Primary mitochondrial disorders and mimics: Insights from a large French cohort.


Journal

Annals of clinical and translational neurology
ISSN: 2328-9503
Titre abrégé: Ann Clin Transl Neurol
Pays: United States
ID NLM: 101623278

Informations de publication

Date de publication:
04 May 2024
Historique:
received: 26 02 2024
accepted: 23 03 2024
medline: 5 5 2024
pubmed: 5 5 2024
entrez: 4 5 2024
Statut: aheadofprint

Résumé

The objective of this study was to evaluate the implementation of NGS within the French mitochondrial network, MitoDiag, from targeted gene panels to whole exome sequencing (WES) or whole genome sequencing (WGS) focusing on mitochondrial nuclear-encoded genes. Over 2000 patients suspected of Primary Mitochondrial Diseases (PMD) were sequenced by either targeted gene panels, WES or WGS within MitoDiag. We described the clinical, biochemical, and molecular data of 397 genetically confirmed patients, comprising 294 children and 103 adults, carrying pathogenic or likely pathogenic variants in nuclear-encoded genes. The cohort exhibited a large genetic heterogeneity, with the identification of 172 distinct genes and 253 novel variants. Among children, a notable prevalence of pathogenic variants in genes associated with oxidative phosphorylation (OXPHOS) functions and mitochondrial translation was observed. In adults, pathogenic variants were primarily identified in genes linked to mtDNA maintenance. Additionally, a substantial proportion of patients (54% (42/78) and 48% (13/27) in children and adults, respectively), undergoing WES or WGS testing displayed PMD mimics, representing pathologies that clinically resemble mitochondrial diseases. We reported the largest French cohort of patients suspected of PMD with pathogenic variants in nuclear genes. We have emphasized the clinical complexity of PMD and the challenges associated with recognizing and distinguishing them from other pathologies, particularly neuromuscular disorders. We confirmed that WES/WGS, instead of panel approach, was more valuable to identify the genetic basis in patients with "possible" PMD and we provided a genetic testing flowchart to guide physicians in their diagnostic strategy.

Identifiants

pubmed: 38703036
doi: 10.1002/acn3.52062
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association.

Références

Schaefer AM, Taylor RW, Turnbull DM, Chinnery PF. The epidemiology of mitochondrial disorders—past, present and future. Biochim Biophys Acta. 2004;1659(2–3):115‐120.
Tan J, Wagner M, Stenton SL, et al. Lifetime risk of autosomal recessive mitochondrial disorders calculated from genetic databases. EBioMedicine. 2020;54:102730.
Morava E, van den Heuvel L, Hol F, et al. Mitochondrial disease criteria: diagnostic applications in children. Neurology. 2006;67(10):1823‐1826.
Niyazov DM, Kahler SG, Frye RE. Primary mitochondrial disease and secondary mitochondrial dysfunction: importance of distinction for diagnosis and treatment. Mol Syndromol. 2016;7(3):122‐137.
Bannwarth S, Procaccio V, Lebre AS, et al. Prevalence of rare mitochondrial DNA mutations in mitochondrial disorders. J Med Genet. 2013;50(10):704‐714.
Theunissen TEJ, Nguyen M, Kamps R, et al. Whole exome sequencing is the preferred strategy to identify the genetic defect in patients with a probable or possible mitochondrial cause. Front Genet. 2018;9:400.
Schon KR, Horvath R, Wei W, et al. Use of whole genome sequencing to determine genetic basis of suspected mitochondrial disorders: cohort study. BMJ. 2021;375:e066288.
Rahman J, Rahman S. Mitochondrial medicine in the omics era. Lancet. 2018;391(10139):2560‐2574.
Schon KR, Ratnaike T, van den Ameele J, Horvath R, Chinnery PF. Mitochondrial diseases: a diagnostic revolution. Trends Genet. 2020;36(9):702‐717.
Pronicka E, Piekutowska‐Abramczuk D, Ciara E, et al. New perspective in diagnostics of mitochondrial disorders: two years' experience with whole‐exome sequencing at a national paediatric centre. J Transl Med. 2016;14(1):174.
Alston CL, Stenton SL, Hudson G, Prokisch H, Taylor RW. The genetics of mitochondrial disease: dissecting mitochondrial pathology using multi‐omic pipelines. J Pathol. 2021;254(4):430‐442.
Mavraki E, Labrum R, Sergeant K, et al. Genetic testing for mitochondrial disease: the United Kingdom best practice guidelines. Eur J Hum Genet. 2023;31(2):148‐163.
Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405‐424.
Charif M, Bris C, Goudenège D, et al. Use of next‐generation sequencing for the molecular diagnosis of 1,102 patients with a autosomal optic neuropathy. Front Neurol. 2021;12:602979.
Rocatcher A, Desquiret‐Dumas V, Charif M, et al. The top 10 most frequently involved genes in hereditary optic neuropathies in 2186 probands. Brain. 2023;146(2):455‐460.
Bris C, Goudenège D, Desquiret‐Dumas V, et al. Improved detection of mitochondrial DNA instability in mitochondrial genome maintenance disorders. Genet Med. 2021;23(9):1769‐1778.
Medja F, Allouche S, Frachon P, et al. Development and implementation of standardized respiratory chain spectrophotometric assays for clinical diagnosis. Mitochondrion. 2009;9(5):331‐339.
Rahman S, Lake BD, Taanman JW, et al. Cytochrome oxidase immunohistochemistry: clues for genetic mechanisms. Brain. 2000;123(Pt 3):591‐600.
Barron M, Turnbull D. Mitochondria and aging. Biology of Aging and its Modulation. Springer; 2003:91‐106.
Yu‐Wai‐Man P, Lai‐Cheong J, Borthwick GM, et al. Somatic mitochondrial DNA deletions accumulate to high levels in aging human extraocular muscles. Invest Ophthalmol Vis Sci. 2010;51(7):3347‐3353.
Cooper HM, Yang Y, Ylikallio E, et al. ATPase‐deficient mitochondrial inner membrane protein ATAD3A disturbs mitochondrial dynamics in dominant hereditary spastic paraplegia. Hum Mol Genet. 2017;26(8):1432‐1443.
Parikh S, Karaa A, Goldstein A, et al. Diagnosis of “possible” mitochondrial disease: an existential crisis. J Med Genet. 2019;56(3):123‐130.
Forny P, Footitt E, Davison JE, et al. Diagnosing mitochondrial disorders remains challenging in the omics era. Neurol Genet. 2021;7(3):e597.
Ait‐El‐Mkadem Saadi S, Kaphan E, Morales Jaurrieta A, et al. Splicing variants in NARS2 are associated with milder phenotypes and intra‐familial variability. Eur J Med Genet. 2022;65(12):104643.
Gorman GS, Chinnery PF, DiMauro S, et al. Mitochondrial diseases. Nat Rev Dis Primers. 2016;2:16080.
Zeng W‐Q, Al‐Yamani E, Acierno JS, et al. Biotin‐responsive basal ganglia disease maps to 2q36.3 and is due to mutations in SLC19A3. Am J Hum Genet. 2005;77(1):16‐26.
Gorman GS, Schaefer AM, Ng Y, et al. Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease. Ann Neurol. 2015;77(5):753‐759.
Hikmat O, Naess K, Engvall M, et al. Simplifying the clinical classification of polymerase gamma (POLG) disease based on age of onset; studies using a cohort of 155 cases. J Inherit Metab Dis. 2020;43(4):726‐736.
Davidzon G, Greene P, Mancuso M, et al. Early‐onset familial parkinsonism due to POLG mutations. Ann Neurol. 2006;59(5):859‐862.
Luoma P, Melberg A, Rinne JO, et al. Parkinsonism, premature menopause, and mitochondrial DNA polymerase gamma mutations: clinical and molecular genetic study. Lancet. 2004;364(9437):875‐882.
Epi4K Consortium, Epilepsy Phenome/Genome Project, Allen AS, et al. De novo mutations in epileptic encephalopathies. Nature. 2013;501(7466):217‐221.
Hamdan FF, Myers CT, Cossette P, et al. High rate of recurrent de novo mutations in developmental and epileptic encephalopathies. Am J Hum Genet. 2017;101(5):664‐685.
Taylor RW, Pyle A, Griffin H, et al. Use of whole‐exome sequencing to determine the genetic basis of multiple mitochondrial respiratory chain complex deficiencies. JAMA. 2014;312(1):68‐77.
Wortmann SB, Espeel M, Almeida L, et al. Inborn errors of metabolism in the biosynthesis and remodelling of phospholipids. J Inherit Metab Dis. 2015;38(1):99‐110.
Kohda M, Tokuzawa Y, Kishita Y, et al. A comprehensive genomic analysis reveals the genetic landscape of mitochondrial respiratory chain complex deficiencies. PLoS Genet. 2016;12(1):e1005679.
Macken WL, Falabella M, McKittrick C, et al. Specialist multidisciplinary input maximises rare disease diagnoses from whole genome sequencing. Nat Commun. 2022;13(1):6324.
Riley LG, Cowley MJ, Gayevskiy V, et al. The diagnostic utility of genome sequencing in a pediatric cohort with suspected mitochondrial disease. Genet Med. 2020;22(7):1254‐1261.
Oswald SL, Steinbrücker K, Achleitner MT, et al. Treatment of mitochondrial phenylalanyl‐tRNa‐Synthetase deficiency (FARS2) with Oral phenylalanine. Neuropediatrics. 2023;54(5):351‐355.
Kok G, van Karnebeek CDM, Fuchs SA. Response to Shen and Zou. Genet Med. 2021;23(3):589‐590.

Auteurs

Cécile Rouzier (C)

Service de génétique médicale, Centre de référence des maladies mitochondriales, CHU Nice, Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France.

Emmanuelle Pion (E)

Filnemus, laboratoire de génétique moléculaire, CHU, Montpellier, France.

Annabelle Chaussenot (A)

Service de génétique médicale, Centre de référence des maladies mitochondriales, CHU Nice, Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France.

Céline Bris (C)

Service de génétique, Institut de Biologie en santé, CHU Angers, Univ Angers, INSERM, CNRS, MITOVASC, Equipe MitoLab, SFR ICAT, Angers, France.

Samira Ait-El-Mkadem Saadi (S)

Service de génétique médicale, Centre de référence des maladies mitochondriales, CHU Nice, Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France.

Valérie Desquiret-Dumas (V)

Service de biochimie et biologie moléculaire, Institut de Biologie en santé, CHU Angers, Univ Angers, INSERM, CNRS, MITOVASC, Equipe MitoLab, SFR ICAT, Angers, France.

Naïg Gueguen (N)

Service de biochimie et biologie moléculaire, Institut de Biologie en santé, CHU Angers, Univ Angers, INSERM, CNRS, MITOVASC, Equipe MitoLab, SFR ICAT, Angers, France.

Konstantina Fragaki (K)

Service de génétique médicale, Centre de référence des maladies mitochondriales, CHU Nice, Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France.

Patrizia Amati-Bonneau (P)

Service de biochimie et biologie moléculaire, Institut de Biologie en santé, CHU Angers, Univ Angers, INSERM, CNRS, MITOVASC, Equipe MitoLab, SFR ICAT, Angers, France.

Giulia Barcia (G)

Service de médecine génomique des maladies rares, Hôpital Necker-Enfants Malades, Université Paris Cité, Institut Imagine Unité UMR 1161, Paris, France.

