Glucagon-like peptide-1 analogs activate AMP kinase leading to reversal of the Warburg metabolic switch in breast cancer cells.


Journal

Medical oncology (Northwood, London, England)
ISSN: 1559-131X
Titre abrégé: Med Oncol
Pays: United States
ID NLM: 9435512

Informations de publication

Date de publication:
06 May 2024
Historique:
received: 21 02 2024
accepted: 24 04 2024
medline: 6 5 2024
pubmed: 6 5 2024
entrez: 5 5 2024
Statut: epublish

Résumé

Breast cancer (BC) is associated with type 2 diabetes mellitus (T2DM) and obesity. Glucagon-like peptide (GLP)-1 regulates post-prandial insulin secretion, satiety, and gastric emptying. Several GLP-1 analogs have been FDA-approved for the treatment of T2DM and obesity. Moreover, GLP-1 regulates various metabolic activities across different tissues by activating metabolic signaling pathways like adenosine monophosphate (AMP) activated protein kinase (AMPK), and AKT. Rewiring metabolic pathways is a recognized hallmark of cancer, regulated by several cancer-related pathways, including AKT and AMPK. As GLP-1 regulates AKT and AMPK, we hypothesized that it alters BC cells' metabolism, thus inhibiting proliferation. The effect of the GLP-1 analogs exendin-4 (Ex4) and liraglutide on viability, AMPK signaling and metabolism of BC cell lines were assessed. Viability of BC cells was evaluated using colony formation and MTT/XTT assays. Activation of AMPK and related signaling effects were evaluated using western blot. Metabolism effects were measured for glucose, lactate and ATP. Exendin-4 and liraglutide activated AMPK in a cAMP-dependent manner. Blocking Ex4-induced activation of AMPK by inhibition of AMPK restored cell viability. Interestingly, Ex4 and liraglutide reduced the levels of glycolytic metabolites and decreased ATP production, suggesting that GLP-1 analogs impair glycolysis. Notably, inhibiting AMPK reversed the decline in ATP levels, highlighting the role of AMPK in this process. These results establish a novel signaling pathway for GLP-1 in BC cells through cAMP and AMPK modulation affecting proliferation and metabolism. This study suggests that GLP-1 analogs should be considered for diabetic patients with BC.

Identifiants

pubmed: 38705935
doi: 10.1007/s12032-024-02390-w
pii: 10.1007/s12032-024-02390-w
doi:

Substances chimiques

Exenatide 9P1872D4OL
Liraglutide 839I73S42A
Glucagon-Like Peptide 1 89750-14-1
AMP-Activated Protein Kinases EC 2.7.11.31
Venoms 0
Adenylate Kinase EC 2.7.4.3
Peptides 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

