Obesity, body fat distribution and eye diseases.
AMD
Cataract
Diabetic retinopathy
Dry eye syndrome
Eye disease
Glaucoma
OSAS
Obesity
Papilledema
Uveitis
Visceral obesity
Journal
Eating and weight disorders : EWD
ISSN: 1590-1262
Titre abrégé: Eat Weight Disord
Pays: Germany
ID NLM: 9707113
Informations de publication
Date de publication:
06 May 2024
06 May 2024
Historique:
received:
20
03
2024
accepted:
22
04
2024
medline:
7
5
2024
pubmed:
7
5
2024
entrez:
6
5
2024
Statut:
epublish
Résumé
The prevalence of obesity, a chronic disease, is increasing, and obesity is now considered a global epidemic. Eye diseases are also increasing worldwide and have serious repercussions on quality of life as well as increasingly high costs for the community. The relationships between obesity and ocular pathologies are not yet well clarified and are not pathologically homogeneous: they seem to be somehow linked to excess body fat, especially to the distribution of adipose tissue and its ectopic deposits. Our objective was to examine the associations between obesity and anthropometric indices, including body mass index (BMI), waist circumference (WC), and the waist/hip ratio (WHR), and the risk of most widespread eye diseases, with particular attention given to the most significant metabolic mechanisms. This article provides a narrative overview of the effect of obesity and anthropometric measurements of body fat on prevalent eye diseases. We used the MEDLINE/PubMed, CINAHL, EMBASE, and Cochrane Library databases from 1984 to 2024. In addition, we hand-searched references from the retrieved articles and explored a number of related websites. A total of 153 publications were considered. There is significant evidence that obesity is associated with several eye diseases. Waist circumference (WC) and the waist/hip ratio (WHR) have been observed to have stronger positive associations with eye diseases than BMI. Obesity must be considered a significant risk factor for eye diseases; hence, a multidisciplinary and multidimensional approach to treating obesity, which also affects ocular health, is important. In the prevention and treatment of eye diseases related to obesity, lifestyle factors, especially diet and physical activity, as well as weight changes, both weight loss and weight gain, should not be overlooked. Level V narrative review.
Sections du résumé
BACKGROUND
BACKGROUND
The prevalence of obesity, a chronic disease, is increasing, and obesity is now considered a global epidemic. Eye diseases are also increasing worldwide and have serious repercussions on quality of life as well as increasingly high costs for the community. The relationships between obesity and ocular pathologies are not yet well clarified and are not pathologically homogeneous: they seem to be somehow linked to excess body fat, especially to the distribution of adipose tissue and its ectopic deposits.
PURPOSE
OBJECTIVE
Our objective was to examine the associations between obesity and anthropometric indices, including body mass index (BMI), waist circumference (WC), and the waist/hip ratio (WHR), and the risk of most widespread eye diseases, with particular attention given to the most significant metabolic mechanisms.
METHODS
METHODS
This article provides a narrative overview of the effect of obesity and anthropometric measurements of body fat on prevalent eye diseases. We used the MEDLINE/PubMed, CINAHL, EMBASE, and Cochrane Library databases from 1984 to 2024. In addition, we hand-searched references from the retrieved articles and explored a number of related websites. A total of 153 publications were considered.
RESULTS
RESULTS
There is significant evidence that obesity is associated with several eye diseases. Waist circumference (WC) and the waist/hip ratio (WHR) have been observed to have stronger positive associations with eye diseases than BMI.
CONCLUSIONS
CONCLUSIONS
Obesity must be considered a significant risk factor for eye diseases; hence, a multidisciplinary and multidimensional approach to treating obesity, which also affects ocular health, is important. In the prevention and treatment of eye diseases related to obesity, lifestyle factors, especially diet and physical activity, as well as weight changes, both weight loss and weight gain, should not be overlooked.
LEVEL OF EVIDENCE
METHODS
Level V narrative review.
Identifiants
pubmed: 38710948
doi: 10.1007/s40519-024-01662-8
pii: 10.1007/s40519-024-01662-8
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
33Informations de copyright
© 2024. The Author(s).
Références
Boutari C, Mantzoros CS (2022) A 2022 update on the epidemiology of obesity and a call to action: as its twin COVID-19 pandemic appears to be receding, the obesity and dysmetabolism pandemic continues to rage on. Metabolism 133:155217. https://doi.org/10.1016/j.metabol.2022.155217
doi: 10.1016/j.metabol.2022.155217
pubmed: 35584732
pmcid: 9107388
Global Burden of Disease Collaborative Network. Global Burden of Disease Study 2019 (GBD 2019) Covariates 1980–2019. Seattle, United States of America: Institute for Health Metrics and Evaluation (IHME), 2020. https://doi.org/10.6069/CFCY-WA51 .