Pauline Gaignard (P)

Service de Biochimie, GHU APHP Paris Saclay, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.

Julie Steffann (J)

Service de médecine génomique des maladies rares, Hôpital Necker-Enfants Malades, Université Paris Cité, Institut Imagine Unité UMR 1161, Paris, France.

Alessandra Pennisi (A)

Service de médecine génomique des maladies rares, Hôpital Necker-Enfants Malades, Université Paris Cité, Institut Imagine Unité UMR 1161, Paris, France.

Jean-Paul Bonnefont (JP)

Service de médecine génomique des maladies rares, Hôpital Necker-Enfants Malades, Université Paris Cité, Institut Imagine Unité UMR 1161, Paris, France.

Elise Lebigot (E)

Service de Biochimie, GHU APHP Paris Saclay, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.

Sylvie Bannwarth (S)

Service de génétique médicale, Centre de référence des maladies mitochondriales, CHU Nice, Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France.

Bruno Francou (B)

Service de génétique médicale, Centre de référence des maladies mitochondriales, CHU Nice, Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France.

Benoit Rucheton (B)

Pôle de biologie et pathologie, CHU, Bordeaux, France.

Damien Sternberg (D)

Unité Fonctionnelle de cardiogénétique et myogénétique moléculaire et cellulaire, Centre de génétique moléculaire et chromosomique, AP-HP Sorbonne Université, Hopital de la Pitié-Salpêtrière, Paris, France.

Marie-Laure Martin-Negrier (ML)

Unité fonctionnelle d'histologie moléculaire, Service de pathologie, CHU Bordeaux-GU Pellegrin, Bordeaux, France.

Aurélien Trimouille (A)

Unité fonctionnelle d'histologie moléculaire, Service de pathologie, CHU Bordeaux-GU Pellegrin, Bordeaux, France.

Gaëlle Hardy (G)

Laboratoire de Génétique Moléculaire: Maladies Héréditaires et Oncologie, Institut de Biologie et de Pathologie, CHU Grenoble Alpes, Grenoble, France.

Stéphane Allouche (S)

Service de biochimie, Institut Territorial de Biologie en Santé, CHU Caen, Hôpital de la Côte de Nacre, Caen, France.

Cécile Acquaviva-Bourdain (C)

Service de biochimie et biologie moléculaire Grand Est, UM Maladies Héréditaires du Métabolisme, Centre de biologie et pathologie Est, CHU Lyon HCL, GH Est, Lyon, France.

Cécile Pagan (C)

Service de biochimie et biologie moléculaire Grand Est, UM Maladies Héréditaires du Métabolisme, Centre de biologie et pathologie Est, CHU Lyon HCL, GH Est, Lyon, France.

Anne-Sophie Lebre (AS)

Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266 [Krebs team], Université de Reims Champagne-Ardenne (UFR médicale) - CHU de Reims-Université Paris Cité, Paris, France.

Pascal Reynier (P)

Service de biochimie et biologie moléculaire, Institut de Biologie en santé, CHU Angers, Univ Angers, INSERM, CNRS, MITOVASC, Equipe MitoLab, SFR ICAT, Angers, France.

Mireille Cossee (M)

Laboratoire de Génétique Moléculaire, CHU Montpellier, PhyMedExp, Université de Montpellier, INSERM, CNRS, Montpellier, France.

Shahram Attarian (S)

Service des Maladies Neuromusculaires et la SLA, FILNEMUS, Euro-NMDAIX-CHU La Timone, Marseille Université, Marseille, France.

Véronique Paquis-Flucklinger (V)

Service de génétique médicale, Centre de référence des maladies mitochondriales, CHU Nice, Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France.

Vincent Procaccio (V)

Service de génétique, Institut de Biologie en santé, CHU Angers, Univ Angers, INSERM, CNRS, MITOVASC, Equipe MitoLab, SFR ICAT, Angers, France.

Classifications MeSH