Associations between in-hospital daily protein intake and adverse clinical outcomes in older patients with heart failure.
Heart failure
Hospitalization
Mortality
Nutrition
Older patients
Protein intake
Journal
ESC heart failure
ISSN: 2055-5822
Titre abrégé: ESC Heart Fail
Pays: England
ID NLM: 101669191
Informations de publication
Date de publication:
05 May 2024
05 May 2024
Historique:
revised:
28
02
2024
received:
24
11
2023
accepted:
01
04
2024
medline:
6
5
2024
pubmed:
6
5
2024
entrez:
5
5
2024
Statut:
aheadofprint
Résumé
The adverse effects of low daily protein intake (DPI) on clinical outcomes in patients with heart failure (HF) are known; however, an optimal DPI to predict event adverse outcomes remains undetermined. Moreover, whether protein restriction therapy for chronic kidney disease is applicable in patients with HF and renal dysfunction remains unclear. In this single-centre, ambispective cohort study, we included 405 patients with HF aged ≥65 years (mean age, 78.6 ± 7.5 years; 50% women). DPI was estimated from consumption over three consecutive days before discharge and normalized relative to the ideal body weight [IBW, 22 kg/m During an average follow-up period of 1.49 ± 0.74 years, 100 patients experienced composite events. Kaplan-Meier survival curves revealed a significantly lower composite event-free rate in patients within the lowest quartile of DPI than in the upper quartiles (log-rank test, P = 0.02). A multivariate Cox proportional hazards analysis after adjusting for established prognostic markers and non-proteogenic energy intake revealed that patients in the lowest DPI quartile faced a two-fold higher risk of composite events than those in the highest quartile [hazard ratio (HR), 2.03; 95% confidence interval (CI), 1.08-3.82; P = 0.03]. The composite event risk linearly increased as DPI decreased (P for nonlinearity = 0.90), with each standard deviation (0.26 g/kg IBW/day) decrease in DPI associated with a 32% increase in composite event risk (HR, 1.32; 95% CI, 1.10-1.71; P = 0.04). There was significant heterogeneity in the effect of DPI, with the possible disadvantage of lower DPI in patients with HF with cystatin C-based estimated glomerular filtration rate <30 mL/min/1.73 m Lower DPI during hospitalization is associated with an increased risk of mortality and HF readmission independent of non-proteogenic energy intake, and the possible optimal DPI for predicting adverse clinical outcomes is >1.12 g/kg IBW/day in older patients with HF. Caution is warranted when protein restriction therapy is administered to older patients with HF and renal dysfunction.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Japan Society for the Promotion of Science
ID : JP20K19313
Organisme : Japan Society for the Promotion of Science
ID : JP22K11288
Organisme : Yuasa Memorial Foundation
Organisme : Hokkaido Heart Association Grant for Research
Organisme : Kondou Kinen Medical Foundation
Informations de copyright
© 2024 The Authors. ESC Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
Références
Savarese G, Becher PM, Lund LH, Seferovic P, Rosano GMC, Coats AJS. Global burden of heart failure: A comprehensive and updated review of epidemiology. Cardiovasc Res 2022;118:3272‐3287. doi:10.1093/cvr/cvac013
