Hyaluronan in mesenchymal stromal cell lineage differentiation from human pluripotent stem cells: application in serum free culture.


Journal

Stem cell research & therapy
ISSN: 1757-6512
Titre abrégé: Stem Cell Res Ther
Pays: England
ID NLM: 101527581

Informations de publication

Date de publication:
03 May 2024
Historique:
received: 16 10 2023
accepted: 05 04 2024
medline: 4 5 2024
pubmed: 4 5 2024
entrez: 3 5 2024
Statut: epublish

Résumé

Hyaluronan (HA) is an extracellular glycosaminoglycan polysaccharide with widespread roles throughout development and in healthy and neoplastic tissues. In pluripotent stem cell culture it can support both stem cell renewal and differentiation. However, responses to HA in culture are influenced by interaction with a range of cognate factors and receptors including components of blood serum supplements, which alter results. These may contribute to variation in cell batch production yield and phenotype as well as heighten the risks of adventitious pathogen transmission in the course of cell processing for therapeutic applications. MAIN: Here we characterise differentiation of a human embryo/pluripotent stem cell derived Mesenchymal Stromal Cell (hESC/PSC-MSC)-like cell population by culture on a planar surface coated with HA in serum-free media qualified for cell production for therapy. Resulting cells met minimum criteria of the International Society for Cellular Therapy for identification as MSC by expression of. CD90, CD73, CD105, and lack of expression for CD34, CD45, CD14 and HLA-II. They were positive for other MSC associated markers (i.e.CD166, CD56, CD44, HLA 1-A) whilst negative for others (e.g. CD271, CD71, CD146). In vitro co-culture assessment of MSC associated functionality confirmed support of growth of hematopoietic progenitors and inhibition of mitogen activated proliferation of lymphocytes from umbilical cord and adult peripheral blood mononuclear cells, respectively. Co-culture with immortalized THP-1 monocyte derived macrophages (Mɸ) concurrently stimulated with lipopolysaccharide as a pro-inflammatory stimulus, resulted in a dose dependent increase in pro-inflammatory IL6 but negligible effect on TNFα. To further investigate these functionalities, a bulk cell RNA sequence comparison with adult human bone marrow derived MSC and hESC substantiated a distinctive genetic signature more proximate to the former. Cultivation of human pluripotent stem cells on a planar substrate of HA in serum-free culture media systems is sufficient to yield a distinctive developmental mesenchymal stromal cell lineage with potential to modify the function of haematopoietic lineages in therapeutic applications.

Sections du résumé

BACKGROUND BACKGROUND
Hyaluronan (HA) is an extracellular glycosaminoglycan polysaccharide with widespread roles throughout development and in healthy and neoplastic tissues. In pluripotent stem cell culture it can support both stem cell renewal and differentiation. However, responses to HA in culture are influenced by interaction with a range of cognate factors and receptors including components of blood serum supplements, which alter results. These may contribute to variation in cell batch production yield and phenotype as well as heighten the risks of adventitious pathogen transmission in the course of cell processing for therapeutic applications. MAIN: Here we characterise differentiation of a human embryo/pluripotent stem cell derived Mesenchymal Stromal Cell (hESC/PSC-MSC)-like cell population by culture on a planar surface coated with HA in serum-free media qualified for cell production for therapy. Resulting cells met minimum criteria of the International Society for Cellular Therapy for identification as MSC by expression of. CD90, CD73, CD105, and lack of expression for CD34, CD45, CD14 and HLA-II. They were positive for other MSC associated markers (i.e.CD166, CD56, CD44, HLA 1-A) whilst negative for others (e.g. CD271, CD71, CD146). In vitro co-culture assessment of MSC associated functionality confirmed support of growth of hematopoietic progenitors and inhibition of mitogen activated proliferation of lymphocytes from umbilical cord and adult peripheral blood mononuclear cells, respectively. Co-culture with immortalized THP-1 monocyte derived macrophages (Mɸ) concurrently stimulated with lipopolysaccharide as a pro-inflammatory stimulus, resulted in a dose dependent increase in pro-inflammatory IL6 but negligible effect on TNFα. To further investigate these functionalities, a bulk cell RNA sequence comparison with adult human bone marrow derived MSC and hESC substantiated a distinctive genetic signature more proximate to the former.
CONCLUSION CONCLUSIONS
Cultivation of human pluripotent stem cells on a planar substrate of HA in serum-free culture media systems is sufficient to yield a distinctive developmental mesenchymal stromal cell lineage with potential to modify the function of haematopoietic lineages in therapeutic applications.

Identifiants

pubmed: 38702837
doi: 10.1186/s13287-024-03719-y
pii: 10.1186/s13287-024-03719-y
doi:

Substances chimiques

Hyaluronic Acid 9004-61-9
Culture Media, Serum-Free 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

130

Subventions

Organisme : Innovate UK
ID : 85447

Informations de copyright

© 2024. The Author(s).

Références

Toole B. Hyaluronan: from extracellular glue to pericellular cue. Nat Rev Cancer. 2004;4:528–39. https://doi.org/10.1038/nrc1391 .
doi: 10.1038/nrc1391 pubmed: 15229478
Cowman MK, Lee HG, Schwertfeger KL, McCarthy JB, Turley EA. The content and size of hyaluronan in biological fluids and tissues. Front Immunol. 2015;2(6):261. https://doi.org/10.3389/fimmu.2015.00261 .
doi: 10.3389/fimmu.2015.00261
Solis MA, Chen YH, Wong TY, Bittencourt VZ, Lin YC, Huang LL. Hyaluronan regulates cell behavior: a potential niche matrix for stem cells. Biochem Res Int. 2012;2012:346972. https://doi.org/10.1155/2012/346972 .
doi: 10.1155/2012/346972 pubmed: 22400115 pmcid: 3287012
Bonafè F, Govoni M, Giordano E, Caldarera CM, Guarnieri C, Muscari C. Hyaluronan and cardiac regeneration. J Biomed Sci. 2014;30(21):100. https://doi.org/10.1186/s12929-014-0100-4 .
doi: 10.1186/s12929-014-0100-4
Kim IL, Mauck RL, Burdick JA. Hydrogel design for cartilage tissue engineering: a case study with hyaluronic acid. Biomaterials. 2011;32(34):8771–82. https://doi.org/10.1016/j.biomaterials.2011.08.073 .
doi: 10.1016/j.biomaterials.2011.08.073 pubmed: 21903262 pmcid: 3183132
Pardue EL, Ibrahim S, Ramamurthi A. Role of hyaluronan in angiogenesis and its utility to angiogenic tissue engineering. Organogenesis. 2008;4(4):203–14. https://doi.org/10.4161/org.4.4.6926 .
doi: 10.4161/org.4.4.6926 pubmed: 19337400 pmcid: 2634325
Su W, Matsumoto S, Sorg B, Sherman LS. Distinct roles for hyaluronan in neural stem cell niches and perineuronal nets. Matrix Biol. 2019;78–79:272–83. https://doi.org/10.1016/j.matbio.2018.01.022 .
doi: 10.1016/j.matbio.2018.01.022 pubmed: 29408010
Zöller M. CD44, hyaluronan, the hematopoietic stem cell, and leukemia-initiating cells. Front Immunol. 2015. https://doi.org/10.3389/fimmu.2015.00235 .
doi: 10.3389/fimmu.2015.00235 pubmed: 26074915 pmcid: 4443741
Zhai P, Peng X, Li B, Liu Y, Sun H, Li X. The application of hyaluronic acid in bone regeneration. Int J Biol Macromol. 2020;151:1224–39. https://doi.org/10.1016/j.ijbiomac.2019.10.169 .
doi: 10.1016/j.ijbiomac.2019.10.169 pubmed: 31751713
Peters A, Sherman LS. Diverse roles for hyaluronan and hyaluronan receptors in the developing and adult nervous system. Int J Mol Sci. 2020;21(17):5988. https://doi.org/10.3390/ijms21175988 .
doi: 10.3390/ijms21175988 pubmed: 32825309 pmcid: 7504301
Stenson WF, Ciorba MA. Nonmicrobial activation of TLRs controls intestinal growth, wound repair, and radioprotection. Front Immunol. 2021;21(11):617510. https://doi.org/10.3389/fimmu.2020.617510 .
doi: 10.3389/fimmu.2020.617510
Brown JJ, Papaioannou VE. Ontogeny of hyaluronan secretion during early mouse development. Development. 1993;117:483–92.
doi: 10.1242/dev.117.2.483 pubmed: 8330520
Xu C, Inokuma MS, Denham J, Golds K, Kundu P, Gold JD, Carpenter MK. Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol. 2001;19(10):971–4. https://doi.org/10.1038/nbt1001-971 .
doi: 10.1038/nbt1001-971 pubmed: 11581665