138

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Scully T, Ettela A, LeRoith D, Gallagher EJ. Obesity, type 2 diabetes, and cancer risk. Front Oncol. 2021;10: 615375.
doi: 10.3389/fonc.2020.615375 pubmed: 33604295 pmcid: 7884814
Piccoli GF, Mesquita LA, Stein C, Aziz M, Zoldan M, Degobi NAH, et al. Do GLP-1 receptor agonists increase the risk of breast cancer? A systematic review and meta-analysis. J Clin Endocrinol Metab. 2021;106(3):912–21.
doi: 10.1210/clinem/dgaa891 pubmed: 33248445
Ligumsky H, Wolf I, Israeli S, Haimsohn M, Ferber S, Karasik A, et al. The peptide-hormone glucagon-like peptide-1 activates cAMP and inhibits growth of breast cancer cells. Breast Cancer Res Treat. 2012;132(2):449–61.
doi: 10.1007/s10549-011-1585-0 pubmed: 21638053
de Graaf C, Donnelly D, Wootten D, Lau J, Sexton PM, Miller LJ, et al. Glucagon-like Peptide-1 and its class B G protein-coupled receptors: a long march to therapeutic successes. Pharmacol Rev. 2016;68(4):954–1013 (Ye RD, editor).
doi: 10.1124/pr.115.011395 pubmed: 27630114 pmcid: 5050443
Trujillo JM, Nuffer W, Smith BA. GLP-1 receptor agonists: an updated review of head-to-head clinical studies. Ther Adv Endocrinol Metab. 2021;12:2042018821997320.
doi: 10.1177/2042018821997320 pubmed: 33767808 pmcid: 7953228
Li Z, Ni CL, Yao Z, Chen LM, Niu WY. Liraglutide enhances glucose transporter 4 translocation via regulation of AMP-activated protein kinase signaling pathways in mouse skeletal muscle cells. Metabolism. 2014;63(8):1022–30.
doi: 10.1016/j.metabol.2014.05.008 pubmed: 24972503
Zou Z, Tao T, Li H, Zhu X. mTOR signaling pathway and mTOR inhibitors in cancer: progress and challenges. Cell Biosci. 2020;10(1):31.
doi: 10.1186/s13578-020-00396-1 pubmed: 32175074 pmcid: 7063815
Rascio F, Spadaccino F, Rocchetti MT, Castellano G, Stallone G, Netti GS, et al. The pathogenic role of PI3K/AKT pathway in cancer onset and drug resistance: an updated review. Cancers (Basel). 2021;13(16):3949.
doi: 10.3390/cancers13163949 pubmed: 34439105
Luo Z, Zang M, Guo W. AMPK as a metabolic tumor suppressor: control of metabolism and cell growth. Future Oncol. 2010;6(3):457–70.
doi: 10.2217/fon.09.174 pubmed: 20222801
Zhu XX, Feng ZH, Liu LZ, Zhang Y. Liraglutide suppresses the proliferation of endometrial cancer cells through the adenosine 5′-monophosphate (AMP)-activated protein kinase signaling pathway. Chin Med J (Engl). 2021;134(5):576–8.
doi: 10.1097/CM9.0000000000001363 pubmed: 33470656
Koehler JA, Kain T, Drucker DJ. Glucagon-like peptide-1 receptor activation inhibits growth and augments apoptosis in murine CT26 colon cancer cells. Endocrinology. 2011;152(9):3362–72.
doi: 10.1210/en.2011-1201 pubmed: 21771884
Li XN, Bu HM, Ma XH, Lu S, Zhao S, Cui YL, et al. Glucagon-like Peptide-1 analogues inhibit proliferation and increase apoptosis of human prostate cancer cells in vitro. Exp Clin Endocrinol Diabetes. 2017;125(2):91–7.
pubmed: 28008585
Crespel A, De Boisvilliers F, Gros L, Kervran A. Effects of glucagon and glucagon-like peptide-1-(7–36) amide on C cells from rat thyroid and medullary thyroid carcinoma CA-77 cell line. Endocrinology. 1996;137(9):3674–80.
doi: 10.1210/endo.137.9.8756532 pubmed: 8756532
Zhao W, Zhang X, Zhou Z, Sun B, Gu W, Liu J, et al. Liraglutide inhibits the proliferation and promotes the apoptosis of MCF-7 human breast cancer cells through downregulation of microRNA-27a expression. Mol Med Rep. 2018;17(4):5202–12.
pubmed: 29393459 pmcid: 5865986
Iwaya C, Nomiyama T, Komatsu S, Kawanami T, Tsutsumi Y, Hamaguchi Y, et al. Exendin-4, a glucagonlike Peptide-1 receptor agonist, attenuates breast cancer growth by inhibiting NF-κB activation. Endocrinology. 2017;158(12):4218–32.
doi: 10.1210/en.2017-00461 pubmed: 29045658
Jujić A, Godina C, Belting M, Melander O, Juul Holst J, Ahlqvist E, et al. Endogenous incretin levels and risk of first incident cancer: a prospective cohort study. Sci Rep. 2023;13(1):382.
doi: 10.1038/s41598-023-27509-3 pubmed: 36611045 pmcid: 9825393
Lu J, Tan M, Cai Q. The warburg effect in tumor progression: mitochondrial oxidative metabolism as an anti-metastasis mechanism. Cancer Lett. 2015;356(2):156–64.
doi: 10.1016/j.canlet.2014.04.001 pubmed: 24732809
Amir S, Golan M, Mabjeesh NJ. Targeted knockdown of SEPT9_v1 inhibits tumor growth and angiogenesis of human prostate cancer cells concomitant with disruption of hypoxia-inducible factor-1 pathway. Mol Cancer Res. 2010;8(5):643–52.
doi: 10.1158/1541-7786.MCR-09-0497 pubmed: 20407014
Parker JS, Mullins M, Cheang MCU, Leung S, Voduc D, Vickery T, et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol. 2009;27(8):1160–7.
doi: 10.1200/JCO.2008.18.1370 pubmed: 19204204 pmcid: 2667820
Therneau TM, until 2009) TL (original S >R port and R maintainer, Elizabeth A, Cynthia C. survival: Survival Analysis [Internet]. 2023 [cited 2023 Aug 30]. Available from: https://cran.r-project.org/web/packages/survival/index.html
Liu Z-Z, Duan X-X, Yuan M-c, Yu J, Hu X, Han X, et al. Glucagon-like peptide-1 receptor activation by liraglutide promotes breast cancer through NOX4/ROS/VEGF pathway. Life Sci. 2022;294(1): 120370.
doi: 10.1016/j.lfs.2022.120370 pubmed: 35124000
Steinberg GR, Carling D. AMP-activated protein kinase: the current landscape for drug development. Nat Rev Drug Discov. 2019;18(7):527–51.
doi: 10.1038/s41573-019-0019-2 pubmed: 30867601
Tang YC, Williams BR, Siegel JJ, Amon A. The energy and proteotoxic stress-inducing compounds AICAR and 17-AAG antagonize proliferation in aneuploid cells. Cell. 2011;144(4):499–512.
doi: 10.1016/j.cell.2011.01.017 pubmed: 21315436 pmcid: 3532042
Stine ZE, Schug ZT, Salvino JM, Dang CV. Targeting cancer metabolism in the era of precision oncology. Nat Rev Drug Discov. 2022;21(2):141–62.
doi: 10.1038/s41573-021-00339-6 pubmed: 34862480
Hadad SM, Baker L, Quinlan PR, Robertson KE, Bray SE, Thomson G, et al. Histological evaluation of AMPK signalling in primary breast cancer. BMC Cancer. 2009;1(9):307.
doi: 10.1186/1471-2407-9-307
Fox MM, Phoenix KN, Kopsiaftis SG, Claffey KP. AMP-activated protein kinase α 2 isoform suppression in primary breast cancer alters AMPK growth control and apoptotic signaling. Genes Cancer. 2013;4(1–2):3–14.
doi: 10.1177/1947601913486346 pubmed: 23946867 pmcid: 3743155
Kim HS, Kim MJ, Lim J, Yang Y, Lee MS, Lim JS. NDRG2 overexpression enhances glucose deprivation-mediated apoptosis in breast cancer cells via inhibition of the LKB1-AMPK pathway. Genes Cancer. 2014;5(5–6):175–85.
doi: 10.18632/genesandcancer.17 pubmed: 25061501 pmcid: 4104758
Brown KA, Samarajeewa NU, Simpson ER. Endocrine-related cancers and the role of AMPK. Mol Cell Endocrinol. 2013;366(2):170–9.
doi: 10.1016/j.mce.2012.06.016 pubmed: 22801104
Nomiyama T, Kawanami T, Irie S, Hamaguchi Y, Terawaki Y, Murase K, et al. Exendin-4, a GLP-1 receptor agonist, attenuates prostate cancer growth. Diabetes. 2014;63(11):3891–905.
doi: 10.2337/db13-1169 pubmed: 24879833
Jacobsen LV, Flint A, Olsen AK, Ingwersen SH. Liraglutide in type 2 diabetes mellitus: clinical pharmacokinetics and pharmacodynamics. Clin Pharmacokinet. 2016;55(6):657–72.
doi: 10.1007/s40262-015-0343-6 pubmed: 26597252
Krause GC, Lima KG, Dias HB, da Silva EFG, Haute GV, Basso BS, et al. Liraglutide, a glucagon-like peptide-1 analog, induce autophagy and senescence in HepG2 cells. Eur J Pharmacol. 2017;15(809):32–41.
doi: 10.1016/j.ejphar.2017.05.015
Kanda R, Hiraike H, Wada-Hiraike O, Ichinose T, Nagasaka K, Sasajima Y, et al. Expression of the glucagon-like peptide-1 receptor and its role in regulating autophagy in endometrial cancer. BMC Cancer. 2018;18(1):1–11.
doi: 10.1186/s12885-018-4570-8
Zhao H, Wei R, Wang L, Tian Q, Tao M, Ke J, et al. Activation of glucagon-like peptide-1 receptor inhibits growth and promotes apoptosis of human pancreatic cancer cells in a cAMP-dependent manner. Am J Physiol Endocrinol Metab. 2014;306(12):E1431-1441.
doi: 10.1152/ajpendo.00017.2014 pubmed: 24801389
Yao H, Zhang A, Li D, Wu Y, Wang CZ, Wan JY, et al. Comparative effectiveness of GLP-1 receptor agonists on glycaemic control, body weight, and lipid profile for type 2 diabetes: systematic review and network meta-analysis. BMJ. 2024;29(384): e076410.
doi: 10.1136/bmj-2023-076410
Pavlova NN, Zhu J, Thompson CB. The hallmarks of cancer metabolism: still emerging. Cell Metab. 2022;34(3):355–77.
doi: 10.1016/j.cmet.2022.01.007 pubmed: 35123658 pmcid: 8891094

Auteurs

Hagai Ligumsky (H)

Institute of Oncology, Tel Aviv Sourasky Medical Center, Weizmann 6, 64239, Tel Aviv, Israel. hligumsky@eit.org.
Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel. hligumsky@eit.org.

Sharon Amir (S)

Institute of Oncology, Tel Aviv Sourasky Medical Center, Weizmann 6, 64239, Tel Aviv, Israel.

Tamar Arbel Rubinstein (T)

Institute of Oncology, Tel Aviv Sourasky Medical Center, Weizmann 6, 64239, Tel Aviv, Israel.
Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.

Kate Guion (K)

Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA.

Tali Scherf (T)

Weizmann Institute of Science, Rehovot, Israel.

Avraham Karasik (A)

Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
Endocrinology Institute, Chaim Sheba Medical Center, Ramat-Gan, Israel.

Ido Wolf (I)

Institute of Oncology, Tel Aviv Sourasky Medical Center, Weizmann 6, 64239, Tel Aviv, Israel.
Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.

Tami Rubinek (T)

Institute of Oncology, Tel Aviv Sourasky Medical Center, Weizmann 6, 64239, Tel Aviv, Israel.
Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH