Hyaluronan in mesenchymal stromal cell lineage differentiation from human pluripotent stem cells: application in serum free culture.
Cell therapy
Human pluripotent stem cells
Hyaluronan
Mesenchymal stromal cells
Pluripotent
Journal
Stem cell research & therapy
ISSN: 1757-6512
Titre abrégé: Stem Cell Res Ther
Pays: England
ID NLM: 101527581
Informations de publication
Date de publication:
03 May 2024
03 May 2024
Historique:
received:
16
10
2023
accepted:
05
04
2024
medline:
4
5
2024
pubmed:
4
5
2024
entrez:
3
5
2024
Statut:
epublish
Résumé
Hyaluronan (HA) is an extracellular glycosaminoglycan polysaccharide with widespread roles throughout development and in healthy and neoplastic tissues. In pluripotent stem cell culture it can support both stem cell renewal and differentiation. However, responses to HA in culture are influenced by interaction with a range of cognate factors and receptors including components of blood serum supplements, which alter results. These may contribute to variation in cell batch production yield and phenotype as well as heighten the risks of adventitious pathogen transmission in the course of cell processing for therapeutic applications. MAIN: Here we characterise differentiation of a human embryo/pluripotent stem cell derived Mesenchymal Stromal Cell (hESC/PSC-MSC)-like cell population by culture on a planar surface coated with HA in serum-free media qualified for cell production for therapy. Resulting cells met minimum criteria of the International Society for Cellular Therapy for identification as MSC by expression of. CD90, CD73, CD105, and lack of expression for CD34, CD45, CD14 and HLA-II. They were positive for other MSC associated markers (i.e.CD166, CD56, CD44, HLA 1-A) whilst negative for others (e.g. CD271, CD71, CD146). In vitro co-culture assessment of MSC associated functionality confirmed support of growth of hematopoietic progenitors and inhibition of mitogen activated proliferation of lymphocytes from umbilical cord and adult peripheral blood mononuclear cells, respectively. Co-culture with immortalized THP-1 monocyte derived macrophages (Mɸ) concurrently stimulated with lipopolysaccharide as a pro-inflammatory stimulus, resulted in a dose dependent increase in pro-inflammatory IL6 but negligible effect on TNFα. To further investigate these functionalities, a bulk cell RNA sequence comparison with adult human bone marrow derived MSC and hESC substantiated a distinctive genetic signature more proximate to the former. Cultivation of human pluripotent stem cells on a planar substrate of HA in serum-free culture media systems is sufficient to yield a distinctive developmental mesenchymal stromal cell lineage with potential to modify the function of haematopoietic lineages in therapeutic applications.
Sections du résumé
BACKGROUND
BACKGROUND
Hyaluronan (HA) is an extracellular glycosaminoglycan polysaccharide with widespread roles throughout development and in healthy and neoplastic tissues. In pluripotent stem cell culture it can support both stem cell renewal and differentiation. However, responses to HA in culture are influenced by interaction with a range of cognate factors and receptors including components of blood serum supplements, which alter results. These may contribute to variation in cell batch production yield and phenotype as well as heighten the risks of adventitious pathogen transmission in the course of cell processing for therapeutic applications. MAIN: Here we characterise differentiation of a human embryo/pluripotent stem cell derived Mesenchymal Stromal Cell (hESC/PSC-MSC)-like cell population by culture on a planar surface coated with HA in serum-free media qualified for cell production for therapy. Resulting cells met minimum criteria of the International Society for Cellular Therapy for identification as MSC by expression of. CD90, CD73, CD105, and lack of expression for CD34, CD45, CD14 and HLA-II. They were positive for other MSC associated markers (i.e.CD166, CD56, CD44, HLA 1-A) whilst negative for others (e.g. CD271, CD71, CD146). In vitro co-culture assessment of MSC associated functionality confirmed support of growth of hematopoietic progenitors and inhibition of mitogen activated proliferation of lymphocytes from umbilical cord and adult peripheral blood mononuclear cells, respectively. Co-culture with immortalized THP-1 monocyte derived macrophages (Mɸ) concurrently stimulated with lipopolysaccharide as a pro-inflammatory stimulus, resulted in a dose dependent increase in pro-inflammatory IL6 but negligible effect on TNFα. To further investigate these functionalities, a bulk cell RNA sequence comparison with adult human bone marrow derived MSC and hESC substantiated a distinctive genetic signature more proximate to the former.
CONCLUSION
CONCLUSIONS
Cultivation of human pluripotent stem cells on a planar substrate of HA in serum-free culture media systems is sufficient to yield a distinctive developmental mesenchymal stromal cell lineage with potential to modify the function of haematopoietic lineages in therapeutic applications.
Identifiants
pubmed: 38702837
doi: 10.1186/s13287-024-03719-y
pii: 10.1186/s13287-024-03719-y
doi:
Substances chimiques
Hyaluronic Acid
9004-61-9
Culture Media, Serum-Free
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
130Subventions
Organisme : Innovate UK
ID : 85447
Informations de copyright
© 2024. The Author(s).
Références
Toole B. Hyaluronan: from extracellular glue to pericellular cue. Nat Rev Cancer. 2004;4:528–39. https://doi.org/10.1038/nrc1391 .
doi: 10.1038/nrc1391
pubmed: 15229478
Cowman MK, Lee HG, Schwertfeger KL, McCarthy JB, Turley EA. The content and size of hyaluronan in biological fluids and tissues. Front Immunol. 2015;2(6):261. https://doi.org/10.3389/fimmu.2015.00261 .
doi: 10.3389/fimmu.2015.00261
Solis MA, Chen YH, Wong TY, Bittencourt VZ, Lin YC, Huang LL. Hyaluronan regulates cell behavior: a potential niche matrix for stem cells. Biochem Res Int. 2012;2012:346972. https://doi.org/10.1155/2012/346972 .
doi: 10.1155/2012/346972
pubmed: 22400115
pmcid: 3287012
Bonafè F, Govoni M, Giordano E, Caldarera CM, Guarnieri C, Muscari C. Hyaluronan and cardiac regeneration. J Biomed Sci. 2014;30(21):100. https://doi.org/10.1186/s12929-014-0100-4 .
doi: 10.1186/s12929-014-0100-4
Kim IL, Mauck RL, Burdick JA. Hydrogel design for cartilage tissue engineering: a case study with hyaluronic acid. Biomaterials. 2011;32(34):8771–82. https://doi.org/10.1016/j.biomaterials.2011.08.073 .
doi: 10.1016/j.biomaterials.2011.08.073
pubmed: 21903262
pmcid: 3183132
Pardue EL, Ibrahim S, Ramamurthi A. Role of hyaluronan in angiogenesis and its utility to angiogenic tissue engineering. Organogenesis. 2008;4(4):203–14. https://doi.org/10.4161/org.4.4.6926 .
doi: 10.4161/org.4.4.6926
pubmed: 19337400
pmcid: 2634325
Su W, Matsumoto S, Sorg B, Sherman LS. Distinct roles for hyaluronan in neural stem cell niches and perineuronal nets. Matrix Biol. 2019;78–79:272–83. https://doi.org/10.1016/j.matbio.2018.01.022 .
doi: 10.1016/j.matbio.2018.01.022
pubmed: 29408010
Zöller M. CD44, hyaluronan, the hematopoietic stem cell, and leukemia-initiating cells. Front Immunol. 2015. https://doi.org/10.3389/fimmu.2015.00235 .
doi: 10.3389/fimmu.2015.00235
pubmed: 26074915
pmcid: 4443741
Zhai P, Peng X, Li B, Liu Y, Sun H, Li X. The application of hyaluronic acid in bone regeneration. Int J Biol Macromol. 2020;151:1224–39. https://doi.org/10.1016/j.ijbiomac.2019.10.169 .
doi: 10.1016/j.ijbiomac.2019.10.169
pubmed: 31751713
Peters A, Sherman LS. Diverse roles for hyaluronan and hyaluronan receptors in the developing and adult nervous system. Int J Mol Sci. 2020;21(17):5988. https://doi.org/10.3390/ijms21175988 .
doi: 10.3390/ijms21175988
pubmed: 32825309
pmcid: 7504301
Stenson WF, Ciorba MA. Nonmicrobial activation of TLRs controls intestinal growth, wound repair, and radioprotection. Front Immunol. 2021;21(11):617510. https://doi.org/10.3389/fimmu.2020.617510 .
doi: 10.3389/fimmu.2020.617510
Brown JJ, Papaioannou VE. Ontogeny of hyaluronan secretion during early mouse development. Development. 1993;117:483–92.