Gerecht S, Burdick JA, Ferreira LS, Townsend SA, Langer R, Vunjak-Novakovic G. Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells. Proc Natl Acad Sci U S A. 2007;104(27):11298–303. https://doi.org/10.1073/pnas.0703723104 .
doi: 10.1073/pnas.0703723104 pubmed: 17581871 pmcid: 2040893
Xu K, Narayanan K, Lee F, Bae KH, Gao S, Kurisawa M. Enzyme-mediated hyaluronic acid-tyramine hydrogels for the propagation of human embryonic stem cells in 3D. Acta Biomater. 2015;24:159–71. https://doi.org/10.1016/j.actbio.2015.06.026 .
doi: 10.1016/j.actbio.2015.06.026 pubmed: 26112373
Miura T, Yuasa N, Ota H, Habu M, Kawano M, Nakayama F, Nishihara S. Highly sulfated hyaluronic acid maintains human induced pluripotent stem cells under feeder-free and bFGF-free conditions. Biochem Biophys Res Commun. 2019;518(3):506–12. https://doi.org/10.1016/j.bbrc.2019.08.082 .
doi: 10.1016/j.bbrc.2019.08.082 pubmed: 31439376
De Sousa PA. Culture of mammalian pluripotent stem cells in the presence of hyaluronan induces differentiation into multi-lineage progenitor cells. United States Patent No. US 8,110,400 B2. 2012.
Velugotla S, Pells S, Mjoseng H, Duffy CR, Smith S, De Sousa PA, Pethig R. Dielectrophoresis based discrimination of human embryonic stem cells from differentiating derivatives. Biomicrofluidics. 2012;6:044113. https://doi.org/10.1063/1.4771316 .
doi: 10.1063/1.4771316 pubmed: 24339846 pmcid: 3555604
Harkness L, Mahmood A, Ditzel N, Abdallah BM, Nygaard JV, Kassem M. Selective isolation and differentiation of a stromal population of human embryonic stem cells with osteogenic potential. Bone. 2011;48(2):231–41. https://doi.org/10.1016/j.bone.2010.09.023 .
doi: 10.1016/j.bone.2010.09.023 pubmed: 20869473
De Sousa PA, Ritchie D, Green A, Chandran S, Knight R, Head MW. Renewed assessment of the risk of emergent advanced cell therapies to transmit neuroproteinopathies. Acta Neuropathol. 2019;137(3):363–77. https://doi.org/10.1007/s00401-018-1941-9 .
doi: 10.1007/s00401-018-1941-9 pubmed: 30483944
De Sousa PA, Tye BJ, Bruce K, Dand P, Russell G, Collins DM, Greenshields A, McDonald K, Bradburn H, Canham MA, Kunath T, Downie JM, Bateman M, Courtney A. Derivation of the clinical grade human embryonic stem cell line RCe013-A (RC-9). Stem Cell Res. 2016;17(1):36–41. https://doi.org/10.1016/j.scr.2016.04.020 .
doi: 10.1016/j.scr.2016.04.020 pubmed: 27558601
De Sousa PA, Downie JM, Tye BJ, Bruce K, Dand P, Dhanjal S, Serhal P, Harper J, Turner M, Bateman M. Development and production of good manufacturing practice grade human embryonic stem cell lines as source material for clinical application. Stem Cell Res. 2016;17(2):379–90. https://doi.org/10.1016/j.scr.2016.08.011 .
doi: 10.1016/j.scr.2016.08.011 pubmed: 27639108
Corradetti B, Taraballi F, Martinez JO, et al. Hyaluronic acid coatings as a simple and efficient approach to improve MSC homing toward the site of inflammation. Sci Rep. 2017;7:7991. https://doi.org/10.1038/s41598-017-08687-3 .
doi: 10.1038/s41598-017-08687-3 pubmed: 28801676 pmcid: 5554184
Daigneault M, Preston JA, Marriott HM, Whyte MKB, Dockrell DH. The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages. PLoS ONE. 2010;5(1):e8668. https://doi.org/10.1371/journal.pone.0008668 .
doi: 10.1371/journal.pone.0008668 pubmed: 20084270 pmcid: 2800192