Owei I, Umekwe N, Provo C et al (2017) Insulin-sensitive and insulin-resistant obese and non-obese phenotypes: role in prediction of incident pre-diabetes in a longitudinal biracial cohort. BMJ Open Diabetes Res Care 5:e000415. https://doi.org/10.1136/bmjdrc-2017-000415
doi: 10.1136/bmjdrc-2017-000415
pubmed: 28878939
pmcid: 5574414
Caballero B (2019) Humans against obesity: who will win? Adv Nutr 10:S4–S9. https://doi.org/10.1093/advances/nmy055
doi: 10.1093/advances/nmy055
pubmed: 30721956
pmcid: 6363526
Bourne RRA, Flaxman SR, Braithwaite T et al (2017) Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis. Lancet Glob Health 5:e888–e897. https://doi.org/10.1016/S2214-109X(17)30293-0
doi: 10.1016/S2214-109X(17)30293-0
pubmed: 28779882
Bourne R, Steinmetz JD, Flaxman S et al (2021) Trends in prevalence of blindness and distance and near vision impairment over 30 years: an analysis for the Global Burden of Disease Study. Lancet Glob Health 9:e130–e143. https://doi.org/10.1016/S2214-109X(20)30425-3
doi: 10.1016/S2214-109X(20)30425-3
Steinmetz JD, Bourne RRA, Briant PS et al (2021) Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the Right to Sight: an analysis for the Global Burden of Disease Study. Lancet Glob Health 9:e144–e160. https://doi.org/10.1016/S2214-109X(20)30489-7
doi: 10.1016/S2214-109X(20)30489-7
Flaxman SR, Bourne RRA, Resnikoff S et al (2017) Global causes of blindness and distance vision impairment 1990–2020: a systematic review and meta-analysis. Lancet Glob Health 5:e1221–e1234. https://doi.org/10.1016/S2214-109X(17)30393-5
doi: 10.1016/S2214-109X(17)30393-5
pubmed: 29032195
Kapoor N, Jasper S, Kalra S (2022) Ocular manifestations of obesity: beyond what meets the eye. J Pak Med Assoc 72:574. https://doi.org/10.47391/JPMA.22-020
doi: 10.47391/JPMA.22-020
pubmed: 35320250
Lima-Fontes M, Barata P, Falcão M, Carneiro  (2020) Ocular findings in metabolic syndrome: a review. Porto Biomed J 5:104. https://doi.org/10.1097/j.pbj.0000000000000104
doi: 10.1097/j.pbj.0000000000000104
Ng Yin Ling C, Lim SC, Jonas JB, Sabanayagam C (2021) Obesity and risk of age-related eye diseases: a systematic review of prospective population-based studies. Int J Obes 45:1863–1885. https://doi.org/10.1038/s41366-021-00829-y
doi: 10.1038/s41366-021-00829-y
Ades PA, Savage PD (2010) The obesity paradox: perception vs knowledge. Mayo Clin Proc 85:112–114. https://doi.org/10.4065/mcp.2009.0777
doi: 10.4065/mcp.2009.0777
pubmed: 20118385
pmcid: 2813817
Bosello O, Vanzo A (2021) Obesity paradox and aging. Eat Weight Disord - Stud Anorex Bulim Obes 26:27–35. https://doi.org/10.1007/s40519-019-00815-4
doi: 10.1007/s40519-019-00815-4
Glynn RJ (1995) Body mass index: an independent predictor of cataract. Arch Ophthalmol 113:1131. https://doi.org/10.1001/archopht.1995.01100090057023
doi: 10.1001/archopht.1995.01100090057023
pubmed: 7661746
Schaumberg DA, Glynn RJ, Christen WG et al (2000) Relations of body fat distribution and height with cataract in men. Am J Clin Nutr 72:1495–1502. https://doi.org/10.1093/ajcn/72.6.1495
doi: 10.1093/ajcn/72.6.1495
pubmed: 11101477
Glynn RJ, Rosner B, Christen WG (2009) Evaluation of risk factors for cataract types in a competing risks framework. Ophthalmic Epidemiol 16:98–106. https://doi.org/10.1080/09286580902737532
doi: 10.1080/09286580902737532
pubmed: 19353398
pmcid: 3065391
Elffers TW, de Mutsert R, Lamb HJ et al (2017) Body fat distribution, in particular visceral fat, is associated with cardiometabolic risk factors in obese women. PLoS ONE 12:e0185403. https://doi.org/10.1371/journal.pone.0185403
doi: 10.1371/journal.pone.0185403
pubmed: 28957363
pmcid: 5619737
Rowe NG, Mitchell PG, Cumming RG, Wans JJ (2000) Diabetes, fasting blood glucose and age-related cataract: the Blue Mountains Eye Study. Ophthalmic Epidemiol 7:103–114
doi: 10.1076/0928-6586(200006)721-ZFT103
pubmed: 10934461
Schaumberg DA, Ridker PM, Glynn RJ et al (1999) High levels of plasma C-reactive protein and future risk of age-related cataract. Ann Epidemiol 9:166–171. https://doi.org/10.1016/S1047-2797(98)00049-0
doi: 10.1016/S1047-2797(98)00049-0
pubmed: 10192648
Varma SD, Chand D, Sharma YR et al (1984) Oxidative stress on lens and cataract formation: role of light and oxygen. Curr Eye Res 3:35–58. https://doi.org/10.3109/02713688408997186
doi: 10.3109/02713688408997186
pubmed: 6360540
Ford ES (1999) Body mass index, diabetes, and C-reactive protein among U.S. adults. Diabetes Care 22:1971–1977. https://doi.org/10.2337/diacare.22.12.1971
doi: 10.2337/diacare.22.12.1971
pubmed: 10587828
Klein BEK, Klein R, Jensen SC, Linton KLP (1995) Hypertension and lens opacities from the beaver dam eye study. Am J Ophthalmol 119:640–646. https://doi.org/10.1016/S0002-9394(14)70223-5
doi: 10.1016/S0002-9394(14)70223-5
pubmed: 7733190
Machan CM, Hrynchak PK, Irving EL (2012) Age-related cataract is associated with type 2 diabetes and statin use. Optom Vis Sci 89:1165–1171. https://doi.org/10.1097/OPX.0b013e3182644cd1
doi: 10.1097/OPX.0b013e3182644cd1
pubmed: 22797512
Ritchie SA, Connell JMC (2007) The link between abdominal obesity, metabolic syndrome and cardiovascular disease. Nutr Metab Cardiovasc Dis 17:319–326. https://doi.org/10.1016/j.numecd.2006.07.005
doi: 10.1016/j.numecd.2006.07.005
pubmed: 17110092
