Antileukemic potential of methylated indolequinone MAC681 through immunogenic necroptosis and PARP1 degradation.

3-aminobenzamide Chronic myeloid leukemia Immunogenic cell death Indolequinone NAD Necrosis OXPHOS PARP1

Journal

Biomarker research
ISSN: 2050-7771
Titre abrégé: Biomark Res
Pays: England
ID NLM: 101607860

Informations de publication

Date de publication:
04 May 2024
Historique:
received: 24 04 2024
accepted: 27 04 2024
medline: 5 5 2024
pubmed: 5 5 2024
entrez: 4 5 2024
Statut: epublish

Résumé

Despite advancements in chronic myeloid leukemia (CML) therapy with tyrosine kinase inhibitors (TKIs), resistance and intolerance remain significant challenges. Leukemia stem cells (LSCs) and TKI-resistant cells rely on altered mitochondrial metabolism and oxidative phosphorylation. Targeting rewired energy metabolism and inducing non-apoptotic cell death, along with the release of damage-associated molecular patterns (DAMPs), can enhance therapeutic strategies and immunogenic therapies against CML and prevent the emergence of TKI-resistant cells and LSC persistence. Transcriptomic analysis was conducted using datasets of CML patients' stem cells and healthy cells. DNA damage was evaluated by fluorescent microscopy and flow cytometry. Cell death was assessed by trypan blue exclusion test, fluorescent microscopy, flow cytometry, colony formation assay, and in vivo Zebrafish xenografts. Energy metabolism was determined by measuring NAD Transcriptomic analysis identified metabolic alterations and DNA repair deficiency signatures in CML patients. CML patients exhibited enrichment in immune system, DNA repair, and metabolic pathways. The gene signature associated with BRCA mutated tumors was enriched in CML datasets, suggesting a deficiency in double-strand break repair pathways. Additionally, poly(ADP-ribose) polymerase (PARP)1 was significantly upregulated in CML patients' stem cells compared to healthy counterparts. Consistent with the CML patient DNA repair signature, treatment with the methylated indolequinone MAC681 induced DNA damage, mitochondrial dysfunction, calcium homeostasis disruption, metabolic catastrophe, and necroptotic-like cell death. In parallel, MAC681 led to PARP1 degradation that was prevented by 3-aminobenzamide. MAC681-treated myeloid leukemia cells released DAMPs and demonstrated the potential to generate an immunogenic vaccine in C57BL/6 mice. MAC681 and asciminib exhibited synergistic effects in killing both imatinib-sensitive and -resistant CML, opening new therapeutic opportunities. Overall, increasing the tumor mutational burden by PARP1 degradation and mitochondrial deregulation makes CML suitable for immunotherapy.

Sections du résumé

BACKGROUND BACKGROUND
Despite advancements in chronic myeloid leukemia (CML) therapy with tyrosine kinase inhibitors (TKIs), resistance and intolerance remain significant challenges. Leukemia stem cells (LSCs) and TKI-resistant cells rely on altered mitochondrial metabolism and oxidative phosphorylation. Targeting rewired energy metabolism and inducing non-apoptotic cell death, along with the release of damage-associated molecular patterns (DAMPs), can enhance therapeutic strategies and immunogenic therapies against CML and prevent the emergence of TKI-resistant cells and LSC persistence.
METHODS METHODS
Transcriptomic analysis was conducted using datasets of CML patients' stem cells and healthy cells. DNA damage was evaluated by fluorescent microscopy and flow cytometry. Cell death was assessed by trypan blue exclusion test, fluorescent microscopy, flow cytometry, colony formation assay, and in vivo Zebrafish xenografts. Energy metabolism was determined by measuring NAD
RESULTS RESULTS
Transcriptomic analysis identified metabolic alterations and DNA repair deficiency signatures in CML patients. CML patients exhibited enrichment in immune system, DNA repair, and metabolic pathways. The gene signature associated with BRCA mutated tumors was enriched in CML datasets, suggesting a deficiency in double-strand break repair pathways. Additionally, poly(ADP-ribose) polymerase (PARP)1 was significantly upregulated in CML patients' stem cells compared to healthy counterparts. Consistent with the CML patient DNA repair signature, treatment with the methylated indolequinone MAC681 induced DNA damage, mitochondrial dysfunction, calcium homeostasis disruption, metabolic catastrophe, and necroptotic-like cell death. In parallel, MAC681 led to PARP1 degradation that was prevented by 3-aminobenzamide. MAC681-treated myeloid leukemia cells released DAMPs and demonstrated the potential to generate an immunogenic vaccine in C57BL/6 mice. MAC681 and asciminib exhibited synergistic effects in killing both imatinib-sensitive and -resistant CML, opening new therapeutic opportunities.
CONCLUSIONS CONCLUSIONS
Overall, increasing the tumor mutational burden by PARP1 degradation and mitochondrial deregulation makes CML suitable for immunotherapy.

