog D, et al. Metastatic colorectal carcinoma-associated fibroblast have immunosuppressive properties related to increased IGFBP2 expression. Cancer Lett. 2022;1(540):215737.
doi: 10.1016/j.canlet.2022.215737
Strating E, Verhagen MP, Wensink E, Dünnebach E, Wijler L, Aranguren I, et al. Co-cultures of colon cancer cells and cancer-associated fibroblasts recapitulate the aggressive features of mesenchymal-like colon cancer. Front Immunol. 2023;16(14):1053920.
doi: 10.3389/fimmu.2023.1053920
Baratti D, Kusamura S, Azmi N, Guaglio M, Montenovo M, Deraco M. Colorectal Peritoneal Metastases Treated by Perioperative Systemic Chemotherapy and Cytoreductive Surgery With or Without Mitomycin C-Based HIPEC: A Comparative Study Using the Peritoneal Surface Disease Severity Score (PSDSS). Ann Surg Oncol. 2020;27(1):98–106.
pubmed: 31691116 doi: 10.1245/s10434-019-07935-2
Bhatt A, de Hingh I, Van Der Speeten K, Hubner M, Deraco M, Bakrin N, et al. HIPEC Methodology and Regimens: The Need for an Expert Consensus. Ann Surg Oncol. 2021;28(13):9098–113.
pubmed: 34142293 doi: 10.1245/s10434-021-10193-w
van Eden WJ, Kok NFM, Woensdregt K, Huitema ADR, Boot H, Aalbers AGJ. Safety of intraperitoneal Mitomycin C versus intraperitoneal oxaliplatin in patients with peritoneal carcinomatosis of colorectal cancer undergoing cytoreductive surgery and HIPEC. Eur J Surg Oncol. 2018;44(2):220–7.
pubmed: 29258720 doi: 10.1016/j.ejso.2017.10.216
Kuijpers AMJ, Mirck B, Aalbers AGJ. Cytoreduction and HIPEC in the Netherlands: nationwide long-term outcome following the Dutch protocol. Ann Surg Oncol. 2013;20(13):4224–30.
pubmed: 23897008 pmcid: 3827901 doi: 10.1245/s10434-013-3145-9
Drost J, Clevers H. Organoids in cancer research. Nat Rev Cancer. 2018;18:407–18.
pubmed: 29692415 doi: 10.1038/s41568-018-0007-6
Kamb A. What’s wrong with our cancer models? Nat Rev Drug Discov. 2005;4(2):161–5.
pubmed: 15688078 doi: 10.1038/nrd1635
Ubink I, Bolhaqueiro ACF, Elias SG, Raats DAE, Constantinides A, Peters NA, et al. Organoids from colorectal peritoneal metastases as a platform for improving hyperthermic intraperitoneal chemotherapy. Br J Surg. 2019;106:1404–14.
pubmed: 31197820 doi: 10.1002/bjs.11206
Forsythe SD, Sasikumar S, Moaven O, Sivakumar H, Shen P, Levine EA, et al. Personalized Identification of Optimal HIPEC Perfusion Protocol in Patient-Derived Tumor Organoid Platform. Ann Surg Oncol. 2020;27(13):4950–60.
pubmed: 32632882 pmcid: 7674215 doi: 10.1245/s10434-020-08790-2
Cleelen W, Ramsay RG, Narasimhan V, Heriot AG, De Wever O. Targeting the Tumor Microenvironment in Colorectal Peritoneal Metastases. Trends in Cancer. 2020;6(3):236–46.
doi: 10.1016/j.trecan.2019.12.008
Pereira F, Serrano A, Manzanedo I, Pérez-Viejo E, González-Moreno S, González-Bayón L, et al. GECOP-MMC: phase IV randomized clinical trial to evaluate the efficacy of hyperthermic intraperitoneal chemotherapy (HIPEC) with mytomicin-C after complete surgical cytoreduction in patients with colon cancer peritoneal metastases. BMC Cancer. 2022;22(1):536.
pubmed: 35549912 pmcid: 9097342 doi: 10.1186/s12885-022-09572-7