Jiang H (2020) Physical activity and risk of age-related cataract. Int J Ophthalmol 13:643–649. https://doi.org/10.18240/ijo.2020.04.18
doi: 10.18240/ijo.2020.04.18
pubmed: 32399418
pmcid: 7137704
Ong SR, Crowston JG, Loprinzi PD, Ramulu PY (2018) Physical activity, visual impairment, and eye disease. Eye 32:1296–1303. https://doi.org/10.1038/s41433-018-0081-8
doi: 10.1038/s41433-018-0081-8
pubmed: 29610523
pmcid: 6085324
Zheng Selin J, Orsini N, Ejdervik Lindblad B, Wolk A (2015) Long-term physical activity and risk of age-related cataract. Ophthalmology 122:274–280. https://doi.org/10.1016/j.ophtha.2014.08.023
doi: 10.1016/j.ophtha.2014.08.023
pubmed: 25270274
Niazi S, Moshirfar M, Dastjerdi MH et al (2024) Association between obesity and age-related cataract: an updated systematic review and dose–response meta-analysis of prospective cohort studies. Front Nutr 10:1215212. https://doi.org/10.3389/fnut.2023.1215212
doi: 10.3389/fnut.2023.1215212
pubmed: 38357464
pmcid: 10866009
Chang EE, Goldberg JL (2012) Glaucoma 2.0: neuroprotection, neuroregeneration. Neuroenhancement Ophthalmol 119:979–986. https://doi.org/10.1016/j.ophtha.2011.11.003
doi: 10.1016/j.ophtha.2011.11.003
Gauthier AC, Liu J (2016) Neurodegeneration and neuroprotection in glaucoma. Yale J Biol Med 89:73–79
pubmed: 27505018
pmcid: 4797839
Lichter PR (2003) Glaucoma clinical trials and what they mean for our patients. Am J Ophthalmol 136:136–145. https://doi.org/10.1016/s0002-9394(03)00143-0
doi: 10.1016/s0002-9394(03)00143-0
pubmed: 12834681
Sommer A (1991) Relationship between intraocular pressure and primary open angle glaucoma among white and black Americans: the Baltimore eye survey. Arch Ophthalmol 109:1090. https://doi.org/10.1001/archopht.1991.01080080050026
doi: 10.1001/archopht.1991.01080080050026
pubmed: 1867550
Kim YK, Choi HJ, Jeoung JW et al (2014) Five-year incidence of primary open-angle glaucoma and rate of progression in health center-based Korean population: The Gangnam Eye Study. PLoS ONE 9:e114058. https://doi.org/10.1371/journal.pone.0114058
doi: 10.1371/journal.pone.0114058
pubmed: 25474589
pmcid: 4256402
Sakurada Y, Mabuchi F, Kashiwagi K (2020) Genetics of primary open-angle glaucoma and its endophenotypes. Prog Brain Res 256:31–47. https://doi.org/10.1016/bs.pbr.2020.06.001
doi: 10.1016/bs.pbr.2020.06.001
pubmed: 32958214
Fan B, Leung Y, Wang N et al (2004) Genetic and environmental risk factors for primary open-angle glaucoma. Chin Med J 117:706–710
pubmed: 15161538
Kountouras J, Zavos C, Grigoriadis N et al (2008) Helicobacter pylori infection as a risk factor for primary open-angle glaucoma. Clin Exp Ophthalmol 36:196–196. https://doi.org/10.1111/j.1442-9071.2008.01705.x
doi: 10.1111/j.1442-9071.2008.01705.x
pubmed: 18352888
Shi Y, Liu P, Guan J et al (2015) Association between glaucoma and obstructive sleep apnea syndrome: a meta-analysis and systematic review. PLoS ONE 10:e0115625. https://doi.org/10.1371/journal.pone.0115625
doi: 10.1371/journal.pone.0115625
pubmed: 25705901
pmcid: 4338237
Chuang L-H, Koh Y-Y, Chen HSL et al (2020) Normal tension glaucoma in obstructive sleep apnea syndrome: a structural and functional study. Medicine 99:e19468. https://doi.org/10.1097/MD.0000000000019468
doi: 10.1097/MD.0000000000019468
pubmed: 32221069
pmcid: 7220748
Yamada E, Himori N, Kunikata H et al (2018) The relationship between increased oxidative stress and visual field defect progression in glaucoma patients with sleep apnoea syndrome. Acta Ophthalmol 96:e479. https://doi.org/10.1111/aos.13693
doi: 10.1111/aos.13693
pubmed: 29498225
Jiang X, Varma R, Wu S et al (2012) Baseline risk factors that predict the development of open-angle glaucoma in a population. Ophthalmology 119:2245–2253. https://doi.org/10.1016/j.ophtha.2012.05.030
doi: 10.1016/j.ophtha.2012.05.030
pubmed: 22796305
Wise LA, Rosenberg L, Radin RG et al (2011) A prospective study of diabetes, lifestyle factors, and glaucoma among African-American women. Ann Epidemiol 21:430–439. https://doi.org/10.1016/j.annepidem.2011.03.006
doi: 10.1016/j.annepidem.2011.03.006
pubmed: 21549278
pmcid: 3091261
Springelkamp H, Wolfs RC, Ramdas WD et al (2017) Incidence of glaucomatous visual field loss after two decades of follow-up: the Rotterdam Study. Eur J Epidemiol 32:691–699. https://doi.org/10.1007/s10654-017-0270-y
doi: 10.1007/s10654-017-0270-y
pubmed: 28608186
pmcid: 5591359
Pasquale LR, Willett WC, Rosner BA, Kang JH (2010) Anthropometric measures and their relation to incident primary open-angle glaucoma. Ophthalmology 117:1521–1529. https://doi.org/10.1016/j.ophtha.2009.12.017
doi: 10.1016/j.ophtha.2009.12.017
pubmed: 20382429
Ramdas WD (2011) Lifestyle and risk of developing open-angle glaucoma: the Rotterdam Study. Arch Ophthalmol 129:767. https://doi.org/10.1001/archophthalmol.2010.373
doi: 10.1001/archophthalmol.2010.373
pubmed: 21320952
Ko F, Boland MV, Gupta P et al (2016) Diabetes, triglyceride levels, and other risk factors for glaucoma in the national health and nutrition examination survey 2005–2008. Invest Ophthalmol Vis Sci 57:2152–2157. https://doi.org/10.1167/iovs.15-18373
doi: 10.1167/iovs.15-18373
pubmed: 27111561
pmcid: 4849858
Zhao D, Kim MH, Pastor-Barriuso R et al (2016) A longitudinal study of association between adiposity markers and intraocular pressure: The Kangbuk Samsung Health Study. PLoS ONE 11:e0146057. https://doi.org/10.1371/journal.pone.0146057
doi: 10.1371/journal.pone.0146057
pubmed: 26731527
pmcid: 4711586
Lin Y, Zhu X, Luo W et al (2022) The causal association between obesity and primary open-angle glaucoma: a two-sample Mendelian randomization study. Front Genet 13:835524. https://doi.org/10.3389/fgene.2022.835524
doi: 10.3389/fgene.2022.835524
pubmed: 35547256
pmcid: 9081767
Nangia V, Jonas JB, Matin A et al (2013) Prevalence and associated factors of glaucoma in rural central India. The Central India Eye and Medical Study. PLoS ONE 8:e76434. https://doi.org/10.1371/journal.pone.0076434
doi: 10.1371/journal.pone.0076434
pubmed: 24098790
pmcid: 3787001
Zarei R, Anvari P, Eslami Y et al (2017) Retinal nerve fibre layer thickness is reduced in metabolic syndrome. Diabet Med 34:1061–1066. https://doi.org/10.1111/dme.13369
doi: 10.1111/dme.13369
pubmed: 28430372
Pezzino S, Sofia M, Greco LP et al (2023) Microbiome dysbiosis: a pathological mechanism at the intersection of obesity and glaucoma. Int J Mol Sci 24:1166. https://doi.org/10.3390/ijms24021166
doi: 10.3390/ijms24021166
pubmed: 36674680
pmcid: 9862076
Xie JS, Donaldson L, Margolin E (2022) Papilledema: a review of etiology, pathophysiology, diagnosis, and management. Surv Ophthalmol 67:1135–1159. https://doi.org/10.1016/j.survophthal.2021.11.007
doi: 10.1016/j.survophthal.2021.11.007
pubmed: 34813854
Berdahl JP, Fleischman D, Zaydlarova J et al (2012) Body mass index has a linear relationship with cerebrospinal fluid pressure. Investig Opthalmol Vis Sci 53:1422. https://doi.org/10.1167/iovs.11-8220
doi: 10.1167/iovs.11-8220
Mollan SP, Aguiar M, Evison F et al (2019) The expanding burden of idiopathic intracranial hypertension. Eye 33:478–485. https://doi.org/10.1038/s41433-018-0238-5
doi: 10.1038/s41433-018-0238-5
pubmed: 30356129
Ren R, Wang N, Zhang X et al (2012) Cerebrospinal fluid pressure correlated with body mass index. Graefes Arch Clin Exp Ophthalmol 250:445–446. https://doi.org/10.1007/s00417-011-1746-1
doi: 10.1007/s00417-011-1746-1
pubmed: 21814821
Westgate CSJ, Hagen SM, Israelsen IME et al (2022) The impact of obesity-related raised intracranial pressure in rodents. Sci Rep 12:9102. https://doi.org/10.1038/s41598-022-13181-6
doi: 10.1038/s41598-022-13181-6
pubmed: 35650312
pmcid: 9160066
Markey KA, Mollan SP, Jensen RH, Sinclair AJ (2016) Understanding idiopathic intracranial hypertension: mechanisms, management, and future directions. Lancet Neurol 15:78–91. https://doi.org/10.1016/S1474-4422(15)00298-7
doi: 10.1016/S1474-4422(15)00298-7
pubmed: 26700907
Yri HM, Fagerlund B, Forchhammer HB, Jensen RH (2014) Cognitive function in idiopathic intracranial hypertension: a prospective case–control study. BMJ Open 4:e004376. https://doi.org/10.1136/bmjopen-2013-004376
doi: 10.1136/bmjopen-2013-004376
pubmed: 24713214
pmcid: 3987738
Szewka AJ, Bruce BB, Newman NJ, Biousse V (2013) Idiopathic intracranial hypertension: relation between obesity and visual outcomes. J Neuroophthalmol 33:4–8. https://doi.org/10.1097/WNO.0b013e31823f852d
doi: 10.1097/WNO.0b013e31823f852d
pubmed: 22217456
pmcid: 3323689
Wall M, McDermott MP, Kieburtz KD et al (2014) Effect of acetazolamide on visual function in patients with idiopathic intracranial hypertension and mild visual loss: the idiopathic intracranial hypertension treatment trial. JAMA 311:1641. https://doi.org/10.1001/jama.2014.3312
doi: 10.1001/jama.2014.3312
pubmed: 24756514
Koc F, Isik MR, Sefi-Yurdakul N (2018) Weight reduction for a better visual outcome in idiopathic intracranial hypertension. Arq Bras Oftalmol 81:18–23. https://doi.org/10.5935/0004-2749.20180006
doi: 10.5935/0004-2749.20180006
pubmed: 29538589
Rowe F, Sarkies N (1999) The relationship between obesity and idiopathic intracranial hypertension. Int J Obes 23:54–59. https://doi.org/10.1038/sj.ijo.0800758
doi: 10.1038/sj.ijo.0800758
Deng Y, Qiao L, Du M et al (2022) Age-related macular degeneration: epidemiology, genetics, pathophysiology, diagnosis, and targeted therapy. Genes Dis 9:62–79. https://doi.org/10.1016/j.gendis.2021.02.009
doi: 10.1016/j.gendis.2021.02.009
pubmed: 35005108
Wong WL, Su X, Li X et al (2014) Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health 2:e106–e116. https://doi.org/10.1016/S2214-109X(13)70145-1
doi: 10.1016/S2214-109X(13)70145-1
pubmed: 25104651
Klein BEK, Klein R, Lee KE, Jensen SC (2001) Measures of obesity and age-related eye diseases. Ophthalmic Epidemiol 8:251–262. https://doi.org/10.1076/opep.8.4.251.1612
doi: 10.1076/opep.8.4.251.1612
pubmed: 11471093
Peeters A (2008) Changes in abdominal obesity and age-related macular degeneration: the atherosclerosis risk in communities study. Arch Ophthalmol 126:1554. https://doi.org/10.1001/archopht.126.11.1554
doi: 10.1001/archopht.126.11.1554
pubmed: 19001224
pmcid: 5774859
McGuinness MB, Le J, Mitchell P et al (2017) Physical activity and age-related macular degeneration: a systematic literature review and meta-analysis. Am J Ophthalmol 180:29–38. https://doi.org/10.1016/j.ajo.2017.05.016
doi: 10.1016/j.ajo.2017.05.016
pubmed: 28549846
Kant AK, Graubard BI (2006) Secular trends in patterns of self-reported food consumption of adult Americans: NHANES 1971–1975 to NHANES 1999–2002. Am J Clin Nutr 84:1215–1223. https://doi.org/10.1093/ajcn/84.5.1215
doi: 10.1093/ajcn/84.5.1215
pubmed: 17093177
Agrón E, Mares J, Clemons TE et al (2021) Dietary nutrient intake and progression to late age-related macular degeneration in the age-related eye disease studies 1 and 2. Ophthalmology 128:425–442. https://doi.org/10.1016/j.ophtha.2020.08.018
doi: 10.1016/j.ophtha.2020.08.018
pubmed: 32858063
Pameijer EM, Heus P, Damen JAA et al (2022) What did we learn in 35 years of research on nutrition and supplements for age-related macular degeneration: a systematic review. Acta Ophthalmol 100:e1541. https://doi.org/10.1111/aos.15191
doi: 10.1111/aos.15191
pubmed: 35695158
pmcid: 9796889
De Koning-Backus APM, Buitendijk GHS, Kiefte-de Jong JC et al (2019) Intake of vegetables, fruit, and fish is beneficial for age-related macular degeneration. Am J Ophthalmol 198:70–79. https://doi.org/10.1016/j.ajo.2018.09.036
doi: 10.1016/j.ajo.2018.09.036
pubmed: 30312575
Dinu M, Pagliai G, Casini A, Sofi F (2019) Food groups and risk of age-related macular degeneration: a systematic review with meta-analysis. Eur J Nutr 58:2123–2143. https://doi.org/10.1007/s00394-018-1771-5
doi: 10.1007/s00394-018-1771-5
pubmed: 29978377
Gray N, Picone G, Sloan F, Yashkin A (2015) Relation between BMI and diabetes mellitus and its complications among US older adults. South Med J 108:29–36. https://doi.org/10.14423/SMJ.0000000000000214
doi: 10.14423/SMJ.0000000000000214
pubmed: 25580754
pmcid: 4457375
Hammes H-P, Welp R, Kempe H-P et al (2015) Risk factors for retinopathy and DME in type 2 diabetes—results from the German/Austrian DPV database. PLoS ONE 10:e0132492. https://doi.org/10.1371/journal.pone.0132492
doi: 10.1371/journal.pone.0132492
pubmed: 26177037
pmcid: 4503301
Klein R, Knudtson MD, Lee KE et al (2008) The Wisconsin Epidemiologic Study of Diabetic Retinopathy: XXII the twenty-five-year progression of retinopathy in persons with type 1 diabetes. Ophthalmology 115:1859–1868. https://doi.org/10.1016/j.ophtha.2008.08.023
doi: 10.1016/j.ophtha.2008.08.023
pubmed: 19068374
Yau JWY, Rogers SL, Kawasaki R et al (2012) Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 35:556–564. https://doi.org/10.2337/dc11-1909
doi: 10.2337/dc11-1909
pubmed: 22301125
pmcid: 3322721
Yin L, Zhang D, Ren Q et al (2020) Prevalence and risk factors of diabetic retinopathy in diabetic patients: a community based cross-sectional study. Medicine (Baltimore) 99:e19236. https://doi.org/10.1097/MD.0000000000019236
doi: 10.1097/MD.0000000000019236
pubmed: 32118727
Chen J, Li YT, Niu Z et al (2024) Association of visceral obesity indices with incident diabetic retinopathy in patients with diabetes: prospective cohort study. JMIR Public Health Surveill 10:e48120. https://doi.org/10.2196/48120
doi: 10.2196/48120
pubmed: 38319705
pmcid: 10879974
Cheng R, Ma J (2015) Angiogenesis in diabetes and obesity. Rev Endocr Metab Disord 16:67–75. https://doi.org/10.1007/s11154-015-9310-7
doi: 10.1007/s11154-015-9310-7
pubmed: 25663658
pmcid: 4351724
Mbata O, El-Magd NFA, El-Remessy AB (2017) Obesity, metabolic syndrome and diabetic retinopathy: beyond hyperglycemia. World J Diabetes 8:317. https://doi.org/10.4239/wjd.v8.i7.317
doi: 10.4239/wjd.v8.i7.317
pubmed: 28751954
pmcid: 5507828
Fuentes E, Fuentes F, Vilahur G et al (2013) Mechanisms of chronic state of inflammation as mediators that link obese adipose tissue and metabolic syndrome. Mediators Inflamm 2013:1–11. https://doi.org/10.1155/2013/136584
doi: 10.1155/2013/136584
Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, Wat N, Wong RL, Wong IY (2016) Associations between diabetic retinopathy and systemic risk factors. Hong Kong Med J. https://doi.org/10.12809/hkmj164869
doi: 10.12809/hkmj164869
Misra A, Kumar S, Kishore Vikram N, Kumar A (2003) The role of lipids in the development of diabetic microvascular complications: implications for therapy. Am J Cardiovasc Drugs 3:325–338. https://doi.org/10.2165/00129784-200303050-00004
doi: 10.2165/00129784-200303050-00004
pubmed: 14728067
Gupta D, Krueger BC, Lastra G (2012) Over-nutrition, obesity and insulin resistance in the development of β-cell dysfunction. Curr Diabetes Rev 8:76–83. https://doi.org/10.2174/157339912799424564
doi: 10.2174/157339912799424564
pubmed: 22229253
Tapp RJ, Shaw JE, Harper CA et al (2003) The prevalence of and factors associated with diabetic retinopathy in the Australian population. Diabetes Care 26:1731–1737. https://doi.org/10.2337/diacare.26.6.1731
doi: 10.2337/diacare.26.6.1731
pubmed: 12766102
Chan JCY, Chee ML, Tan NYQ et al (2018) Differential effect of body mass index on the incidence of diabetes and diabetic retinopathy in two Asian populations. Nutr Diabetes 8:16. https://doi.org/10.1038/s41387-018-0018-0
doi: 10.1038/s41387-018-0018-0
pubmed: 29549238
pmcid: 5856769
Man REK, Sabanayagam C, Chiang PP-C et al (2016) Differential association of generalized and abdominal obesity with diabetic retinopathy in Asian patients with type 2 diabetes. JAMA Ophthalmol 134:251. https://doi.org/10.1001/jamaophthalmol.2015.5103
doi: 10.1001/jamaophthalmol.2015.5103
pubmed: 26720805
AlQabandi Y, Nandula SA, Boddepalli CS et al (2022) Physical activity status and diabetic retinopathy: a review. Cureus. https://doi.org/10.7759/cureus.28238
doi: 10.7759/cureus.28238
pubmed: 36628027
pmcid: 9822529
Liu M, Lycett K, Wong TY et al (2020) Do body mass index and waist-to-height ratio over the preceding decade predict retinal microvasculature in 11–12 year olds and midlife adults? Int J Obes 44:1712–1722. https://doi.org/10.1038/s41366-020-0584-9
doi: 10.1038/s41366-020-0584-9
Boillot A, Zoungas S, Mitchell P et al (2013) Obesity and the microvasculature: a systematic review and meta-analysis. PLoS ONE 8:e52708. https://doi.org/10.1371/journal.pone.0052708
doi: 10.1371/journal.pone.0052708
pubmed: 23405065
pmcid: 3566162
Köchli S, Endes K, Infanger D et al (2018) Obesity, blood pressure, and retinal vessels: a meta-analysis. Pediatrics 141:e20174090. https://doi.org/10.1542/peds.2017-4090
doi: 10.1542/peds.2017-4090
pubmed: 29743194
Montero D, Walther G, Perez-Martin A et al (2012) Endothelial dysfunction, inflammation, and oxidative stress in obese children and adolescents: markers and effect of lifestyle intervention. Obes Rev 13:441–455. https://doi.org/10.1111/j.1467-789X.2011.00956.x
doi: 10.1111/j.1467-789X.2011.00956.x
pubmed: 22133012
Daien V, Carriere I, Kawasaki R et al (2013) Retinal vascular caliber is associated with cardiovascular biomarkers of oxidative stress and inflammation: The POLA Study. PLoS ONE 8:e71089. https://doi.org/10.1371/journal.pone.0071089
doi: 10.1371/journal.pone.0071089
pubmed: 23923054
pmcid: 3724806
Ding Q, Wu H, Wang W et al (2023) Association of body mass index and waist-to-hip ratio with retinal microvasculature in healthy Chinese adults: an optical coherence tomography angiography study. Am J Ophthalmol 246:96–106. https://doi.org/10.1016/j.ajo.2022.09.012
doi: 10.1016/j.ajo.2022.09.012
pubmed: 36240858
Backhouse O, Parapia L, Mahomed I, Lee D (2000) Familial thrombophilia and retinal vein occlusion. Eye 14:13–17. https://doi.org/10.1038/eye.2000.4
doi: 10.1038/eye.2000.4
pubmed: 10755093
Wong T, Larsen E, Klein R et al (2005) Cardiovascular risk factors for retinal vein occlusion and arteriolar emboli the atherosclerosis risk in communities & cardiovascular health studies. Ophthalmology 112:540–547. https://doi.org/10.1016/j.ophtha.2004.10.039
doi: 10.1016/j.ophtha.2004.10.039
pubmed: 15808241
Lahey JM, Kearney JJ, Tunc M (2003) Hypercoagulable states and central retinal vein occlusion. Curr Opin Pulm Med 9:385–392. https://doi.org/10.1097/00063198-200309000-00008
doi: 10.1097/00063198-200309000-00008
pubmed: 12904708
Nguyen NT, Nguyen X-MT, Lane J, Wang P (2011) Relationship between obesity and diabetes in a US adult population: findings from the national health and nutrition examination survey, 1999–2006. Obes Surg 21:351–355. https://doi.org/10.1007/s11695-010-0335-4
doi: 10.1007/s11695-010-0335-4
pubmed: 21128002
Prisco D, Marcucci R (2002) Retinal vein thrombosis: risk factors, pathogenesis and therapeutic approach. Pathophysiol Haemost Thromb 32:308–311. https://doi.org/10.1159/000073587
doi: 10.1159/000073587
pubmed: 13679663
Robinson MK, Halpern JI (1992) Retinal vein occlusion. Am Fam Physician 45:2661–2666
pubmed: 1595515
Nieuwdorp M, Stroes ES, Meijers JC, Büller H (2005) Hypercoagulability in the metabolic syndrome. Curr Opin Pharmacol 5:155–159. https://doi.org/10.1016/j.coph.2004.10.003
doi: 10.1016/j.coph.2004.10.003
pubmed: 15780824
Gu J, Lei C, Zhang M (2023) Folate and retinal vascular diseases. BMC Ophthalmol 23:413. https://doi.org/10.1186/s12886-023-03149-z
doi: 10.1186/s12886-023-03149-z
pubmed: 37833663
pmcid: 10571445
Paik DW, Han K, Kang SW et al (2020) Differential effect of obesity on the incidence of retinal vein occlusion with and without diabetes: a Korean nationwide cohort study. Sci Rep 10:10512. https://doi.org/10.1038/s41598-020-67375-x
doi: 10.1038/s41598-020-67375-x
pubmed: 32601344
pmcid: 7324392
Goyal A, Nimmakayala KR, Zonszein J (2014) Is there a paradox in obesity? Cardiol Rev 22:163–170. https://doi.org/10.1097/CRD.0000000000000004
doi: 10.1097/CRD.0000000000000004
pubmed: 24896249
pmcid: 4048872
Coutinho T, Goel K, Corrêa De Sá D et al (2011) Central obesity and survival in subjects with coronary artery disease. J Am Coll Cardiol 57:1877–1886. https://doi.org/10.1016/j.jacc.2010.11.058
doi: 10.1016/j.jacc.2010.11.058
pubmed: 21545944
Després J-P (2011) Excess visceral adipose tissue/ectopic fat. J Am Coll Cardiol 57:1887–1889. https://doi.org/10.1016/j.jacc.2010.10.063
doi: 10.1016/j.jacc.2010.10.063
pubmed: 21545945
Lee CMY, Huxley RR, Wildman RP, Woodward M (2008) Indices of abdominal obesity are better discriminators of cardiovascular risk factors than BMI: a meta-analysis. J Clin Epidemiol 61:646–653. https://doi.org/10.1016/j.jclinepi.2007.08.012
doi: 10.1016/j.jclinepi.2007.08.012
pubmed: 18359190
Krishna U, Ajanaku D, Denniston AK, Gkika T (2017) Uveitis: a sight-threatening disease which can impact all systems. Postgrad Med J 93:766–773. https://doi.org/10.1136/postgradmedj-2017-134891
doi: 10.1136/postgradmedj-2017-134891
pubmed: 28942431
Lionetti L, Mollica MP, Lombardi A et al (2009) From chronic overnutrition to insulin resistance: the role of fat-storing capacity and inflammation. Nutr Metab Cardiovasc Dis 19:146–152. https://doi.org/10.1016/j.numecd.2008.10.010
doi: 10.1016/j.numecd.2008.10.010
pubmed: 19171470
Muhammad FY, Peters K, Wang D, Lee DJ (2019) Exacerbation of autoimmune uveitis by obesity occurs through the melanocortin 5 receptor. J Leukoc Biol 106:879–887. https://doi.org/10.1002/JLB.MA0119-030RR
doi: 10.1002/JLB.MA0119-030RR
pubmed: 31287586