Sutherland DR, Anderson L, Keeney M, Nayar R, Chin-Yee I. The ISHAGE guidelines for CD34+ cell determination by flow cytometry. International Society of Hematotherapy and Graft Engineering. J Hematother. 1996;5(3):213–26. https://doi.org/10.1089/scd.1.1996.5.213 .
doi: 10.1089/scd.1.1996.5.213 pubmed: 8817388
Ge SX, Jung D, Yao R. ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics. 2020;36(8):2628–9. https://doi.org/10.1093/bioinformatics/btz931 .
doi: 10.1093/bioinformatics/btz931 pubmed: 31882993
Bianco P, Gehron-Robey P, Simmons PJ. Mesenchymal stem cells: revisiting history, concepts and assays. Cell Stem Cell. 2008;2(4):313–9. https://doi.org/10.1016/j.stem.2008.03.002 .
doi: 10.1016/j.stem.2008.03.002 pubmed: 18397751 pmcid: 2613570
Robinson SN, Simmons PJ, Yang H, Alousi AM, Marcos de Lima J, Shpall EJ. Mesenchymal stem cells in ex vivo cord blood expansion. Best Pract Res Clin Haematol. 2011;24(1):83–92. https://doi.org/10.1016/j.beha.2010.11.001 .
doi: 10.1016/j.beha.2010.11.001 pubmed: 21396596 pmcid: 3805362
Rasmusson I, Ringdén O, Sundberg B, Le Blanc K. Mesenchymal stem cells inhibit lymphocyte proliferation by mitogens and alloantigens by different mechanisms. Exp Cell Res. 2005;305(1):33–41. https://doi.org/10.1016/j.yexcr.2004.12.013 .
doi: 10.1016/j.yexcr.2004.12.013 pubmed: 15777785
Pineault N, Abu-Khader A. Advances in umbilical cord blood stem cell expansion and clinical translation. Exp Hematol. 2015;43:498–513.
doi: 10.1016/j.exphem.2015.04.011 pubmed: 25970610
Haddad R, Saldanha-Araujo F. Mechanisms of T-cell immunosuppression by mesenchymal stromal cells: What do we know so far? 2014. https://doi.org/10.1155/2014/216806 ,
Lu D, Xu Y, Zhang Q. Mesenchymal stem cell-macrophage crosstalk and maintenance of inflammatory microenvironment homeostasis. Front Cell Dev Biol. 2021;9:681171. https://doi.org/10.3389/fcell.2021.681171 .
doi: 10.3389/fcell.2021.681171 pubmed: 34249933 pmcid: 8267370
von Mering C, Jensen LJ, Snel B, Hooper SD, Krupp M, Foglierini M, Jouffre N, Huynen MA, Bork P. STRING: known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Res. 2005;33(Database issue):D433–7. https://doi.org/10.1093/nar/gki005 .
doi: 10.1093/nar/gki005
Liu J, Gao J, Liang Z, et al. Mesenchymal stem cells and their microenvironment. Stem Cell Res Ther. 2022;13:429. https://doi.org/10.1186/s13287-022-02985-y .
doi: 10.1186/s13287-022-02985-y pubmed: 35987711 pmcid: 9391632
Kim J, Hematti P. Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages. Exp Hematol. 2009;37(12):1445–53. https://doi.org/10.1016/j.exphem.2009.09.004 .
doi: 10.1016/j.exphem.2009.09.004 pubmed: 19772890 pmcid: 2783735
West MD, Nasonkin I, Larocca D, Chapman KB, Binette F, Sternberg H. Adult versus pluripotent stem cell-derived mesenchymal stem cells: the need for more precise nomenclature. Curr Stem Cell Rep. 2016;2(3):299–303. https://doi.org/10.1007/s40778-016-0060-6 .
doi: 10.1007/s40778-016-0060-6 pubmed: 27547711 pmcid: 4972883
Hassel JR, Newsom DA, Krachmer JH, Rodrigues MM. Macular corneal dystrophy: failure to synthesize a mature keratan sulfate proteoglycan. Proc Natl Acad Sci USA. 1980;77(6):3705–9.
doi: 10.1073/pnas.77.6.3705
Dennis JE, Caplan AI. Analysis of the developmental potential of conditionally immortal marrow derived mesenchymal progenitor cells isolated from the H-2Kb-tsA58 transgenic mouse. Connect Tissue Res. 1996;35(1–4):93–9. https://doi.org/10.3109/03008209609029179 .