doi: 10.1242/dev.117.2.483
pubmed: 8330520
Xu C, Inokuma MS, Denham J, Golds K, Kundu P, Gold JD, Carpenter MK. Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol. 2001;19(10):971–4. https://doi.org/10.1038/nbt1001-971 .
doi: 10.1038/nbt1001-971
pubmed: 11581665
Gerecht S, Burdick JA, Ferreira LS, Townsend SA, Langer R, Vunjak-Novakovic G. Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells. Proc Natl Acad Sci U S A. 2007;104(27):11298–303. https://doi.org/10.1073/pnas.0703723104 .
doi: 10.1073/pnas.0703723104
pubmed: 17581871
pmcid: 2040893
Xu K, Narayanan K, Lee F, Bae KH, Gao S, Kurisawa M. Enzyme-mediated hyaluronic acid-tyramine hydrogels for the propagation of human embryonic stem cells in 3D. Acta Biomater. 2015;24:159–71. https://doi.org/10.1016/j.actbio.2015.06.026 .
doi: 10.1016/j.actbio.2015.06.026
pubmed: 26112373
Miura T, Yuasa N, Ota H, Habu M, Kawano M, Nakayama F, Nishihara S. Highly sulfated hyaluronic acid maintains human induced pluripotent stem cells under feeder-free and bFGF-free conditions. Biochem Biophys Res Commun. 2019;518(3):506–12. https://doi.org/10.1016/j.bbrc.2019.08.082 .
doi: 10.1016/j.bbrc.2019.08.082
pubmed: 31439376
De Sousa PA. Culture of mammalian pluripotent stem cells in the presence of hyaluronan induces differentiation into multi-lineage progenitor cells. United States Patent No. US 8,110,400 B2. 2012.
Velugotla S, Pells S, Mjoseng H, Duffy CR, Smith S, De Sousa PA, Pethig R. Dielectrophoresis based discrimination of human embryonic stem cells from differentiating derivatives. Biomicrofluidics. 2012;6:044113. https://doi.org/10.1063/1.4771316 .
doi: 10.1063/1.4771316
pubmed: 24339846
pmcid: 3555604
Harkness L, Mahmood A, Ditzel N, Abdallah BM, Nygaard JV, Kassem M. Selective isolation and differentiation of a stromal population of human embryonic stem cells with osteogenic potential. Bone. 2011;48(2):231–41. https://doi.org/10.1016/j.bone.2010.09.023 .
doi: 10.1016/j.bone.2010.09.023
pubmed: 20869473
De Sousa PA, Ritchie D, Green A, Chandran S, Knight R, Head MW. Renewed assessment of the risk of emergent advanced cell therapies to transmit neuroproteinopathies. Acta Neuropathol. 2019;137(3):363–77. https://doi.org/10.1007/s00401-018-1941-9 .
doi: 10.1007/s00401-018-1941-9
pubmed: 30483944
De Sousa PA, Tye BJ, Bruce K, Dand P, Russell G, Collins DM, Greenshields A, McDonald K, Bradburn H, Canham MA, Kunath T, Downie JM, Bateman M, Courtney A. Derivation of the clinical grade human embryonic stem cell line RCe013-A (RC-9). Stem Cell Res. 2016;17(1):36–41. https://doi.org/10.1016/j.scr.2016.04.020 .
doi: 10.1016/j.scr.2016.04.020
pubmed: 27558601
De Sousa PA, Downie JM, Tye BJ, Bruce K, Dand P, Dhanjal S, Serhal P, Harper J, Turner M, Bateman M. Development and production of good manufacturing practice grade human embryonic stem cell lines as source material for clinical application. Stem Cell Res. 2016;17(2):379–90. https://doi.org/10.1016/j.scr.2016.08.011 .
doi: 10.1016/j.scr.2016.08.011
pubmed: 27639108
Corradetti B, Taraballi F, Martinez JO, et al. Hyaluronic acid coatings as a simple and efficient approach to improve MSC homing toward the site of inflammation. Sci Rep. 2017;7:7991. https://doi.org/10.1038/s41598-017-08687-3 .
doi: 10.1038/s41598-017-08687-3
pubmed: 28801676
pmcid: 5554184
Daigneault M, Preston JA, Marriott HM, Whyte MKB, Dockrell DH. The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages. PLoS ONE. 2010;5(1):e8668. https://doi.org/10.1371/journal.pone.0008668 .