Identifiants

pubmed: 38704604
doi: 10.1186/s40364-024-00594-w
pii: 10.1186/s40364-024-00594-w
doi:

Types de publication

Journal Article

Langues

eng

Pagination

47

Informations de copyright

© 2024. The Author(s).

Références

Cortes JE, Jones D, O’Brien S, Jabbour E, Ravandi F, Koller C, et al. Results of dasatinib therapy in patients with early chronic-phase chronic myeloid leukemia. J Clin Oncol. 2010;28(3):398–404.
pubmed: 20008620 doi: 10.1200/JCO.2009.25.4920
Kantarjian HM, Shah NP, Cortes JE, Baccarani M, Agarwal MB, Undurraga MS, et al. Dasatinib or imatinib in newly diagnosed chronic-phase chronic myeloid leukemia: 2-year follow-up from a randomized phase 3 trial (DASISION). Blood. 2012;119(5):1123–9.
pubmed: 22160483 pmcid: 4916556 doi: 10.1182/blood-2011-08-376087
Zulbaran-Rojas A, Lin HK, Shi Q, Williams LA, George B, Garcia-Manero G, et al. A prospective analysis of symptom burden for patients with chronic myeloid leukemia in chronic phase treated with frontline second- and third-generation tyrosine kinase inhibitors. Cancer Med. 2018;7(11):5457–69.
pubmed: 30318751 pmcid: 6246941 doi: 10.1002/cam4.1808
Rossari F, Minutolo F, Orciuolo E. Past, present, and future of Bcr-Abl inhibitors: from chemical development to clinical efficacy. J Hematol Oncol. 2018;11(1):84.
pubmed: 29925402 pmcid: 6011351 doi: 10.1186/s13045-018-0624-2
Kuntz EM, Baquero P, Michie AM, Dunn K, Tardito S, Holyoake TL, et al. Targeting mitochondrial oxidative phosphorylation eradicates therapy-resistant chronic myeloid leukemia stem cells. Nat Med. 2017;23(10):1234–40.
pubmed: 28920959 pmcid: 5657469 doi: 10.1038/nm.4399
Simsek T, Kocabas F, Zheng J, Deberardinis RJ, Mahmoud AI, Olson EN, et al. The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell. 2010;7(3):380–90.
pubmed: 20804973 pmcid: 4159713 doi: 10.1016/j.stem.2010.07.011
Mojtahedi H, Yazdanpanah N, Rezaei N. Chronic myeloid leukemia stem cells: targeting therapeutic implications. Stem Cell Res Ther. 2021;12(1):603.
pubmed: 34922630 pmcid: 8684082 doi: 10.1186/s13287-021-02659-1
de Beauchamp L, Himonas E, Helgason GV. Mitochondrial metabolism as a potential therapeutic target in myeloid leukaemia. Leukemia. 2022;36(1):1–12.
pubmed: 34561557 doi: 10.1038/s41375-021-01416-w
Liu L, Su X, Quinn WJ 3rd, Hui S, Krukenberg K, Frederick DW, et al. Quantitative analysis of NAD synthesis-breakdown fluxes. Cell Metab. 2018;27(5):1067-80 e5.
pubmed: 29685734 pmcid: 5932087 doi: 10.1016/j.cmet.2018.03.018
Xie N, Zhang L, Gao W, Huang C, Huber PE, Zhou X, et al. NAD(+) metabolism: pathophysiologic mechanisms and therapeutic potential. Signal Transduct Target Ther. 2020;5(1):227.
pubmed: 33028824 pmcid: 7539288 doi: 10.1038/s41392-020-00311-7
Muvarak N, Nagaria P, Rassool FV. Genomic instability in chronic myeloid leukemia: targets for therapy? Curr Hematol Malig Rep. 2012;7(2):94–102.
pubmed: 22427031 doi: 10.1007/s11899-012-0119-0
Sallmyr A, Tomkinson AE, Rassool FV. Up-regulation of WRN and DNA ligase IIIalpha in chronic myeloid leukemia: consequences for the repair of DNA double-strand breaks. Blood. 2008;112(4):1413–23.
pubmed: 18524993 pmcid: 2967309 doi: 10.1182/blood-2007-07-104257
Tobin LA, Robert C, Rapoport AP, Gojo I, Baer MR, Tomkinson AE, Rassool FV. Targeting abnormal DNA double-strand break repair in tyrosine kinase inhibitor-resistant chronic myeloid leukemias. Oncogene. 2013;32(14):1784–93.
pubmed: 22641215 doi: 10.1038/onc.2012.203
Bolton-Gillespie E, Schemionek M, Klein HU, Flis S, Hoser G, Lange T, et al. Genomic instability may originate from imatinib-refractory chronic myeloid leukemia stem cells. Blood. 2013;121(20):4175–83.
pubmed: 23543457 pmcid: 3656452 doi: 10.1182/blood-2012-11-466938
Ross D, Siegel D, Beall H, Prakash AS, Mulcahy RT, Gibson NW. DT-diaphorase in activation and detoxification of quinones. Bioreductive activation of mitomycin C. Cancer Metastasis Rev. 1993;12(2):83–101.
pubmed: 8375023 doi: 10.1007/BF00689803
Reigan P, Colucci MA, Siegel D, Chilloux A, Moody CJ, Ross D. Development of indolequinone mechanism-based inhibitors of NAD(P)H:quinone oxidoreductase 1 (NQO1): NQO1 inhibition and growth inhibitory activity in human pancreatic MIA PaCa-2 cancer cells. Biochemistry. 2007;46(20):5941–50.
pubmed: 17455910 doi: 10.1021/bi700008y
Colucci MA, Reigan P, Siegel D, Chilloux A, Ross D, Moody CJ. Synthesis and evaluation of 3-aryloxymethyl-1,2-dimethylindole-4,7-diones as mechanism-based inhibitors of NAD(P)H:quinone oxidoreductase 1 (NQO1) activity. J Med Chem. 2007;50(23):5780–9.
pubmed: 17944451 pmcid: 2536657 doi: 10.1021/jm070396q
Qin R, You FM, Zhao Q, Xie X, Peng C, Zhan G, Han B. Naturally derived indole alkaloids targeting regulated cell death (RCD) for cancer therapy: from molecular mechanisms to potential therapeutic targets. J Hematol Oncol. 2022;15(1):133.
pubmed: 36104717 pmcid: 9471064 doi: 10.1186/s13045-022-01350-z
Krysko O, Aaes TL, Kagan VE, D’Herde K, Bachert C, Leybaert L, et al. Necroptotic cell death in anti-cancer therapy. Immunol Rev. 2017;280(1):207–19.
pubmed: 29027225 doi: 10.1111/imr.12583
Hernandez AP, Juanes-Velasco P, Landeira-Vinuela A, Bareke H, Montalvillo E, Gongora R, Fuentes M. Restoring the immunity in the tumor microenvironment: insights into immunogenic cell death in onco-therapies. Cancers (Basel). 2021;13(11):2821.
pubmed: 34198850 doi: 10.3390/cancers13112821
Galluzzi L, Vacchelli E, Bravo-San Pedro JM, Buque A, Senovilla L, Baracco EE, et al. Classification of current anticancer immunotherapies. Oncotarget. 2014;5(24):12472–508.
pubmed: 25537519 pmcid: 4350348 doi: 10.18632/oncotarget.2998
Diaz-Blanco E, Bruns I, Neumann F, Fischer JC, Graef T, Rosskopf M, et al. Molecular signature of CD34(+) hematopoietic stem and progenitor cells of patients with CML in chronic phase. Leukemia. 2007;21(3):494–504.
pubmed: 17252012 doi: 10.1038/sj.leu.2404549
Gautier L, Cope L, Bolstad BM, Irizarry RA. affy–analysis of Affymetrix GeneChip data at the probe level. Bioinformatics. 2004;20(3):307–15.
pubmed: 14960456 doi: 10.1093/bioinformatics/btg405
Aviles-Vazquez S, Chavez-Gonzalez A, Hidalgo-Miranda A, Moreno-Lorenzana D, Arriaga-Pizano L, Sandoval-Esquivel MA, et al. Global gene expression profiles of hematopoietic stem and progenitor cells from patients with chronic myeloid leukemia: the effect of in vitro culture with or without imatinib. Cancer Med. 2017;6(12):2942–56.
pubmed: 29030909 pmcid: 5727298 doi: 10.1002/cam4.1187