doi: 10.3109/03008209609029179 pubmed: 9084647
Galmiche MC, Koteliansky VE, Brière J, Hervé P, Charbord P. Stromal cells from human long-term marrow cultures are mesenchymal cells that differentiate following a vascular smooth muscle differentiation pathway. Blood. 1993;82(1):66–76.
doi: 10.1182/blood.V82.1.66.bloodjournal82166 pubmed: 8324235
Jiang B, Yan L, Wang X, Li E, Murphy K, Vaccaro K, Li Y, Xu RH. Concise review: mesenchymal stem cells derived from human pluripotent cells, an unlimited and quality-controllable source for therapeutic applications. Stem Cells. 2019;37(5):572–81. https://doi.org/10.1002/stem.2964 .
doi: 10.1002/stem.2964 pubmed: 30561809
Barberi T, Willis LM, Socci ND, Studer L. Derivation of multipotent mesenchymal precursors from human embryonic stem cells. PLoS Med. 2005;2(6):e161. https://doi.org/10.1371/journal.pmed.0020161 .
doi: 10.1371/journal.pmed.0020161 pubmed: 15971941 pmcid: 1160574
Mahmood A, Harkness L, Schrøder HD, Abdallah BM, Kassem M. Enhanced differentiation of human embryonic stem cells to mesenchymal progenitors by inhibition of TGF-beta/activin/nodal signaling using SB-431542. J Bone Miner Res. 2010;25(6):1216–33. https://doi.org/10.1002/jbmr.34 .
doi: 10.1002/jbmr.34 pubmed: 20200949
Boyd NL, Robbins KR, Dhara SK, West FD, Stice SL. Human embryonic stem cell-derived mesoderm-like epithelium transitions to mesenchymal progenitor cells. Tissue Eng Part A. 2009;15(8):1897–907. https://doi.org/10.1089/ten.tea.2008.0351 .
doi: 10.1089/ten.tea.2008.0351 pubmed: 19196144 pmcid: 2792108
Karlsson C, Emanuelsson K, Wessberg F, Kajic K, Axell MZ, Eriksson PS, Lindahl A, Hyllner J, Strehl R. Human embryonic stem cell-derived mesenchymal progenitors–potential in regenerative medicine. Stem Cell Res. 2009;3(1):39–50. https://doi.org/10.1016/j.scr.2009.05.002 .
doi: 10.1016/j.scr.2009.05.002 pubmed: 19515621
Lian Q, Lye E, Suan Yeo K, Khia Way Tan E, Salto-Tellez M, Liu TM, Palanisamy N, El Oakley RM, Lee EH, Lim B, Lim SK. Derivation of clinically compliant MSCs from CD105+, CD24- differentiated human ESCs. Stem Cells. 2007;25(2):425–36. https://doi.org/10.1634/stemcells.2006-0420 .
doi: 10.1634/stemcells.2006-0420 pubmed: 17053208
Olivier EN, Rybicki AC, Bouhassira EE. Differentiation of human embryonic stem cells into bipotent mesenchymal stem cells. Stem Cells. 2006;24(8):1914–22. https://doi.org/10.1634/stemcells.2005-0648 .
doi: 10.1634/stemcells.2005-0648 pubmed: 16644919
Trivedi P, Hematti P. Derivation and immunological characterization of mesenchymal stromal cells from human embryonic stem cells. Exp Hematol. 2008;36(3):350–9. https://doi.org/10.1016/j.exphem.2007.10.007 .
doi: 10.1016/j.exphem.2007.10.007 pubmed: 18179856 pmcid: 2315792
Sánchez L, Gutierrez-Aranda I, Ligero G, Rubio R, Muñoz-López M, García-Pérez JL, Ramos V, Real PJ, Bueno C, Rodríguez R, Delgado M, Menendez P. Enrichment of human ESC-derived multipotent mesenchymal stem cells with immunosuppressive and anti-inflammatory properties capable to protect against experimental inflammatory bowel disease. Stem Cells. 2011;29(2):251–62. https://doi.org/10.1002/stem.569 .
doi: 10.1002/stem.569 pubmed: 21732483
Zhao Q, Gregory CA, Lee RH, Lie F. MSCs derived from iPSC with a modified protocol are tumor-tropic but have much less potential to promote tumors than bone marrow MSC. PNAS. 2015;112(2):530–5.