Guerra-Londono CE, Tarazona CG, Sánchez-Monroy JA, Heppell O, Guerra-Londono JJ, Shah R. The Role of Hyperthermia in the Treatment of Peritoneal Surface Malignancies. Curr Oncol Rep. 2022;24(7):875–87.
pubmed: 35325402 doi: 10.1007/s11912-022-01275-3
Bushati M, Rovers KP, Sommariva A, Sugarbaker PH, Morris DL, Yonemura Y, et al. The current practice of cytoreductive surgery and HIPEC for colorectal peritoneal metastases: Results of a worldwide web-based survey of the Peritoneal Surface Oncology Group International (PSOGI). Eur J Surg Oncol. 2018;44(12):1942–8.
pubmed: 30075978 doi: 10.1016/j.ejso.2018.07.003
Santullo F, Pacelli F, Abatini C, Attalla El, Halabieh M, Fortunato G, Lodoli C, et al. Cytoreduction and hyperthermic intraperitoneal chemotherapy for pseudomyxoma peritonei of appendiceal origin: a single center experience. Front Surg. 2021;8:715119.
pubmed: 34513915 pmcid: 8427490 doi: 10.3389/fsurg.2021.715119
Helderman R, Löke DR, Verhoeff J, Rodermond HM, van Bochove GGW, Boon M, et al. The Temperature-Dependent Effectiveness of Platinum-Based Drugs Mitomycin-C and 5-FU during Hyperthermic Intraperitoneal Chemotherapy (HIPEC) in Colorectal Cancer Cell Lines. Cells. 2020;9(8):1775.
pubmed: 32722384 pmcid: 7464333 doi: 10.3390/cells9081775
Jacquet P, Averbach A, Stuart OA, Chang D, Sugarbaker PH. Hyperthermic intraperitoneal doxorubicin: pharmacokinetics, metabolism, and tissue distribution in a rat model. Cancer Chemother Pharmacol. 1998;41(2):147–54.
pubmed: 9443628 doi: 10.1007/s002800050721
Xie F, Van Bocxlaer J, Colin P, Carlier C, Van Kerschaver O, Weerts J, et al. PKPD Modeling and Dosing Considerations in Advanced Ovarian Cancer Patients Treated with Cisplatin-Based Intraoperative Intraperitoneal Chemotherapy. AAPS J. 2020;22(5):96.
pubmed: 32710204 doi: 10.1208/s12248-020-00489-2
Dewey WC. Arrhenius relationships from the molecule and cell to the clinic. Int J Hyperth. 2009;25(1):3–20.
doi: 10.1080/02656730902747919
Papaccio F, García-Mico B, Gimeno-Valiente F, Cabeza-Segura M, Gambardella V, Gutiérrez-Bravo MF, et al. Proteotranscriptomic analysis of advanced colorectal cancer patient derived organoids for drug sensitivity prediction. J Exp Clin Cancer Res. 2023;42(1):8.
pubmed: 36604765 pmcid: 9817273 doi: 10.1186/s13046-022-02591-z
Hamidi H, Ivaska J. Every step of the way: integrins in cancer progression and metastasis. Nat Rev Cancer. 2018;18:533–48.
pubmed: 30002479 pmcid: 6629548 doi: 10.1038/s41568-018-0038-z
Brabletz T, Kalluri R, Nieto AM, Weinberg RA. EMT in cancer. Nat Rev Cancer. 2018;18:128–34.
pubmed: 29326430 doi: 10.1038/nrc.2017.118
Lemoine L, Sugarbaker P, Van der Speeten K. Pathophysiology of colorectal peritoneal carcinomatosis: Role of the peritoneum. World J Gastroenterol. 2016;22:7692–707.
pubmed: 27678351 pmcid: 5016368 doi: 10.3748/wjg.v22.i34.7692
Cox TR. The matrix in cancer. Nat Rev Cancer. 2021;21(4):217–38.
pubmed: 33589810 doi: 10.1038/s41568-020-00329-7
Janssen E, Subtil B, de la Jara OF, Verheul HMW, Tauriello DVF. Combinatorial immunotherapies for metastatic colorectal cancer. Cancers (Basel). 2020;12(7):1875.