doi: 10.1371/journal.pone.0008668
pubmed: 20084270
pmcid: 2800192
Sutherland DR, Anderson L, Keeney M, Nayar R, Chin-Yee I. The ISHAGE guidelines for CD34+ cell determination by flow cytometry. International Society of Hematotherapy and Graft Engineering. J Hematother. 1996;5(3):213–26. https://doi.org/10.1089/scd.1.1996.5.213 .
doi: 10.1089/scd.1.1996.5.213
pubmed: 8817388
Ge SX, Jung D, Yao R. ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics. 2020;36(8):2628–9. https://doi.org/10.1093/bioinformatics/btz931 .
doi: 10.1093/bioinformatics/btz931
pubmed: 31882993
Bianco P, Gehron-Robey P, Simmons PJ. Mesenchymal stem cells: revisiting history, concepts and assays. Cell Stem Cell. 2008;2(4):313–9. https://doi.org/10.1016/j.stem.2008.03.002 .
doi: 10.1016/j.stem.2008.03.002
pubmed: 18397751
pmcid: 2613570
Robinson SN, Simmons PJ, Yang H, Alousi AM, Marcos de Lima J, Shpall EJ. Mesenchymal stem cells in ex vivo cord blood expansion. Best Pract Res Clin Haematol. 2011;24(1):83–92. https://doi.org/10.1016/j.beha.2010.11.001 .
doi: 10.1016/j.beha.2010.11.001
pubmed: 21396596
pmcid: 3805362
Rasmusson I, Ringdén O, Sundberg B, Le Blanc K. Mesenchymal stem cells inhibit lymphocyte proliferation by mitogens and alloantigens by different mechanisms. Exp Cell Res. 2005;305(1):33–41. https://doi.org/10.1016/j.yexcr.2004.12.013 .
doi: 10.1016/j.yexcr.2004.12.013
pubmed: 15777785
Pineault N, Abu-Khader A. Advances in umbilical cord blood stem cell expansion and clinical translation. Exp Hematol. 2015;43:498–513.
doi: 10.1016/j.exphem.2015.04.011
pubmed: 25970610
Haddad R, Saldanha-Araujo F. Mechanisms of T-cell immunosuppression by mesenchymal stromal cells: What do we know so far? 2014. https://doi.org/10.1155/2014/216806 ,
Lu D, Xu Y, Zhang Q. Mesenchymal stem cell-macrophage crosstalk and maintenance of inflammatory microenvironment homeostasis. Front Cell Dev Biol. 2021;9:681171. https://doi.org/10.3389/fcell.2021.681171 .
doi: 10.3389/fcell.2021.681171
pubmed: 34249933
pmcid: 8267370
von Mering C, Jensen LJ, Snel B, Hooper SD, Krupp M, Foglierini M, Jouffre N, Huynen MA, Bork P. STRING: known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Res. 2005;33(Database issue):D433–7. https://doi.org/10.1093/nar/gki005 .
doi: 10.1093/nar/gki005
Liu J, Gao J, Liang Z, et al. Mesenchymal stem cells and their microenvironment. Stem Cell Res Ther. 2022;13:429. https://doi.org/10.1186/s13287-022-02985-y .
doi: 10.1186/s13287-022-02985-y
pubmed: 35987711
pmcid: 9391632
Kim J, Hematti P. Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages. Exp Hematol. 2009;37(12):1445–53. https://doi.org/10.1016/j.exphem.2009.09.004 .
doi: 10.1016/j.exphem.2009.09.004
pubmed: 19772890
pmcid: 2783735
West MD, Nasonkin I, Larocca D, Chapman KB, Binette F, Sternberg H. Adult versus pluripotent stem cell-derived mesenchymal stem cells: the need for more precise nomenclature. Curr Stem Cell Rep. 2016;2(3):299–303. https://doi.org/10.1007/s40778-016-0060-6 .
doi: 10.1007/s40778-016-0060-6
pubmed: 27547711
pmcid: 4972883
Hassel JR, Newsom DA, Krachmer JH, Rodrigues MM. Macular corneal dystrophy: failure to synthesize a mature keratan sulfate proteoglycan. Proc Natl Acad Sci USA. 1980;77(6):3705–9.
doi: 10.1073/pnas.77.6.3705
Dennis JE, Caplan AI. Analysis of the developmental potential of conditionally immortal marrow derived mesenchymal progenitor cells isolated from the H-2Kb-tsA58 transgenic mouse. Connect Tissue Res. 1996;35(1–4):93–9. https://doi.org/10.3109/03008209609029179 .