Abraham SA, Hopcroft LE, Carrick E, Drotar ME, Dunn K, Williamson AJ, et al. Dual targeting of p53 and c-MYC selectively eliminates leukaemic stem cells. Nature. 2016;534(7607):341–6.
pubmed: 27281222 pmcid: 4913876 doi: 10.1038/nature18288
Parker HS, Corrada Bravo H, Leek JT. Removing batch effects for prediction problems with frozen surrogate variable analysis. PeerJ. 2014;2:e561.
pubmed: 25332844 pmcid: 4179553 doi: 10.7717/peerj.561
Kohlmann A, Kipps TJ, Rassenti LZ, Downing JR, Shurtleff SA, Mills KI, et al. An international standardization programme towards the application of gene expression profiling in routine leukaemia diagnostics: the microarray Innovations in LEukemia study prephase. Br J Haematol. 2008;142(5):802–7.
pubmed: 18573112 pmcid: 2654477 doi: 10.1111/j.1365-2141.2008.07261.x
Ghandi M, Huang FW, Jane-Valbuena J, Kryukov GV, Lo CC, McDonald ER 3rd, et al. Next-generation characterization of the cancer cell line encyclopedia. Nature. 2019;569(7757):503–8.
pubmed: 31068700 pmcid: 6697103 doi: 10.1038/s41586-019-1186-3
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7): e47.
pubmed: 25605792 pmcid: 4402510 doi: 10.1093/nar/gkv007
Wickham H. Build a Plot Layer by Layer. In: Wickham H, editor. ggplot2. Use R! Cham: Springer International Publishing; 2016. p. 89–107.
doi: 10.1007/978-3-319-24277-4_5
Gillespie M, Jassal B, Stephan R, Milacic M, Rothfels K, Senff-Ribeiro A, et al. The reactome pathway knowledgebase 2022. Nucleic Acids Res. 2022;50(D1):D687–92.
pubmed: 34788843 doi: 10.1093/nar/gkab1028
Orlikova B, Tasdemir D, Golais F, Dicato M, Diederich M. The aromatic ketone 4’-hydroxychalcone inhibits TNFalpha-induced NF-kappaB activation via proteasome inhibition. Biochem Pharmacol. 2011;82(6):620–31.
pubmed: 21703248 doi: 10.1016/j.bcp.2011.06.012
Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671–5.
pubmed: 22930834 pmcid: 5554542 doi: 10.1038/nmeth.2089
Yan JS, Yang MY, Zhang XH, Luo CH, Du CK, Jiang Y, et al. Mitochondrial oxidative phosphorylation is dispensable for survival of CD34(+) chronic myeloid leukemia stem and progenitor cells. Cell Death Dis. 2022;13(4):384.
pubmed: 35444236 pmcid: 9021200 doi: 10.1038/s41419-022-04842-5
Pujana MA, Han JD, Starita LM, Stevens KN, Tewari M, Ahn JS, et al. Network modeling links breast cancer susceptibility and centrosome dysfunction. Nat Genet. 2007;39(11):1338–49.
pubmed: 17922014 doi: 10.1038/ng.2007.2
O’Sullivan CC, Moon DH, Kohn EC, Lee JM. Beyond breast and ovarian cancers: PARP Inhibitors for BRCA mutation-associated and BRCA-like solid tumors. Front Oncol. 2014;4:42.
pubmed: 24616882 pmcid: 3937815
Paulet L, Trecourt A, Leary A, Peron J, Descotes F, Devouassoux-Shisheboran M, et al. Cracking the homologous recombination deficiency code: how to identify responders to PARP inhibitors. Eur J Cancer. 2022;166:87–99.
pubmed: 35279473 doi: 10.1016/j.ejca.2022.01.037
Kamel D, Gray C, Walia JS, Kumar V. PARP inhibitor drugs in the treatment of breast, ovarian, prostate and pancreatic cancers: an update of clinical trials. Curr Drug Targets. 2018;19(1):21–37.
pubmed: 28699513 doi: 10.2174/1389450118666170711151518
listed Na. AZD5305 more tolerable than earlier PARP Agents. Cancer Discov. 2022;12(7):1602.
doi: 10.1158/2159-8290.CD-NB2022-0039