doi: 10.1073/pnas.1423008112 pubmed: 25548183
Xi H, Fujiwara W, Gonzalez K, Jan M, Liebscher S, Van Handel B, Schenke-Layland K, Pyle AD. In vivo human somitogenesis guides somite development from hPSCs. Cell Rep. 2017;18(6):1573–85. https://doi.org/10.1016/j.celrep.2017.01.040 .
doi: 10.1016/j.celrep.2017.01.040 pubmed: 28178531 pmcid: 5327729
Lambshead JW, Meagher L, O’Brian C, Laslett AL. Defining synthetic surfaces for human pluripotent stem cell culture. Cell Regener. 2013;2(7):1–15. https://doi.org/10.1186/2045-9769-2-7 .
doi: 10.1186/2045-9769-2-7
Yan Y, Zuo X, Wei D, Review C. Emerging role of CD44 in cancer stem cells: a promising biomarker and therapeutic target. Stem Cells Transl Med. 2015;4(9):1033–43. https://doi.org/10.5966/sctm.2015-0048 .
doi: 10.5966/sctm.2015-0048 pubmed: 26136504 pmcid: 4542874
Álvarez-Viejo M, Menéndez-Menéndez Y, Otero-Hernández J. CD271 as a marker to identify mesenchymal stem cells from diverse sources before culture. World J Stem Cells. 2015;7(2):470–6. https://doi.org/10.4252/wjsc.v7.i2.470.PMID:25815130 .
doi: 10.4252/wjsc.v7.i2.470.PMID:25815130 pubmed: 25815130 pmcid: 4369502
Smith RJP, Faroni A, Barrow JR, et al. The angiogenic potential of CD271+ human adipose tissue-derived mesenchymal stem cells. Stem Cell Res Ther. 2021;12:160. https://doi.org/10.1186/s13287-021-02177-0 .
doi: 10.1186/s13287-021-02177-0 pubmed: 33653407 pmcid: 7927269
Moravcikova E, Meyer EM, Corselli M, Donnenberg VS, Donnenberg AD. Proteomic profiling of ntative unpassaged and culture expanded mesenchymal stromal cells (MSC). Cytometry A. 2018;93A:894–904.
doi: 10.1002/cyto.a.23574
Espagnolle N, Guilloton F, Deschaseaux F, Gadelorge M, Sensébé L, Bourin P. CD146 expression on mesenchymal stem cells is associated with their vascular smooth muscle commitment. J Cell Mol Med. 2014;18(1):104–14. https://doi.org/10.1111/jcmm.12168 .
doi: 10.1111/jcmm.12168 pubmed: 24188055
Huynh H, Zheng J, Umikawa M, Zhang C, Silvany R, Iizuka S, Holzenberger M, Zhang W, Zhang CC. IGF binding protein 2 supports the survival and cycling of hematopoietic stem cells. Blood. 2011;118(12):3236–43. https://doi.org/10.1182/blood-2011-01-331876 .
doi: 10.1182/blood-2011-01-331876 pubmed: 21821709 pmcid: 3179393
Gieseke F, Böhringer J, Bussolari R, Dominici M, Handgretinger R, Müller I. Human multipotent mesenchymal stromal cells use galectin-1 to inhibit immune effector cells. Blood. 2010;116(19):3770–9. https://doi.org/10.1182/blood-2010-02-270777 .
doi: 10.1182/blood-2010-02-270777 pubmed: 20644118
Ip JE, Wu Y, Huang J, Zhang L, Pratt RE, Dzau VJ. Mesenchymal stem cells use integrin β1 not CXC chemokine receptor 4 for myocardial migration and engraftment. Mol Biol Cell. 2007;18(8):2873–82.
doi: 10.1091/mbc.e07-02-0166 pubmed: 17507648 pmcid: 1949353
Zwolanek D, Flicker M, Kirstätter E, Zaucke F, van Osch GJ, Erben RG. β1 integrins mediate attachment of mesenchymal stem cells to cartilage lesions. Biores Open Access. 2015;4(1):39–53. https://doi.org/10.1089/biores.2014.0055 .
doi: 10.1089/biores.2014.0055 pubmed: 26309781 pmcid: 4497673
Takenaka-Ninagawa N, Kim J, Zhao M, et al. Collagen-VI supplementation by cell transplantation improves muscle regeneration in Ullrich congenital muscular dystrophy model mice. Stem Cell Res Ther. 2021;12:446. https://doi.org/10.1186/s13287-021-02514-3 .