Chen R, Xu J, Wang Y, Jiang B, Xu X, Lan Y, et al. Prevalence of sarcopenia and its association with clinical outcomes in heart failure: An updated meta‐analysis and systematic review. Clin Cardiol 2023;46:260‐268. doi:10.1002/clc.23970
Matsue Y, Kamiya K, Saito H, Saito K, Ogasahara Y, Maekawa E, et al. Prevalence and prognostic impact of the coexistence of multiple frailty domains in elderly patients with heart failure: The FRAGILE‐HF cohort study. Eur J Heart Fail 2020;22:2112‐2119. doi:10.1002/ejhf.1926
Katano S, Honma S, Nagaoka R, Numazawa R, Yamano K, Fujisawa Y, et al. Anthropometric parameters‐derived estimation of muscle mass predicts all‐cause mortality in heart failure patients. ESC Heart Fail 2022;9:4358‐4365. doi:10.1002/ehf2.14121
Josiak K, Jankowska EA, Piepoli MF, Banasiak W, Ponikowski P. Skeletal myopathy in patients with chronic heart failure: Significance of anabolic‐androgenic hormones. J Cachexia Sarcopenia Muscle 2014;5:287‐296. doi:10.1007/s13539‐014‐0152‐z
Damluji AA, Alfaraidhy M, AlHajri N, Rohant NN, Kumar M, Malouf CA, et al. Sarcopenia and cardiovascular diseases. Circulation 2023;147:1534‐1553. doi:10.1161/circulationaha.123.064071
Bauer J, Morley JE, Schols AMWJ, Ferrucci L, Cruz‐Jentoft AJ, Dent E, et al. Sarcopenia: A time for action. An SCWD position paper. J Cachexia Sarcopenia Muscle 2019;10:956‐961. doi:10.1002/jcsm.12483
Deutz NEP, Bauer JM, Barazzoni R, Biolo G, Boirie Y, Bosy‐Westphal A, et al. Protein intake and exercise for optimal muscle function with aging: Recommendations from the ESPEN Expert Group. Clin Nutr 2014;33:929‐936. doi:10.1016/j.clnu.2014.04.007
Streng KW, Hillege HL, Maaten JM, Veldhuisen DJ, Dickstein K, Ng LL, et al. Clinical implications of low estimated protein intake in patients with heart failure. J Cachexia Sarcopenia Muscle 2022;13:1762‐1770. doi:10.1002/jcsm.12973
Tsutsui H, Isobe M, Ito H, Ito H, Okumura K, Ono M, et al. JCS 2017/JHFS 2017 guideline on diagnosis and treatment of acute and chronic heart failure—Digest version. Circ J 2019;83:2084‐2184. doi:10.1253/circj.cj‐19‐0342
Katano S, Hashimoto A, Ohori K, Watanabe A, Honma R, Yanase R, et al. Nutritional status and energy intake as predictors of functional status after cardiac rehabilitation in elderly inpatients with heart failure—A retrospective cohort study. Circ J 2018;82:1584‐1591. doi:10.1253/circj.cj‐17‐1202
Katano S, Yano T, Kouzu H, Ohori K, Shimomura K, Honma S, et al. Energy intake during hospital stay predicts all‐cause mortality after discharge independently of nutritional status in elderly heart failure patients. Clin Res Cardiol 2021;110:1202‐1220. doi:10.1007/s00392‐020‐01774‐y
Kawasaki Y, Sakai M, Nishimura K, Fujiwara K, Fujisaki K, Shimpo M, et al. Criterion validity of the visual estimation method for determining patients' meal intake in a community hospital. Clin Nutr 2016;35:1543‐1549. doi:10.1016/j.clnu.2016.04.006
Kawasaki Y, Akamatsu R, Tamaura Y, Sakai M, Fujiwara K, Tsutsuura S. Differences in the validity of a visual estimation method for determining patients' meal intake between various meal types and supplied food items. Clin Nutr 2019;38:213‐219. doi:10.1016/j.clnu.2018.01.031
Ikizler TA, Cano NJ, Franch H, Fouque D, Himmelfarb J, Kalantar‐Zadeh K, et al. Prevention and treatment of protein energy wasting in chronic kidney disease patients: A consensus statement by the International Society of Renal Nutrition and Metabolism. Kidney Int 2013;84:1096‐1107. doi:10.1038/ki.2013.147