pubmed: 32664619 doi: 10.3390/cancers12071875
Roulis M, Kaklamanos A, Schernthanner M, Bielecki P, Zhao J, Kaffe E, et al. Paracrine orchestration of intestinal tumorigenesis by a mesenchymal niche. Nature. 2020;580(7804):524–9.
pubmed: 32322056 pmcid: 7490650 doi: 10.1038/s41586-020-2166-3
Becker WR, Nevins SA, Chen DC, Chiu R, Horning AM, Guha TK, et al. Single-cell analyses define a continuum of cell state and composition changes in the malignant transformation of polyps to colorectal cancer. Nat Genet. 2022;54(7):985–95.
pubmed: 35726067 pmcid: 9279149 doi: 10.1038/s41588-022-01088-x
Pape J, Magdeldin T, Stamati K, Nyga A, Loizidou M, Emberton M, et al. Cancer-associated fibroblasts mediate cancer progression and remodel the tumortumoroid stroma. Br J cancer. 2020;123(7):1178–90.
pubmed: 32641866 pmcid: 7524802 doi: 10.1038/s41416-020-0973-9
Hurtado P, Martinez-Pena I, Pineiro R. Dangerous liaisons: circulating tumor cells (CTCs) and cancer-associated fibroblasts (CAFs). Cancers (Basel). 2020;12(10):2861.
pubmed: 33027902 doi: 10.3390/cancers12102861
Su S, Chen J, Yao H, Liu J, Yu S, Lao L, et al. CD10(+)GPR77(+) cancer-associated fibroblasts promote cancer formation and chemoresistance by sustaining cancer stemness. Cell. 2018;172(4):841–56.e16.
pubmed: 29395328 doi: 10.1016/j.cell.2018.01.009
Garvey CM, Lau R, Sanchez A, Sun RX, Fong EJ, Doche ME, et al. Anti-EGFR therapy induces EGF secretion by cancer-associated fibroblasts to confer colorectal cancer chemoresistance. Cancers (Basel). 2020;12(6):1393.
pubmed: 32481658 doi: 10.3390/cancers12061393
Barrett R, Pure E. Cancer-associated fibroblasts: key determinants of tumor immunity and immunotherapy. Curr Opin Immunol. 2020;64:80–7.
pubmed: 32402828 pmcid: 8228400 doi: 10.1016/j.coi.2020.03.004
Monteran L, Erez N. The dark side of fibroblasts: cancer-associated fibroblasts as mediators of immunosuppression in the tumor microenvironment. Front Immunol. 2019;10:1835.
pubmed: 31428105 pmcid: 6688105 doi: 10.3389/fimmu.2019.01835
Kieffer Y, Hocine HR, Gentric G, Pelon F, Bernard C, Bourachot B, et al. Single-cell analysis reveals fibroblast clusters linked to immunotherapy resistance in cancer. Cancer Discov. 2020;10(9):1330–51.
pubmed: 32434947 doi: 10.1158/2159-8290.CD-19-1384
Huang H, Wang Z, Zhang Y, Pradhan RN, Ganguly D, Chandra R, et al. Mesothelial cell-derived antigen-presenting cancer-associated fibroblasts induce expansion of regulatory T cells in pancreatic cancer. Cancer Cell. 2022;40(6):656–73.e7.
pubmed: 35523176 pmcid: 9197998 doi: 10.1016/j.ccell.2022.04.011
Ferreira LP, Gaspar VM, Mano JF. Decellularized Extracellular Matrix for Bioengineering Physiomimetic 3D in Vitro Tumor Models. Trends Biotechnol. 2020;38(12):1397–414.
pubmed: 32416940 doi: 10.1016/j.tibtech.2020.04.006
Papaccio F, Cabeza-Segura M, Garcia-Micò B, Tarazona N, Roda D, Castillo J, et al. Will Organoids Fill the Gap towards Functional Precision Medicine?. J Pers Med. 2022;12(11):1939.
pubmed: 36422115 pmcid: 9695811 doi: 10.3390/jpm12111939