Yalçın B, Gür G, Artüz F, Allı N (2013) Prevalence of metabolic syndrome in Behçet disease: a case-control study in Turkey. Am J Clin Dermatol 14:421–425. https://doi.org/10.1007/s40257-013-0034-8
doi: 10.1007/s40257-013-0034-8
pubmed: 23760648
Chen T, Shao X, Li H et al (2023) Association of Behçet’s disease with the risk of metabolic syndrome and its components: a systematic review and meta-analysis. Clin Exp Med 23:2855–2866. https://doi.org/10.1007/s10238-023-01044-x
doi: 10.1007/s10238-023-01044-x
pubmed: 36939969
pmcid: 10543763
Craig JP, Nichols KK, Akpek EK et al (2017) TFOS DEWS II definition and classification report. Ocul Surf 15:276–283. https://doi.org/10.1016/j.jtos.2017.05.008
doi: 10.1016/j.jtos.2017.05.008
pubmed: 28736335
Surmacz HU, Cotlinski AL, Gehlen ML et al (2021) Dry eye and percentage of body fat: a cross-sectional prospective study. Int Ophthalmol 41:1855–1861. https://doi.org/10.1007/s10792-021-01747-8
doi: 10.1007/s10792-021-01747-8
pubmed: 33629234
Ho KC, Jalbert I, Watt K, Golebiowski B (2017) A possible association between dry eye symptoms and body fat: a prospective, cross-sectional preliminary study. Eye Contact Lens Sci Clin Pract 43:245–252. https://doi.org/10.1097/ICL.0000000000000275
doi: 10.1097/ICL.0000000000000275
Ayaki M, Negishi K, Kawashima M et al (2020) Age is a determining factor of dry eye-related signs and symptoms. Diagnostics 10:193. https://doi.org/10.3390/diagnostics10040193
doi: 10.3390/diagnostics10040193
pubmed: 32244289
pmcid: 7235903
Ismail AMA, El-Azeim ASA, Saif HFAEA (2023) Effect of aerobic exercise alone or combined with Mediterranean diet on dry eye in obese hypertensive elderly. Ir J Med Sci 1971–192:3151–3161. https://doi.org/10.1007/s11845-023-03387-6
doi: 10.1007/s11845-023-03387-6
Jehan S, Zizi F, Pandi-Perumal SR et al (2017) Obstructive sleep apnea and obesity: implications for public health. Sleep Med Disord Int J 1:00019
Wolk R, Somers VK (2006) Obesity-related cardiovascular disease: implications of obstructive sleep apnea. Diabetes Obes Metab 8:250–260. https://doi.org/10.1111/j.1463-1326.2005.00508.x
doi: 10.1111/j.1463-1326.2005.00508.x
pubmed: 16634984
Kim NH, Cho NH, Yun C-H et al (2013) Association of obstructive sleep apnea and glucose metabolism in subjects with or without obesity. Diabetes Care 36:3909–3915. https://doi.org/10.2337/dc13-0375
doi: 10.2337/dc13-0375
pubmed: 24101695
pmcid: 3836097
Young T, Peppard PE, Taheri S (2005) Excess weight and sleep-disordered breathing. J Appl Physiol 99:1592–1599. https://doi.org/10.1152/japplphysiol.00587.2005
doi: 10.1152/japplphysiol.00587.2005
pubmed: 16160020
Li C, Ford ES, Zhao G et al (2010) Prevalence of self-reported clinically diagnosed sleep apnea according to obesity status in men and women: National Health and Nutrition Examination Survey, 2005–2006. Prev Med 51:18–23. https://doi.org/10.1016/j.ypmed.2010.03.016
doi: 10.1016/j.ypmed.2010.03.016
pubmed: 20381517
Kaditis AG, Alexopoulos EI, Hatzi F et al (2008) Adiposity in relation to age as predictor of severity of sleep apnea in children with snoring. Sleep Breath 12:25–31. https://doi.org/10.1007/s11325-007-0132-z
doi: 10.1007/s11325-007-0132-z
pubmed: 17684780
Caliendo C, Femiano R, Umano GR et al (2023) Effect of obesity on the respiratory parameters in children with obstructive sleep apnea syndrome. Children 10:1874. https://doi.org/10.3390/children10121874
doi: 10.3390/children10121874
pubmed: 38136076
pmcid: 10741949
Redline S, Tishler PV, Schluchter M et al (1999) Risk factors for sleep-disordered breathing in children: associations with obesity, race, and respiratory problems. Am J Respir Crit Care Med 159:1527–1532. https://doi.org/10.1164/ajrccm.159.5.9809079
doi: 10.1164/ajrccm.159.5.9809079
pubmed: 10228121
Grunstein R, Wilcox I, Yang TS et al (1993) Snoring and sleep apnoea in men: association with central obesity and hypertension. Int J Obes Relat Metab Disord J Int Assoc Study Obes 17:533–540
Welch KC, Foster GD, Ritter CT et al (2002) A novel volumetric magnetic resonance imaging paradigm to study upper airway anatomy. Sleep 25:530–540. https://doi.org/10.1093/sleep/25.5.530
doi: 10.1093/sleep/25.5.530
Katsuki A, Sumida Y, Urakawa H et al (2003) Increased visceral fat and serum levels of triglyceride are associated with insulin resistance in Japanese metabolically obese, normal weight subjects with normal glucose tolerance. Diabetes Care 26:2341–2344. https://doi.org/10.2337/diacare.26.8.2341
doi: 10.2337/diacare.26.8.2341
pubmed: 12882859
Pischon T, Boeing H, Hoffmann K et al (2008) General and abdominal adiposity and risk of death in Europe. N Engl J Med 359:2105–2120. https://doi.org/10.1056/NEJMoa0801891
doi: 10.1056/NEJMoa0801891
pubmed: 19005195
Geer EB, Shen W (2009) Gender differences in insulin resistance, body composition, and energy balance. Gend Med 6:60–75. https://doi.org/10.1016/j.genm.2009.02.002
doi: 10.1016/j.genm.2009.02.002
pubmed: 19318219
pmcid: 2908522
Bonsignore MR, Eckel J (2009) Metabolic aspects of obstructive sleep apnoea syndrome. Eur Respir Rev 18:113–124. https://doi.org/10.1183/09059180.00000109
doi: 10.1183/09059180.00000109
pubmed: 21309140
Levy P, Bonsignore MR, Eckel J (2009) Sleep, sleep-disordered breathing and metabolic consequences. Eur Respir J 34:243–260. https://doi.org/10.1183/09031936.00166808
doi: 10.1183/09031936.00166808