doi: 10.3109/03008209609029179
pubmed: 9084647
Galmiche MC, Koteliansky VE, Brière J, Hervé P, Charbord P. Stromal cells from human long-term marrow cultures are mesenchymal cells that differentiate following a vascular smooth muscle differentiation pathway. Blood. 1993;82(1):66–76.
doi: 10.1182/blood.V82.1.66.bloodjournal82166
pubmed: 8324235
Jiang B, Yan L, Wang X, Li E, Murphy K, Vaccaro K, Li Y, Xu RH. Concise review: mesenchymal stem cells derived from human pluripotent cells, an unlimited and quality-controllable source for therapeutic applications. Stem Cells. 2019;37(5):572–81. https://doi.org/10.1002/stem.2964 .
doi: 10.1002/stem.2964
pubmed: 30561809
Barberi T, Willis LM, Socci ND, Studer L. Derivation of multipotent mesenchymal precursors from human embryonic stem cells. PLoS Med. 2005;2(6):e161. https://doi.org/10.1371/journal.pmed.0020161 .
doi: 10.1371/journal.pmed.0020161
pubmed: 15971941
pmcid: 1160574
Mahmood A, Harkness L, Schrøder HD, Abdallah BM, Kassem M. Enhanced differentiation of human embryonic stem cells to mesenchymal progenitors by inhibition of TGF-beta/activin/nodal signaling using SB-431542. J Bone Miner Res. 2010;25(6):1216–33. https://doi.org/10.1002/jbmr.34 .
doi: 10.1002/jbmr.34
pubmed: 20200949
Boyd NL, Robbins KR, Dhara SK, West FD, Stice SL. Human embryonic stem cell-derived mesoderm-like epithelium transitions to mesenchymal progenitor cells. Tissue Eng Part A. 2009;15(8):1897–907. https://doi.org/10.1089/ten.tea.2008.0351 .
doi: 10.1089/ten.tea.2008.0351
pubmed: 19196144
pmcid: 2792108
Karlsson C, Emanuelsson K, Wessberg F, Kajic K, Axell MZ, Eriksson PS, Lindahl A, Hyllner J, Strehl R. Human embryonic stem cell-derived mesenchymal progenitors–potential in regenerative medicine. Stem Cell Res. 2009;3(1):39–50. https://doi.org/10.1016/j.scr.2009.05.002 .
doi: 10.1016/j.scr.2009.05.002
pubmed: 19515621
Lian Q, Lye E, Suan Yeo K, Khia Way Tan E, Salto-Tellez M, Liu TM, Palanisamy N, El Oakley RM, Lee EH, Lim B, Lim SK. Derivation of clinically compliant MSCs from CD105+, CD24- differentiated human ESCs. Stem Cells. 2007;25(2):425–36. https://doi.org/10.1634/stemcells.2006-0420 .
doi: 10.1634/stemcells.2006-0420
pubmed: 17053208
Olivier EN, Rybicki AC, Bouhassira EE. Differentiation of human embryonic stem cells into bipotent mesenchymal stem cells. Stem Cells. 2006;24(8):1914–22. https://doi.org/10.1634/stemcells.2005-0648 .
doi: 10.1634/stemcells.2005-0648
pubmed: 16644919
Trivedi P, Hematti P. Derivation and immunological characterization of mesenchymal stromal cells from human embryonic stem cells. Exp Hematol. 2008;36(3):350–9. https://doi.org/10.1016/j.exphem.2007.10.007 .
doi: 10.1016/j.exphem.2007.10.007
pubmed: 18179856
pmcid: 2315792
Sánchez L, Gutierrez-Aranda I, Ligero G, Rubio R, Muñoz-López M, García-Pérez JL, Ramos V, Real PJ, Bueno C, Rodríguez R, Delgado M, Menendez P. Enrichment of human ESC-derived multipotent mesenchymal stem cells with immunosuppressive and anti-inflammatory properties capable to protect against experimental inflammatory bowel disease. Stem Cells. 2011;29(2):251–62. https://doi.org/10.1002/stem.569 .
doi: 10.1002/stem.569
pubmed: 21732483
Zhao Q, Gregory CA, Lee RH, Lie F. MSCs derived from iPSC with a modified protocol are tumor-tropic but have much less potential to promote tumors than bone marrow MSC. PNAS. 2015;112(2):530–5.
doi: 10.1073/pnas.1423008112
pubmed: 25548183
Xi H, Fujiwara W, Gonzalez K, Jan M, Liebscher S, Van Handel B, Schenke-Layland K, Pyle AD. In vivo human somitogenesis guides somite development from hPSCs. Cell Rep. 2017;18(6):1573–85. https://doi.org/10.1016/j.celrep.2017.01.040 .
doi: 10.1016/j.celrep.2017.01.040
pubmed: 28178531
pmcid: 5327729
Lambshead JW, Meagher L, O’Brian C, Laslett AL. Defining synthetic surfaces for human pluripotent stem cell culture. Cell Regener. 2013;2(7):1–15. https://doi.org/10.1186/2045-9769-2-7 .
doi: 10.1186/2045-9769-2-7
Yan Y, Zuo X, Wei D, Review C. Emerging role of CD44 in cancer stem cells: a promising biomarker and therapeutic target. Stem Cells Transl Med. 2015;4(9):1033–43. https://doi.org/10.5966/sctm.2015-0048 .
doi: 10.5966/sctm.2015-0048
pubmed: 26136504
pmcid: 4542874
Álvarez-Viejo M, Menéndez-Menéndez Y, Otero-Hernández J. CD271 as a marker to identify mesenchymal stem cells from diverse sources before culture. World J Stem Cells. 2015;7(2):470–6. https://doi.org/10.4252/wjsc.v7.i2.470.PMID:25815130 .
doi: 10.4252/wjsc.v7.i2.470.PMID:25815130
pubmed: 25815130
pmcid: 4369502
Smith RJP, Faroni A, Barrow JR, et al. The angiogenic potential of CD271+ human adipose tissue-derived mesenchymal stem cells. Stem Cell Res Ther. 2021;12:160. https://doi.org/10.1186/s13287-021-02177-0 .
doi: 10.1186/s13287-021-02177-0
pubmed: 33653407
pmcid: 7927269
Moravcikova E, Meyer EM, Corselli M, Donnenberg VS, Donnenberg AD. Proteomic profiling of ntative unpassaged and culture expanded mesenchymal stromal cells (MSC). Cytometry A. 2018;93A:894–904.
doi: 10.1002/cyto.a.23574
Espagnolle N, Guilloton F, Deschaseaux F, Gadelorge M, Sensébé L, Bourin P. CD146 expression on mesenchymal stem cells is associated with their vascular smooth muscle commitment. J Cell Mol Med. 2014;18(1):104–14. https://doi.org/10.1111/jcmm.12168 .
doi: 10.1111/jcmm.12168
pubmed: 24188055
Huynh H, Zheng J, Umikawa M, Zhang C, Silvany R, Iizuka S, Holzenberger M, Zhang W, Zhang CC. IGF binding protein 2 supports the survival and cycling of hematopoietic stem cells. Blood. 2011;118(12):3236–43. https://doi.org/10.1182/blood-2011-01-331876 .
doi: 10.1182/blood-2011-01-331876
pubmed: 21821709
pmcid: 3179393
Gieseke F, Böhringer J, Bussolari R, Dominici M, Handgretinger R, Müller I. Human multipotent mesenchymal stromal cells use galectin-1 to inhibit immune effector cells. Blood. 2010;116(19):3770–9. https://doi.org/10.1182/blood-2010-02-270777 .
doi: 10.1182/blood-2010-02-270777
pubmed: 20644118
Ip JE, Wu Y, Huang J, Zhang L, Pratt RE, Dzau VJ. Mesenchymal stem cells use integrin β1 not CXC chemokine receptor 4 for myocardial migration and engraftment. Mol Biol Cell. 2007;18(8):2873–82.
doi: 10.1091/mbc.e07-02-0166
pubmed: 17507648
pmcid: 1949353
Zwolanek D, Flicker M, Kirstätter E, Zaucke F, van Osch GJ, Erben RG. β1 integrins mediate attachment of mesenchymal stem cells to cartilage lesions. Biores Open Access. 2015;4(1):39–53. https://doi.org/10.1089/biores.2014.0055 .
doi: 10.1089/biores.2014.0055
pubmed: 26309781
pmcid: 4497673
Takenaka-Ninagawa N, Kim J, Zhao M, et al. Collagen-VI supplementation by cell transplantation improves muscle regeneration in Ullrich congenital muscular dystrophy model mice. Stem Cell Res Ther. 2021;12:446. https://doi.org/10.1186/s13287-021-02514-3 .
doi: 10.1186/s13287-021-02514-3
pubmed: 34372931
pmcid: 8351132
Sapudom J, Mohamed WKE, Garcia-Sabaté A, Alatoom A, Karaman S, Mahtani N, Teo JCM. Collagen fibril density modulates macrophage activation and cellular functions during tissue repair. Bioengineering. 2020;7(2):33. https://doi.org/10.3390/bioengineering7020033 .
doi: 10.3390/bioengineering7020033
pubmed: 32244521
pmcid: 7356036
Wang J, Pan W. The biological role of the Collagen alpha-3 (VI) chain and its cleaved C5 domain fragment endotropin in cancer. Onco Targets Ther. 2020;13:5779–93.
doi: 10.2147/OTT.S256654
pubmed: 32606789
pmcid: 7319802
Hubert KA, Wellik DM. Hox genes in development and beyond. Development. 2023;150(1):dev192476. https://doi.org/10.1242/dev.192476 .
doi: 10.1242/dev.192476
pubmed: 36645372
pmcid: 10216783
Shen B, Wei A, Whittaker S, Williams LA, Tao H, Ma DD, Diwan AD. The role of BMP-7 in chondrogenic and osteogenic differentiation of human bone marrow multipotent mesenchymal stromal cells in vitro. J Cell Biochem. 2010;109(2):406–16. https://doi.org/10.1002/jcb.22412 .
doi: 10.1002/jcb.22412
pubmed: 19950204
Yan X, Zhou Z, Guo L, Zeng Z, Guo Z, Shao Q, Xu W. BMP7-overexpressing bone marrow-derived mesenchymal stem cells (BMSCs) are more effective than wild-type BMSCs in healing fractures. Exp Ther Med. 2018;16(2):1381–8. https://doi.org/10.3892/etm.2018.6339 .
doi: 10.3892/etm.2018.6339
pubmed: 30112066
pmcid: 6090465
Caplan AI. Mesenchymal stem cells. J Orthopaedic Res. 1991;9(5):641–50. https://doi.org/10.1002/jor.1100090504 .
doi: 10.1002/jor.1100090504
Pittenger MF, Discher DE, Péault BM, Phinney DG, Hare JM, Caplan AI. Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regen Med. 2019;4:22. https://doi.org/10.1038/s41536-019-0083-6 .
doi: 10.1038/s41536-019-0083-6
pubmed: 31815001
pmcid: 6889290
Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, Norotte C, Teng PN, Traas J, Schugar R, Deasy BM, Badylak S, Buhring HJ, Giacobino JP, Lazzari L, Huard J, Péault B. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell. 2008;3(3):301–13. https://doi.org/10.1016/j.stem.2008.07.003 .
doi: 10.1016/j.stem.2008.07.003
pubmed: 18786417
Caplan AI. New MSC:MSCs as pericytes are sentinels and gatekeepers. J Orthop Res. 2017;35Ç:1151–9. https://doi.org/10.1161/CIRCULATIONAHA.111.048264 .
doi: 10.1161/CIRCULATIONAHA.111.048264
Dar A, Domev H, Bem-YOsef O, Tzukerman M, et al. Multipotent vasculogenic pericytes from human pluripotent stem cells promote recovery of murine ischemic limb. Circulation. 2012;125:87–99. https://doi.org/10.1161/CIRCULATIONAHA.111.048264 .
doi: 10.1161/CIRCULATIONAHA.111.048264
pubmed: 22095829
Sarugaser R, Hanoun L, Keating A, Stanford WL, Davies JE. Human mesenchymal stem cells self-renew and differentiate according to a deterministic hierarchy. PLoS ONE. 2009;4(8):e6498. https://doi.org/10.1371/journal.pone.0006498 .
doi: 10.1371/journal.pone.0006498
pubmed: 19652709
pmcid: 2714967
Gao Y, Chi Y, Chen Y, et al. Multi-omics analysis of human mesenchymal stem cells shows cell aging that alters immunomodulatory activity through the downregulation of PD-L1. Nat Commun. 2023;14:4373. https://doi.org/10.1038/s41467-023-39958-5 .
doi: 10.1038/s41467-023-39958-5
pubmed: 37474525
pmcid: 10359415