Auteurs

Luca Varinelli (L)

Department of Experimental Oncology, Molecular Epigenomics Unit, Fondazione IRCCS Istituto Nazionale Tumori, Via G. Venezian 1, Milan, 20133, Italy.

Davide Battistessa (D)

Department of Experimental Oncology, Molecular Epigenomics Unit, Fondazione IRCCS Istituto Nazionale Tumori, Via G. Venezian 1, Milan, 20133, Italy.

Marcello Guaglio (M)

Peritoneal Surface Malignancies Unit, Colorectal Surgery, Fondazione IRCCS Istituto Nazionale Tumori, Via G. Venezian 1, Milan, 20133, Italy.

Susanna Zanutto (S)

Department of Experimental Oncology, Molecular Epigenomics Unit, Fondazione IRCCS Istituto Nazionale Tumori, Via G. Venezian 1, Milan, 20133, Italy.

Oscar Illescas (O)

Department of Experimental Oncology, Molecular Epigenomics Unit, Fondazione IRCCS Istituto Nazionale Tumori, Via G. Venezian 1, Milan, 20133, Italy.

Ewelina J Lorenc (EJ)

Department of Experimental Oncology, Molecular Epigenomics Unit, Fondazione IRCCS Istituto Nazionale Tumori, Via G. Venezian 1, Milan, 20133, Italy.

Federica Pisati (F)

Cogentech Ltd. Benefit Corporation With a Sole Shareholder, Via Adamello 16, Milan, 20139, Italy.

Shigeki Kusamura (S)

Peritoneal Surface Malignancies Unit, Colorectal Surgery, Fondazione IRCCS Istituto Nazionale Tumori, Via G. Venezian 1, Milan, 20133, Italy.

Laura Cattaneo (L)

Pathology and Laboratory Medicine Department, Fondazione IRCCS Istituto Nazionale Dei Tumori Di Milano, Via G. Venezian 1, Milan, 20133, Italy.

Giovanna Sabella (G)

Pathology and Laboratory Medicine Department, Fondazione IRCCS Istituto Nazionale Dei Tumori Di Milano, Via G. Venezian 1, Milan, 20133, Italy.

Massimo Milione (M)

Pathology and Laboratory Medicine Department, Fondazione IRCCS Istituto Nazionale Dei Tumori Di Milano, Via G. Venezian 1, Milan, 20133, Italy.

Alessia Perbellini (A)

Department of Experimental Oncology, Molecular Epigenomics Unit, Fondazione IRCCS Istituto Nazionale Tumori, Via G. Venezian 1, Milan, 20133, Italy.

Sara Noci (S)

Department of Experimental Oncology, Molecular Epigenomics Unit, Fondazione IRCCS Istituto Nazionale Tumori, Via G. Venezian 1, Milan, 20133, Italy.

Cinzia Paolino (C)

Department of Experimental Oncology, Molecular Epigenomics Unit, Fondazione IRCCS Istituto Nazionale Tumori, Via G. Venezian 1, Milan, 20133, Italy.

Elisabetta Khun (E)

Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, 20122, Italy.
Pathology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, 20122, Italy.

Margherita Galassi (M)

Centrale Produzione Farmaci, Hospital Pharmacy, Fondazione IRCCS Istituto Nazionale Dei Tumori Di Milano, Via G. Venezian 1, Milan, 20133, Italy.

Tommaso Cavalleri (T)

Peritoneal Surface Malignancies Unit, Colorectal Surgery, Fondazione IRCCS Istituto Nazionale Tumori, Via G. Venezian 1, Milan, 20133, Italy.

Marcello Deraco (M)

Peritoneal Surface Malignancies Unit, Colorectal Surgery, Fondazione IRCCS Istituto Nazionale Tumori, Via G. Venezian 1, Milan, 20133, Italy. marcello.deraco@istitutotumori.mi.it.

Manuela Gariboldi (M)

Department of Experimental Oncology, Molecular Epigenomics Unit, Fondazione IRCCS Istituto Nazionale Tumori, Via G. Venezian 1, Milan, 20133, Italy.

Dario Baratti (D)

Peritoneal Surface Malignancies Unit, Colorectal Surgery, Fondazione IRCCS Istituto Nazionale Tumori, Via G. Venezian 1, Milan, 20133, Italy.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH