Building pondscapes for amphibian metapopulations.

amphibian anfibio blue–green ecological infrastructure calidad del hábitat conectividad connectivity conservación basada en evidencias evidence‐based conservation habitat quality infraestructura ecológica verde‐azul meta población metapopulation

Journal

Conservation biology : the journal of the Society for Conservation Biology
ISSN: 1523-1739
Titre abrégé: Conserv Biol
Pays: United States
ID NLM: 9882301

Informations de publication

Date de publication:
07 May 2024
Historique:
revised: 09 02 2024
received: 05 12 2023
accepted: 19 02 2024
medline: 7 5 2024
pubmed: 7 5 2024
entrez: 7 5 2024
Statut: aheadofprint

Résumé

The success of ponds constructed to restore ecological infrastructure for pond-breeding amphibians and benefit aquatic biodiversity depends on where and how they are built. We studied effects of pond and landscape characteristics, including connectivity, on metapopulation dynamics of 12 amphibian species in Switzerland. To understand the determinants of long-term occupancy (here summarized as incidence), environmental effects on both colonization and persistence should be considered. We fitted dynamic occupancy models to 20 years of monitoring data on a pond construction program to quantify effects of pond and landscape characteristics and different connectivity metrics on colonization and persistence probabilities in constructed ponds. Connectivity to existing populations explained dynamics better than structural connectivity metrics, and simple metrics (distance to the nearest neighbor population, population density) were useful surrogates for dispersal kernel-weighted metrics commonly used in metapopulation theory. Population connectivity mediated the persistence of conservation target species in new ponds, suggesting source-sink dynamics in newly established populations. Population density captured this effect well and could be used by practitioners for site selection. Ponds created where there were 2-4 occupied ponds within a radius of ∼0.5 km had >3.5 times higher incidence of target species (median) than isolated ponds. Species had individual preferences regarding pond characteristics, but breeding sites with larger (≥100 m Construcción de estanques para meta poblaciones de anfibios Resumen El éxito de los estanques construidos para restaurar la infraestructura ecológica para los anfibios que allí se reproducen y para beneficiar la biodiversidad acuática depende de en dónde y cómo se construyen. Estudiamos los efectos de las características de los estanques y el paisaje, incluida la conectividad, sobre la dinámica de las meta poblaciones de 12 especies de anfibios en Suiza. Se deben considerar los efectos ambientales sobre la colonización y la persistencia para entender las determinantes de la ocupación a largo plazo (resumida aquí como incidencia). Ajustamos los modelos dinámicos de ocupación a datos de 20 años de monitoreo de un programa de construcción de estanques para cuantificar los efectos de las características del estanque y el paisaje y las diferentes medidas de conectividad para las probabilidades de colonización y persistencia en los estanques construidos. La conectividad con las poblaciones existentes explicó mejor la dinámica que las medidas de conectividad estructural, mientras que las medidas simples (distancia a la población vecina más cercana, densidad poblacional) fueron sustitutos útiles para las medidas de dispersión ponderadas al núcleo que se usan con frecuencia en la teoría de meta poblaciones. La conectividad poblacional medió la persistencia de las especies a conservar en los estanques nuevos, lo que sugiere que hay dinámicas fuente‐sumidero en las poblaciones recién establecidas. La densidad poblacional capturó muy bien este efecto y podría usarse para que los practicantes seleccionen sitios. Los estanques construidos en un radio de ≈0.5 km de dos a cuatro estanques ocupados tuvieron >3.5 más incidencia de las especies a conservar (mediana) que los estanques aislados. Las especies tuvieron preferencias individuales con respecto a las características de los estanques, aunque los sitios de reproducción con una mayor superficie total de agua (≥100 m

Autres résumés

Type: Publisher (spa)
Construcción de estanques para meta poblaciones de anfibios Resumen El éxito de los estanques construidos para restaurar la infraestructura ecológica para los anfibios que allí se reproducen y para beneficiar la biodiversidad acuática depende de en dónde y cómo se construyen. Estudiamos los efectos de las características de los estanques y el paisaje, incluida la conectividad, sobre la dinámica de las meta poblaciones de 12 especies de anfibios en Suiza. Se deben considerar los efectos ambientales sobre la colonización y la persistencia para entender las determinantes de la ocupación a largo plazo (resumida aquí como incidencia). Ajustamos los modelos dinámicos de ocupación a datos de 20 años de monitoreo de un programa de construcción de estanques para cuantificar los efectos de las características del estanque y el paisaje y las diferentes medidas de conectividad para las probabilidades de colonización y persistencia en los estanques construidos. La conectividad con las poblaciones existentes explicó mejor la dinámica que las medidas de conectividad estructural, mientras que las medidas simples (distancia a la población vecina más cercana, densidad poblacional) fueron sustitutos útiles para las medidas de dispersión ponderadas al núcleo que se usan con frecuencia en la teoría de meta poblaciones. La conectividad poblacional medió la persistencia de las especies a conservar en los estanques nuevos, lo que sugiere que hay dinámicas fuente‐sumidero en las poblaciones recién establecidas. La densidad poblacional capturó muy bien este efecto y podría usarse para que los practicantes seleccionen sitios. Los estanques construidos en un radio de ≈0.5 km de dos a cuatro estanques ocupados tuvieron >3.5 más incidencia de las especies a conservar (mediana) que los estanques aislados. Las especies tuvieron preferencias individuales con respecto a las características de los estanques, aunque los sitios de reproducción con una mayor superficie total de agua (≥100 m

Identifiants

pubmed: 38711380
doi: 10.1111/cobi.14281
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e14165

Subventions

Organisme : Board of the Swiss Federal Institutes of Technology
Organisme : Blue-Green Biodiversity Initiative
ID : (BGB2020)

Informations de copyright

© 2024 The Authors. Conservation Biology published by Wiley Periodicals LLC on behalf of Society for Conservation Biology.