Kaiser MJ, Bauer JM, Ramsch C, Uter W, Guigoz Y, et al. Validation of the Mini Nutritional Assessment Short‐Form (MNA®‐SF): A practical tool for identification of nutritional status. J Nutr Health Aging 2009;13:782‐788. doi:10.1007/s12603‐009‐0214‐7
Katano S, Yano T, Tsukada T, Kouzu H, Honma S, Inoue T, et al. Clinical risk factors and prognostic impact of osteoporosis in patients with chronic heart failure. Circ J 2020;84:2224‐2234. doi:10.1253/circj.cj‐20‐0593
Satake S, Arai H. The revised Japanese version of the Cardiovascular Health Study criteria (revised J‐CHS criteria). Geriatr Gerontol Int 2020;20:992‐993. doi:10.1111/ggi.14005
Ohori K, Yano T, Katano S, Nagaoka R, Numazawa R, Yamano K, et al. Coexistence of sarcopenia and self‐reported weight loss is a powerful predictor of mortality in older patients with heart failure. Geriatr Gerontol Int 2023;24:95‐101. doi:10.1111/ggi.14778
Nagaoka R, Katano S, Yano T, Numazawa R, Yamano K, Fujisawa Y, et al. Optimal serum 25‐hydroxyvitamin D level to prevent sarcopenia in patients with heart failure: Insights from a dose‐response relationship. Nutr Metab Cardiovasc Dis 2023;34:606‐617. doi:10.1016/j.numecd.2023.10.003
Horio M, Imai E, Yasuda Y, Watanabe T, Matsuo S, Collaborators Developing the Japanese Equation for Estimated GFR. GFR estimation using standardized serum cystatin C in Japan. Am J Kidney Dis 2013;61:197‐203. doi:10.1053/j.ajkd.2012.07.007
Austin PC, White IR, Lee DS, van Buuren S. Missing data in clinical research: A tutorial on multiple imputation. Can J Cardiol 2020;37:1322‐1331. doi:10.1016/j.cjca.2020.11.010
Willett WC, Howe GR, Kushi LH. Adjustment for total energy intake in epidemiologic studies. Am J Clin Nutr 1997;65:1220S‐1228S. doi:10.1093/ajcn/65.4.1220s
DeLong ER, DeLong DM, Clarke‐Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 1988;44:837. doi:10.2307/2531595
Konishi M, Akiyama E, Matsuzawa Y, Sato R, Kikuchi S, Nakahashi H, et al. Prognostic impact of muscle and fat mass in patients with heart failure. J Cachexia Sarcopenia Muscle 2021;12:568‐576. doi:10.1002/jcsm.12702
Saijo T, Yasumoto K, Ryomoto K, Momoki C, Habu D. Association of protein intake during hospitalization with readmission in older adult patients with heart failure at risk of malnutrition. Nutr Clin Pract 2023;38:686‐697. doi:10.1002/ncp.10957
Kuehneman T, Gregory M, de Waal D, Davidson P, Frickel R, King C, et al. Academy of Nutrition and Dietetics evidence‐based practice guideline for the management of heart failure in adults. J Acad Nutr Diet 2018;118:2331‐2345. doi:10.1016/j.jand.2018.03.004
Volkert D, Beck AM, Cederholm T, Cruz‐Jentoft A, Hooper L, Kiesswetter E, et al. ESPEN practical guideline: Clinical nutrition and hydration in geriatrics. Clin Nutr 2022;41:958‐989. doi:10.1016/j.clnu.2022.01.024
Qaradakhi T, Gadanec LK, McSweeney KR, Abraham JR, Apostolopoulos V, Zulli A. The anti‐inflammatory effect of taurine on cardiovascular disease. Nutrients 2020;12:2847. doi:10.3390/nu12092847
Yan B, Su X, Xu B, Qiao X, Wang L. Effect of diet protein restriction on progression of chronic kidney disease: A systematic review and meta‐analysis. PLoS ONE 2018;13:e0206134. doi:10.1371/journal.pone.0206134
Jiang Z, Zhang X, Yang L, Li Z, Qin W. Effect of restricted protein diet supplemented with keto analogues in chronic kidney disease: A systematic review and meta‐analysis. Int Urol Nephrol 2016;48:409‐418. doi:10.1007/s11255‐015‐1170‐2
Esmeijer K, Geleijnse JM, de Fijter JW, Kromhout D, Hoogeveen EK. Dietary protein intake and kidney function decline after myocardial infarction: The Alpha Omega Cohort. Nephrol Dial Transpl 2019;35:106‐115. doi:10.1093/ndt/gfz015
Naghshi S, Sadeghi O, Willett WC, Esmaillzadeh A. Dietary intake of total, animal, and plant proteins and risk of all cause, cardiovascular, and cancer mortality: Systematic review and dose‐response meta‐analysis of prospective cohort studies. BMJ 2020;370:m2412. doi:10.1136/bmj.m2412
Ikizler TA, Burrowes JD, Byham‐Gray LD, Campbell KL, Carrero J‐J, Chan W, et al. KDOQI clinical practice guideline for nutrition in CKD: 2020 update. Am J Kidney Dis 2020;76:S1‐S107. doi:10.1053/j.ajkd.2020.05.006
Kistler BM, Moore LW, Benner D, Biruete A, Boaz M, Brunori G, et al. The International Society of Renal Nutrition and Metabolism commentary on the National Kidney Foundation and Academy of Nutrition and Dietetics KDOQI clinical practice guideline for nutrition in chronic kidney disease. J Ren Nutr 2021;31:116‐120.e1. doi:10.1053/j.jrn.2020.05.002
Sekiguchi T, Kabayama M, Ryuno H, Tanaka K, Kiyoshige E, Akagi Y, et al. Association between protein intake and changes in renal function among Japanese community‐dwelling older people: The SONIC study. Geriatr Gerontol Int 2022;22:286‐291. doi:10.1111/ggi.14355
Dharnidharka VR, Kwon C, Stevens G. Serum cystatin C is superior to serum creatinine as a marker of kidney function: A meta‐analysis. Am J Kidney Dis 2002;40:221‐226. doi:10.1053/ajkd.2002.34487
Huang S‐HS, Sharma AP, Yasin A, Lindsay RM, Clark WF, Filler G. Hyperfiltration affects accuracy of creatinine eGFR measurement. Clin J Am Soc Nephrol 2011;6:274‐280. doi:10.2215/cjn.02760310
Ishigo T, Katano S, Yano T, Kouzu H, Ohori K, Nakata H, et al. Overestimation of glomerular filtration rate by creatinine‐based equation in heart failure patients is predicted by a novel scoring system. Geriatr Gerontol Int 2020;20:752‐758. doi:10.1111/ggi.13959
Butani L, Polinsky MS, Kaiser BA, Baluarte HJ. Dietary protein intake significantly affects the serum creatinine concentration. Kidney Int 2002;61:1907. doi:10.1046/j.1523‐1755.2002.00342.x
Tangri N, Stevens LA, Schmid CH, Zhang Y, Beck GJ, Greene T, et al. Changes in dietary protein intake has no effect on serum cystatin C levels independent of the glomerular filtration rate. Kidney Int 2011;79:471‐477. doi:10.1038/ki.2010.431
Nair S, O'Brien SV, Hayden K, Pandya B, Lisboa PJG, Hardy KJ, et al. Effect of a cooked meat meal on serum creatinine and estimated glomerular filtration rate in diabetes‐related kidney disease. Diabetes Care 2014;37:483‐487. doi:10.2337/dc13‐1770
Bhaskaran K, dos‐Santos‐Silva I, Leon DA, Douglas IJ, Smeeth L. Association of BMI with overall and cause‐specific mortality: A population‐based cohort study of 3·6 million adults in the UK. Lancet Diabetes Endocrinol 2018;6:944‐953. doi:10.1016/s2213‐8587(18)30288‐2
Bernier‐Jean A, Prince RL, Lewis JR, Craig JC, Hodgson JM, Lim WH, et al. Dietary plant and animal protein intake and decline in estimated glomerular filtration rate among elderly women: A 10‐year longitudinal cohort study. Nephrol Dial Transplant 2020;36:1640‐1647. doi:10.1093/ndt/gfaa081