pubmed: 19567607
Vgontzas AN, Papanicolaou DA, Bixler EO et al (2000) Sleep apnea and daytime sleepiness and fatigue: relation to visceral obesity, insulin resistance, and hypercytokinemia. J Clin Endocrinol Metab 85:1151–1158. https://doi.org/10.1210/jcem.85.3.6484
doi: 10.1210/jcem.85.3.6484
pubmed: 10720054
Taksali SE, Caprio S, Dziura J et al (2008) High visceral and low abdominal subcutaneous fat stores in the obese adolescent. Diabetes 57:367–371. https://doi.org/10.2337/db07-0932
doi: 10.2337/db07-0932
pubmed: 17977954
Maury E, Ehala-Aleksejev K, Guiot Y et al (2007) Adipokines oversecreted by omental adipose tissue in human obesity. Am J Physiol-Endocrinol Metab 293:E656–E665. https://doi.org/10.1152/ajpendo.00127.2007
doi: 10.1152/ajpendo.00127.2007
pubmed: 17578888
Klöting N, Fasshauer M, Dietrich A et al (2010) Insulin-sensitive obesity. Am J Physiol-Endocrinol Metab 299:E506–E515. https://doi.org/10.1152/ajpendo.00586.2009
doi: 10.1152/ajpendo.00586.2009
pubmed: 20570822
Bonsignore MR, McNicholas WT, Montserrat JM, Eckel J (2012) Adipose tissue in obesity and obstructive sleep apnoea. Eur Respir J 39:746–767. https://doi.org/10.1183/09031936.00047010
doi: 10.1183/09031936.00047010
pubmed: 21920888
Bays HE, González-Campoy JM, Bray GA et al (2008) Pathogenic potential of adipose tissue and metabolic consequences of adipocyte hypertrophy and increased visceral adiposity. Expert Rev Cardiovasc Ther 6:343–368. https://doi.org/10.1586/14779072.6.3.343
doi: 10.1586/14779072.6.3.343
pubmed: 18327995
Trayhurn P, Wood IS (2004) Adipokines: inflammation and the pleiotropic role of white adipose tissue. Br J Nutr 92:347–355. https://doi.org/10.1079/BJN20041213
doi: 10.1079/BJN20041213
pubmed: 15469638
Yin J, Gao Z, He Q et al (2009) Role of hypoxia in obesity-induced disorders of glucose and lipid metabolism in adipose tissue. Am J Physiol-Endocrinol Metab 296:E333–E342. https://doi.org/10.1152/ajpendo.90760.2008
doi: 10.1152/ajpendo.90760.2008
pubmed: 19066318
Lavie L, Lavie P (2009) Molecular mechanisms of cardiovascular disease in OSAHS: the oxidative stress link. Eur Respir J 33:1467–1484. https://doi.org/10.1183/09031936.00086608
doi: 10.1183/09031936.00086608
pubmed: 19483049
Pannain S, Mokhlesi B (2010) Bariatric surgery and its impact on sleep architecture, sleep-disordered breathing, and metabolism. Best Pract Res Clin Endocrinol Metab 24:745–761. https://doi.org/10.1016/j.beem.2010.07.007
doi: 10.1016/j.beem.2010.07.007
pubmed: 21112023
Pedrotti E, Demasi CL, Bruni E et al (2017) Prevalence and risk factors of eye diseases in adult patients with obstructive sleep apnoea: results from the SLE.E.P.Y cohort study. BMJ Open 7:e016142. https://doi.org/10.1136/bmjopen-2017-016142
doi: 10.1136/bmjopen-2017-016142
pubmed: 29061607
pmcid: 5665218
Bonacci E, Fasolo A, Zaffanello M et al (2022) Early corneal and optic nerve changes in a paediatric population affected by obstructive sleep apnea syndrome. Int Ophthalmol 42:1281–1287. https://doi.org/10.1007/s10792-021-02115-2
doi: 10.1007/s10792-021-02115-2
pubmed: 34738205
Bulloch G, Seth I, Zhu Z et al (2024) Ocular manifestations of obstructive sleep apnea: a systematic review and meta-analysis. Graefes Arch Clin Exp Ophthalmol 262:19–32. https://doi.org/10.1007/s00417-023-06103-3
doi: 10.1007/s00417-023-06103-3
pubmed: 37227479
Palombi K, Renard E, Levy P et al (2006) Non-arteritic anterior ischaemic optic neuropathy is nearly systematically associated with obstructive sleep apnoea. Br J Ophthalmol 90:879–882. https://doi.org/10.1136/bjo.2005.087452
doi: 10.1136/bjo.2005.087452
pubmed: 16556620
pmcid: 1857151
Hayreh SS, Podhajsky PA, Zimmerman B (1997) Nonarteritic anterior ischemic optic neuropathy: time of onset of visual loss. Am J Ophthalmol 124:641–647. https://doi.org/10.1016/S0002-9394(14)70902-X
doi: 10.1016/S0002-9394(14)70902-X
pubmed: 9372718
Grover DP (2010) Obstructive sleep apnea and ocular disorders. Curr Opin Ophthalmol 21:454–458. https://doi.org/10.1097/ICU.0b013e32833f00dc
doi: 10.1097/ICU.0b013e32833f00dc
pubmed: 20811281
Chang AC, Fox TP, Wang S, Wu AY (2018) Relationship between obstructive sleep apnea and the presence and severity of diabetic retinopathy. Retina 38:2197–2206. https://doi.org/10.1097/IAE.0000000000001848
doi: 10.1097/IAE.0000000000001848
pubmed: 28937527
pmcid: 7538381
Liu P-K, Chang Y-C, Tai M-H et al (2020) The association between central serous chorioretinopathy and sleep apnea: a Nationwide Population-Based Study. Retina 40:2034–2044. https://doi.org/10.1097/IAE.0000000000002702
doi: 10.1097/IAE.0000000000002702
pubmed: 31800457
De Gregorio A, Cerini A, Scala A et al (2021) Floppy eyelid, an under-diagnosed syndrome: a review of demographics, pathogenesis, and treatment. Ther Adv Ophthalmol 13:251584142110592. https://doi.org/10.1177/25158414211059247
doi: 10.1177/25158414211059247
Beis PG, Brozou CG, Gourgoulianis KI et al (2012) The floppy eyelid syndrome: evaluating lid laxity and its correlation to sleep apnea syndrome and body mass index. ISRN Ophthalmol 2012:1–4. https://doi.org/10.5402/2012/650892
doi: 10.5402/2012/650892
Romero-Corral A, Caples SM, Lopez-Jimenez F, Somers VK (2010) Interactions between obesity and obstructive sleep apnea. Chest 137:711–719. https://doi.org/10.1378/chest.09-0360
doi: 10.1378/chest.09-0360
pubmed: 20202954
pmcid: 3021364