Bai P, Nagy L, Fodor T, Liaudet L, Pacher P. Poly(ADP-ribose) polymerases as modulators of mitochondrial activity. Trends Endocrinol Metab. 2015;26(2):75–83.
pubmed: 25497347 doi: 10.1016/j.tem.2014.11.003
Fouquerel E, Sobol RW. ARTD1 (PARP1) activation and NAD(+) in DNA repair and cell death. DNA Repair (Amst). 2014;23:27–32.
pubmed: 25283336 doi: 10.1016/j.dnarep.2014.09.004
Rasola A, Bernardi P. Mitochondrial permeability transition in Ca(2+)-dependent apoptosis and necrosis. Cell Calcium. 2011;50(3):222–33.
pubmed: 21601280 doi: 10.1016/j.ceca.2011.04.007
Vosler PS, Sun D, Wang S, Gao Y, Kintner DB, Signore AP, et al. Calcium dysregulation induces apoptosis-inducing factor release: cross-talk between PARP-1- and calpain-signaling pathways. Exp Neurol. 2009;218(2):213–20.
pubmed: 19427306 pmcid: 2710414 doi: 10.1016/j.expneurol.2009.04.032
Lernoux M, Schnekenburger M, Losson H, Vermeulen K, Hahn H, Gerard D, et al. Novel HDAC inhibitor MAKV-8 and imatinib synergistically kill chronic myeloid leukemia cells via inhibition of BCR-ABL/MYC-signaling: effect on imatinib resistance and stem cells. Clin Epigenetics. 2020;12(1):69.
pubmed: 32430012 pmcid: 7236970 doi: 10.1186/s13148-020-00839-z
Losson H, Gajulapalli SR, Lernoux M, Lee JY, Mazumder A, Gerard D, et al. The HDAC6 inhibitor 7b induces BCR-ABL ubiquitination and downregulation and synergizes with imatinib to trigger apoptosis in chronic myeloid leukemia. Pharmacol Res. 2020;160:105058.
pubmed: 32619722 doi: 10.1016/j.phrs.2020.105058
Yan C, Shieh B, Reigan P, Zhang Z, Colucci MA, Chilloux A, et al. Potent activity of indolequinones against human pancreatic cancer: identification of thioredoxin reductase as a potential target. Mol Pharmacol. 2009;76(1):163–72.
pubmed: 19364812 pmcid: 2701460 doi: 10.1124/mol.109.055855
He M, Sheldon PJ, Sherman DH. Characterization of a quinone reductase activity for the mitomycin C binding protein (MRD): Functional switching from a drug-activating enzyme to a drug-binding protein. Proc Natl Acad Sci U S A. 2001;98(3):926–31.
pubmed: 11158572 pmcid: 14686 doi: 10.1073/pnas.98.3.926
Sukkurwala AQ, Martins I, Wang Y, Schlemmer F, Ruckenstuhl C, Durchschlag M, et al. Immunogenic calreticulin exposure occurs through a phylogenetically conserved stress pathway involving the chemokine CXCL8. Cell Death Differ. 2014;21(1):59–68.
pubmed: 23787997 doi: 10.1038/cdd.2013.73
Kepp O, Senovilla L, Kroemer G. Immunogenic cell death inducers as anticancer agents. Oncotarget. 2014;5(14):5190–1.
pubmed: 25114034 pmcid: 4170601 doi: 10.18632/oncotarget.2266
Jin S, DiPaola RS, Mathew R, White E. Metabolic catastrophe as a means to cancer cell death. J Cell Sci. 2007;120(Pt 3):379–83.
pubmed: 17251378 doi: 10.1242/jcs.03349
Song S, Lee JY, Ermolenko L, Mazumder A, Ji S, Ryu H, et al. Tetrahydrobenzimidazole TMQ0153 triggers apoptosis, autophagy and necroptosis crosstalk in chronic myeloid leukemia. Cell Death Dis. 2020;11(2):109.
pubmed: 32034134 pmcid: 7007439 doi: 10.1038/s41419-020-2304-8
Patel SB, Nemkov T, Stefanoni D, Benavides GA, Bassal MA, Crown BL, et al. Metabolic alterations mediated by STAT3 promotes drug persistence in CML. Leukemia. 2021;35(12):3371–82.
pubmed: 34120146 pmcid: 8632690 doi: 10.1038/s41375-021-01315-0
Li Y, Zeng P, Xiao J, Huang P, Liu P. Modulation of energy metabolism to overcome drug resistance in chronic myeloid leukemia cells through induction of autophagy. Cell Death Discov. 2022;8(1):212.
pubmed: 35443725 pmcid: 9021256 doi: 10.1038/s41420-022-00991-w
Gottschalk S, Anderson N, Hainz C, Eckhardt SG, Serkova NJ. Imatinib (STI571)-mediated changes in glucose metabolism in human leukemia BCR-ABL-positive cells. Clin Cancer Res. 2004;10(19):6661–8.
pubmed: 15475456 doi: 10.1158/1078-0432.CCR-04-0039
De Rosa V, Monti M, Terlizzi C, Fonti R, Del Vecchio S, Iommelli F. Coordinate modulation of glycolytic enzymes and OXPHOS by Imatinib in BCR-ABL driven chronic myelogenous leukemia cells. Int J Mol Sci. 2019;20(13):3134.
pubmed: 31252559 pmcid: 6651622 doi: 10.3390/ijms20133134
Karlikova R, Siroka J, Friedecky D, Faber E, Hrda M, Micova K, et al. Metabolite profiling of the plasma and leukocytes of chronic myeloid leukemia patients. J Proteome Res. 2016;15(9):3158–66.
pubmed: 27465658 doi: 10.1021/acs.jproteome.6b00356
Kluza J, Jendoubi M, Ballot C, Dammak A, Jonneaux A, Idziorek T, et al. Exploiting mitochondrial dysfunction for effective elimination of imatinib-resistant leukemic cells. PLoS ONE. 2011;6(7):e21924.
pubmed: 21789194 pmcid: 3138741 doi: 10.1371/journal.pone.0021924
Pawlowska E, Blasiak J. DNA repair–a double-edged sword in the genomic stability of cancer cells-the case of chronic myeloid leukemia. Int J Mol Sci. 2015;16(11):27535–49.
pubmed: 26593906 pmcid: 4661907 doi: 10.3390/ijms161126049
Benito R, Lumbreras E, Abaigar M, Gutierrez NC, Delgado M, Robledo C, et al. Imatinib therapy of chronic myeloid leukemia restores the expression levels of key genes for DNA damage and cell-cycle progression. Pharmacogenet Genomics. 2012;22(5):381–8.
pubmed: 22388797 doi: 10.1097/FPC.0b013e328351f3e9
G. Lindström HJ, Friedman R. The effects of combination treatments on drug resistance in chronic myeloid leukaemia: an evaluation of the tyrosine kinase inhibitors axitinib and asciminib. BMC Cancer. 2020;20(1):397.
pubmed: 32380976 pmcid: 7204252 doi: 10.1186/s12885-020-06782-9
Haselbarth L, Karow A, Mentz K, Bottcher M, Roche-Lancaster O, Krumbholz M, et al. Effects of the STAMP-inhibitor asciminib on T cell activation and metabolic fitness compared to tyrosine kinase inhibition by imatinib, dasatinib, and nilotinib. Cancer Immunol Immunother. 2023;72(6):1661–72.
pubmed: 36602564 pmcid: 10198838 doi: 10.1007/s00262-022-03361-8
Andrabi SA, Dawson TM, Dawson VL. Mitochondrial and nuclear cross talk in cell death: parthanatos. Ann N Y Acad Sci. 2008;1147(1):233–41.
pubmed: 19076445 pmcid: 4454457 doi: 10.1196/annals.1427.014
Somers K, Wen VW, Middlemiss SMC, Osborne B, Forgham H, Jung M, et al. A novel small molecule that kills a subset of MLL-rearranged leukemia cells by inducing mitochondrial dysfunction. Oncogene. 2019;38(20):3824–42.
pubmed: 30670779 pmcid: 6756102 doi: 10.1038/s41388-018-0666-5
Seo KS, Kim JH, Min KN, Moon JA, Roh TC, Lee MJ, et al. KL1333, a Novel NAD(+) modulator, improves energy metabolism and mitochondrial dysfunction in MELAS fibroblasts. Front Neurol. 2018;9:552.
pubmed: 30026729 pmcid: 6041391 doi: 10.3389/fneur.2018.00552