doi: 10.1186/s13287-021-02514-3 pubmed: 34372931 pmcid: 8351132
Sapudom J, Mohamed WKE, Garcia-Sabaté A, Alatoom A, Karaman S, Mahtani N, Teo JCM. Collagen fibril density modulates macrophage activation and cellular functions during tissue repair. Bioengineering. 2020;7(2):33. https://doi.org/10.3390/bioengineering7020033 .
doi: 10.3390/bioengineering7020033 pubmed: 32244521 pmcid: 7356036
Wang J, Pan W. The biological role of the Collagen alpha-3 (VI) chain and its cleaved C5 domain fragment endotropin in cancer. Onco Targets Ther. 2020;13:5779–93.
doi: 10.2147/OTT.S256654 pubmed: 32606789 pmcid: 7319802
Hubert KA, Wellik DM. Hox genes in development and beyond. Development. 2023;150(1):dev192476. https://doi.org/10.1242/dev.192476 .
doi: 10.1242/dev.192476 pubmed: 36645372 pmcid: 10216783
Shen B, Wei A, Whittaker S, Williams LA, Tao H, Ma DD, Diwan AD. The role of BMP-7 in chondrogenic and osteogenic differentiation of human bone marrow multipotent mesenchymal stromal cells in vitro. J Cell Biochem. 2010;109(2):406–16. https://doi.org/10.1002/jcb.22412 .
doi: 10.1002/jcb.22412 pubmed: 19950204
Yan X, Zhou Z, Guo L, Zeng Z, Guo Z, Shao Q, Xu W. BMP7-overexpressing bone marrow-derived mesenchymal stem cells (BMSCs) are more effective than wild-type BMSCs in healing fractures. Exp Ther Med. 2018;16(2):1381–8. https://doi.org/10.3892/etm.2018.6339 .
doi: 10.3892/etm.2018.6339 pubmed: 30112066 pmcid: 6090465
Caplan AI. Mesenchymal stem cells. J Orthopaedic Res. 1991;9(5):641–50. https://doi.org/10.1002/jor.1100090504 .
doi: 10.1002/jor.1100090504
Pittenger MF, Discher DE, Péault BM, Phinney DG, Hare JM, Caplan AI. Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regen Med. 2019;4:22. https://doi.org/10.1038/s41536-019-0083-6 .
doi: 10.1038/s41536-019-0083-6 pubmed: 31815001 pmcid: 6889290
Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, Norotte C, Teng PN, Traas J, Schugar R, Deasy BM, Badylak S, Buhring HJ, Giacobino JP, Lazzari L, Huard J, Péault B. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell. 2008;3(3):301–13. https://doi.org/10.1016/j.stem.2008.07.003 .
doi: 10.1016/j.stem.2008.07.003 pubmed: 18786417
Caplan AI. New MSC:MSCs as pericytes are sentinels and gatekeepers. J Orthop Res. 2017;35Ç:1151–9. https://doi.org/10.1161/CIRCULATIONAHA.111.048264 .
doi: 10.1161/CIRCULATIONAHA.111.048264
Dar A, Domev H, Bem-YOsef O, Tzukerman M, et al. Multipotent vasculogenic pericytes from human pluripotent stem cells promote recovery of murine ischemic limb. Circulation. 2012;125:87–99. https://doi.org/10.1161/CIRCULATIONAHA.111.048264 .
doi: 10.1161/CIRCULATIONAHA.111.048264 pubmed: 22095829
Sarugaser R, Hanoun L, Keating A, Stanford WL, Davies JE. Human mesenchymal stem cells self-renew and differentiate according to a deterministic hierarchy. PLoS ONE. 2009;4(8):e6498. https://doi.org/10.1371/journal.pone.0006498 .
doi: 10.1371/journal.pone.0006498 pubmed: 19652709 pmcid: 2714967
Gao Y, Chi Y, Chen Y, et al. Multi-omics analysis of human mesenchymal stem cells shows cell aging that alters immunomodulatory activity through the downregulation of PD-L1. Nat Commun. 2023;14:4373. https://doi.org/10.1038/s41467-023-39958-5 .
doi: 10.1038/s41467-023-39958-5 pubmed: 37474525 pmcid: 10359415

Auteurs

Paul A De Sousa (PA)

Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK. paul.desousa@ed.ac.uk.
Stroma Therapeutics Ltd, Glasgow, UK. paul.desousa@ed.ac.uk.

Leo Perfect (L)

Biotherapeutics and Advanced Therapies, Science Research and Innovation Group, UK Stem Cell Bank, MHRA, South Mimms, UK.

Jinpei Ye (J)

Institute of Biomedical Science, Shanxi University, Taiyuan, Shanxi, China.

Kay Samuels (K)

Scottish National Blood Transfusion Service, Edinburgh, UK.

Ewa Piotrowska (E)

Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.
Department of Molecular Biology, University of Gdansk, Gdańsk, Poland.

Martin Gordon (M)

Biotherapeutics and Advanced Therapies, Science Research and Innovation Group, UK Stem Cell Bank, MHRA, South Mimms, UK.

Ryan Mate (R)

Biotherapeutics and Advanced Therapies, Science Research and Innovation Group, UK Stem Cell Bank, MHRA, South Mimms, UK.

Elsa Abranches (E)

Biotherapeutics and Advanced Therapies, Science Research and Innovation Group, UK Stem Cell Bank, MHRA, South Mimms, UK.

Thomas M Wishart (TM)

Roslin Institute, University of Edinburgh, Edinburgh, UK.

David H Dockrell (DH)

Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK.

Aidan Courtney (A)

Stroma Therapeutics Ltd, Glasgow, UK.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH