Deleterious effect of sustained neuroinflammation in pediatric traumatic brain injury.

Brain functional connectivity Chronic traumatic encephalopathy Microglia Tertiary lesions White matter lesions

Journal

Brain, behavior, and immunity
ISSN: 1090-2139
Titre abrégé: Brain Behav Immun
Pays: Netherlands
ID NLM: 8800478

Informations de publication

Date de publication:
03 May 2024
Historique:
received: 28 11 2023
revised: 15 04 2024
accepted: 22 04 2024
medline: 6 5 2024
pubmed: 6 5 2024
entrez: 5 5 2024
Statut: aheadofprint

Résumé

Despite improved management of traumatic brain injury (TBI), it still leads to lifelong sequelae and disability, particularly in children. Chronic neuroinflammation (the so-called tertiary phase), in particular, microglia/macrophage and astrocyte reactivity, is among the main mechanisms suspected of playing a role in the generation of lesions associated with TBI. The role of acute neuroinflammation is now well understood, but its persistent effect and impact on the brain, particularly during development, are not. Here, we investigated the long-term effects of pediatric TBI on the brain in a mouse model. Pediatric TBI was induced in mice on postnatal day (P) 7 by weight-drop trauma. The time course of neuroinflammation and myelination was examined in the TBI mice. They were also assessed by magnetic resonance, functional ultrasound, and behavioral tests at P45. TBI induced robust neuroinflammation, characterized by acute microglia/macrophage and astrocyte reactivity. The long-term consequences of pediatric TBI studied on P45 involved localized scarring astrogliosis, persistent microgliosis associated with a specific transcriptomic signature, and a long-lasting myelination defect consisting of the loss of myelinated axons, a decreased level of myelin binding protein, and severe thinning of the corpus callosum. These results were confirmed by reduced fractional anisotropy, measured by diffusion tensor imaging, and altered inter- and intra-hemispheric connectivity, measured by functional ultrasound imaging. In addition, adolescent mice with pediatric TBI showed persistent social interaction deficits and signs of anxiety and depressive behaviors. We show that pediatric TBI induces tertiary neuroinflammatory processes associated with white matter lesions and altered behavior. These results support our model as a model for preclinical studies for tertiary lesions following TBI.

Identifiants

pubmed: 38705494
pii: S0889-1591(24)00377-5
doi: 10.1016/j.bbi.2024.04.029
pii:
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

Copyright © 2024. Published by Elsevier Inc.

Auteurs

Alice Jacquens (A)

Université Paris Cité, Inserm, NeuroDiderot, 75019 Paris, France; Sorbonne University, GRC 29, AP-HP, DMU DREAM, Department of Anaesthesiology and Critical Care Medicine, Pitié-Salpêtrière Hospital, 47-83, boulevard de l'Hôpital, 75013 Paris, France. Electronic address: alice.jacquens@gmail.com.

Zsolt Csaba (Z)

Université Paris Cité, Inserm, NeuroDiderot, 75019 Paris, France.

Haleh Soleimanzad (H)

Physics for Medicine Paris, Inserm, ESPCI Paris, PSL Research University, CNRS, 75005 Paris, France.

Cindy Bokobza (C)

Université Paris Cité, Inserm, NeuroDiderot, 75019 Paris, France.

Pierre-Romain Delmotte (PR)

Université Paris Cité, Inserm, NeuroDiderot, 75019 Paris, France.

Caroline Userovici (C)

Université Paris Cité, Inserm, NeuroDiderot, 75019 Paris, France.

Pierre Boussemart (P)

Université Paris Cité, Inserm, NeuroDiderot, 75019 Paris, France.

Vibol Chhor (V)

Université Paris Cité, Inserm, NeuroDiderot, 75019 Paris, France.

Damien Bouvier (D)

Université Paris Cité, Inserm, NeuroDiderot, 75019 Paris, France.

Yohan van de Looij (Y)

Université de Genève, Service Développement et Croissance, Département de Pédiatrie, Faculté de Médecine, 1211 Genève, Suisse; Centre d'Imagerie Biomédicale, Section Technologie d'Imagerie Animale, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Suisse.

Siaho Diao (S)

Université Paris Cité, Inserm, NeuroDiderot, 75019 Paris, France.

Sophie Lemoine (S)

Genomics Core Facility, Département de Biologie, École Normale Supérieure, Institut de Biologie de l'ENS (IBENS), CNRS, INSERM, Université PSL, Paris, France.

Corinne Blugeon (C)

Genomics Core Facility, Département de Biologie, École Normale Supérieure, Institut de Biologie de l'ENS (IBENS), CNRS, INSERM, Université PSL, Paris, France.

Leslie Schwendimann (L)

Université Paris Cité, Inserm, NeuroDiderot, 75019 Paris, France.

Pierrette Young-Ten (P)

Université Paris Cité, Inserm, NeuroDiderot, 75019 Paris, France.

Vanessa Naffaa (V)

Université Paris Cité, Inserm, NeuroDiderot, 75019 Paris, France.

Olivier Laprevote (O)

Université de Paris, CNRS, CiTCoM, 75006 Paris, France; Hôpital Européen Georges Pompidou, AP-HP, Service de Biochimie, 75015 Paris, France.

Mickael Tanter (M)

Physics for Medicine Paris, Inserm, ESPCI Paris, PSL Research University, CNRS, 75005 Paris, France.

Pascal Dournaud (P)

Université Paris Cité, Inserm, NeuroDiderot, 75019 Paris, France.

Juliette Van Steenwinckel (J)

Université Paris Cité, Inserm, NeuroDiderot, 75019 Paris, France.

Vincent Degos (V)

Université Paris Cité, Inserm, NeuroDiderot, 75019 Paris, France; Sorbonne University, GRC 29, AP-HP, DMU DREAM, Department of Anaesthesiology and Critical Care Medicine, Pitié-Salpêtrière Hospital, 47-83, boulevard de l'Hôpital, 75013 Paris, France.

Pierre Gressens (P)

Université Paris Cité, Inserm, NeuroDiderot, 75019 Paris, France.

Classifications MeSH