Moore Z, Chakrabarti G, Luo X, Ali A, Hu Z, Fattah FJ, et al. NAMPT inhibition sensitizes pancreatic adenocarcinoma cells to tumor-selective, PAR-independent metabolic catastrophe and cell death induced by beta-lapachone. Cell Death Dis. 2015;6(1):e1599.
pubmed: 25590809 pmcid: 4669762 doi: 10.1038/cddis.2014.564
Zhong B, Yu J, Hou Y, Ai N, Ge W, Lu JJ, Chen X. A novel strategy for glioblastoma treatment by induction of noptosis, an NQO1-dependent necrosis. Free Radic Biol Med. 2021;166:104–15.
pubmed: 33600944 doi: 10.1016/j.freeradbiomed.2021.02.014
Kelland LR, Tonkin KS. The effect of 3-aminobenzamide in the radiation response of three human cervix carcinoma xenografts. Radiother Oncol. 1989;15(4):363–9.
pubmed: 2508193 doi: 10.1016/0167-8140(89)90083-2
Dubner D, del Rosario PM, Michelin S, Bourguignon M, Moreau P, Carosella ED, Gisone P. Pharmacological inhibition of DNA repair enzymes differentially modulates telomerase activity and apoptosis in two human leukaemia cell lines. Int J Radiat Biol. 2004;80(8):593–605.
pubmed: 15370971 doi: 10.1080/09553000412331283506
Wang H, Lu C, Li Q, Xie J, Chen T, Tan Y, et al. The role of Kif4A in doxorubicin-induced apoptosis in breast cancer cells. Mol Cells. 2014;37(11):812–8.
pubmed: 25377255 pmcid: 4255101 doi: 10.14348/molcells.2014.0210
Wang H, Lu C, Tan Y, Xie J, Jiang J. Effect of adriamycin on BRCA1 and PARP-1 expression in MCF-7 breast cancer cells. Int J Clin Exp Pathol. 2014;7(9):5909–15.
pubmed: 25337234 pmcid: 4203205
Nguewa PA, Fuertes MA, Cepeda V, Alonso C, Quevedo C, Soto M, Perez JM. Poly(ADP-ribose) polymerase-1 inhibitor 3-aminobenzamide enhances apoptosis induction by platinum complexes in cisplatin-resistant tumor cells. Med Chem. 2006;2(1):47–53.
pubmed: 16787355 doi: 10.2174/157340606775197697
Jacob DA, Bahra M, Langrehr JM, Boas-Knoop S, Stefaniak R, Davis J, et al. Combination therapy of poly (ADP-ribose) polymerase inhibitor 3-aminobenzamide and gemcitabine shows strong antitumor activity in pancreatic cancer cells. J Gastroenterol Hepatol. 2007;22(5):738–48.
pubmed: 17444865 doi: 10.1111/j.1440-1746.2006.04496.x
Keppler BD, Song J, Nyman J, Voigt CA, Bent AF. 3-Aminobenzamide Blocks MAMP-induced callose deposition independently of its poly(ADPribosyl)ation inhibiting activity. Front Plant Sci. 2018;9:1907.
pubmed: 30619442 pmcid: 6305757 doi: 10.3389/fpls.2018.01907
Ricciarelli R, Palomba L, Cantoni O, Azzi A. 3-Aminobenzamide inhibition of protein kinase C at a cellular level. FEBS Lett. 1998;431(3):465–7.
pubmed: 9714565 doi: 10.1016/S0014-5793(98)00811-4
Czapski GA, Cakala M, Kopczuk D, Strosznajder JB. Effect of poly(ADP-ribose) polymerase inhibitors on oxidative stress evoked hydroxyl radical level and macromolecules oxidation in cell free system of rat brain cortex. Neurosci Lett. 2004;356(1):45–8.
pubmed: 14746898 doi: 10.1016/j.neulet.2003.11.022
Eriksson C, Busk L, Brittebo EB. 3-Aminobenzamide: effects on cytochrome P450-dependent metabolism of chemicals and on the toxicity of dichlobenil in the olfactory mucosa. Toxicol Appl Pharmacol. 1996;136(2):324–31.
pubmed: 8619240 doi: 10.1006/taap.1996.0039
Dela Cruz CS, Kang MJ. Mitochondrial dysfunction and damage associated molecular patterns (DAMPs) in chronic inflammatory diseases. Mitochondrion. 2018;41:37–44.
pubmed: 29221810 doi: 10.1016/j.mito.2017.12.001

Auteurs

Barbora Orlikova-Boyer (B)

Laboratoire de Biologie Moléculaire du Cancer, BAM3 Pavillon 2, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg.

Anne Lorant (A)

Laboratoire de Biologie Moléculaire du Cancer, BAM3 Pavillon 2, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg.

Sruthi Reddy Gajulapalli (SR)

Department of Pharmacy, Research Institute of Pharmaceutical Sciences & Natural Products Research Institute, College of Pharmacy, Seoul National University, 1, Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea.

Claudia Cerella (C)

Laboratoire de Biologie Moléculaire du Cancer, BAM3 Pavillon 2, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg.

Michael Schnekenburger (M)

Laboratoire de Biologie Moléculaire du Cancer, BAM3 Pavillon 2, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg.

Jin-Young Lee (JY)

Department of Pharmacy, Research Institute of Pharmaceutical Sciences & Natural Products Research Institute, College of Pharmacy, Seoul National University, 1, Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea.
Present address: Department of Biological Sciences, Keimyung University, Daegu, 42601, Republic of Korea.

Ji Yeon Paik (JY)

Department of Pharmacy, Research Institute of Pharmaceutical Sciences & Natural Products Research Institute, College of Pharmacy, Seoul National University, 1, Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea.

Yejin Lee (Y)

Department of Pharmacy, Research Institute of Pharmaceutical Sciences & Natural Products Research Institute, College of Pharmacy, Seoul National University, 1, Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea.

David Siegel (D)

Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.

David Ross (D)

Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.

Byung Woo Han (BW)

Department of Pharmacy, Research Institute of Pharmaceutical Sciences & Natural Products Research Institute, College of Pharmacy, Seoul National University, 1, Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea.

Thi Kim Yen Nguyen (TKY)

Department of Pharmacy, Research Institute of Pharmaceutical Sciences & Natural Products Research Institute, College of Pharmacy, Seoul National University, 1, Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea.

Christo Christov (C)

Faculté de Médecine, Université de Lorraine, Nancy, France.

Hyoung Jin Kang (HJ)

Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Cancer Research Institute, Seoul National University Children's Hospital, Seoul, 03080, Republic of Korea.

Mario Dicato (M)

Laboratoire de Biologie Moléculaire du Cancer, BAM3 Pavillon 2, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg.

Marc Diederich (M)

Department of Pharmacy, Research Institute of Pharmaceutical Sciences & Natural Products Research Institute, College of Pharmacy, Seoul National University, 1, Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea. marcdiederich@snu.ac.kr.

Classifications MeSH