Références

Angelone, S., & Holderegger, R. (2009). Population genetics suggests effectiveness of habitat connectivity measures for the European tree frog in Switzerland. Journal of Applied Ecology, 46, 879–887.
Antunes, B., Figueiredo‐Vázquez, C., Dudek, K., Liana, M., Pabijan, M., Zieliński, P., & Babik, W. (2022). Landscape genetics reveals contrasting patterns of connectivity in two newt species (Lissotriton montandoni and L. vulgaris). Molecular Ecology, 32, 4515–4530.
Beebee, T. J. C. (2013). Effects of road mortality and mitigation measures on amphibian populations. Conservation Biology, 27, 657–668.
Beebee, T. J. C., Denton, J. S., & Buckley, J. (1996). Factors affecting population densities of adult natterjack toads Bufo calamita in Britain. Journal of Applied Ecology, 33, 263–268.
Brown, J. H., & Kodric‐Brown, A. (1977). Turnover rates in insular biogeography: Effect of immigration on extinction. Ecology, 58, 445–449.
Bühler, C. (2020). Amphibienmonitoring Aargau 2020: Methodenbeschrieb. Kanton Aargau Abteilung Landschaft & Gewässer.
Bull, J. W., Milner‐Gulland, E. J., Addison, P. F. E., Arlidge, W. N. S., Baker, J., Brooks, T. M., Burgass, M. J., Hinsley, A., Maron, M., Robinson, J. G., Sekhran, N., Sinclair, S. P., Stuart, S. N., zu Ermgassen, S. O. S. E., & Watson, J. E. M. (2020). Net positive outcomes for nature. Nature Ecology and Evolution, 4, 4–7.
Bullock, J. M., Fuentes‐Montemayor, E., McCarthy, B., Park, K., Hails, R. S., Woodcock, B. A., Watts, K., Corstanje, R., & Harris, J. (2022). Future restoration should enhance ecological complexity and emergent properties at multiple scales. Ecography, 2022, Article e05780.
Calhoun, A. J. K., Arrigoni, J., Brooks, R. P., Hunter, M. L., & Richter, S. C. (2014). Creating successful vernal pools: A literature review and advice for practitioners. Wetlands, 34, 1027–1038.
Cayuela, H., Valenzuela‐Sánchez, A., Teulier, L., Martínez‐Solano, Í., Léna, J.‐P., Merilä, J., Muths, E., Shine, R., Quay, L., Denoël, M., Clobert, J., & Schmidt, B. R. (2020). Determinants and consequences of dispersal in vertebrates with complex life cycles: A review of pond‐breeding amphibians. The Quarterly Review of Biology, 95, 1–36. https://doi.org/10.1086/707862
Chandler, R. B., Muths, E., Sigafus, B. H., Schwalbe, C. R., Jarchow, C. J., & Hossack, B. R. (2015). Spatial occupancy models for predicting metapopulation dynamics and viability following reintroduction. Journal of Applied Ecology, 52, 1325–1333.
Convention on Biological Diversity (CBD). (2022). Kunming‐Montreal Global biodiversity framework. Decision adopted by the conference of the parties to the Convention on Biological Diversity. https://www.cbd.int/meetings/COP‐15
Cosentino, B. J., Marsh, D. M., Jones, K. S., Apodaca, J. J., Bates, C., Beach, J., Beard, K. H., Becklin, K., Bell, J. M., Crockett, C., Fawson, G., Fjelsted, J., Forys, E. A., Genet, K. S., Grover, M., Holmes, J., Indeck, K., Karraker, N. E., Kilpatrick, E. S., … Willey, A. (2014). Citizen science reveals widespread negative effects of roads on amphibian distributions. Biological Conservation, 180, 31–38.
Cruickshank, S. S., Bergamini, A., & Schmidt, B. R. (2021). Estimation of breeding probability can make monitoring data more revealing: A case study of amphibians. Ecological Applications, 31, Article e02357.
Cruickshank, S. S., Schmidt, B. R., Ginzler, C., & Bergamini, A. (2020). Local habitat measures derived from aerial pictures are not strong predictors of amphibian occurrence or abundance. Basic and Applied Ecology, 45, 51–61.
Davies, B., Biggs, J., Williams, P., Whitfield, M., Nicolet, P., Sear, D., Bray, S., & Maund, S. (2008). Comparative biodiversity of aquatic habitats in the European agricultural landscape. Agriculture, Ecosystems and Environment, 125, 1–8.
De Meester, L., Declerck, S., Stoks, R., Louette, G., Van De Meutter, F., De Bie, T., Michels, E., & Brendonck, L. (2005). Ponds and pools as model systems in conservation biology, ecology and evolutionary biology. Aquatic Conservation: Marine and Freshwater Ecosystems, 15, 715–725.
Denoel, M., & Lehmann, A. (2006). Multi‐scale effect of landscape processes and habitat quality on newt abundance: Implications for conservation. Biological Conservation, 130, 495–504.
Denton, J. S., Hitchings, S. P., Beebee, T. J. C., & Gent, A. (1997). A recovery program for the natterjack toad (Bufo calamita) in Britain. Conservation Biology, 11, 1329–1338.
Dobson, A. P., Bradshaw, A. D., & Baker, A. J. M. (1997). Hopes for the future: Restoration ecology and conservation biology. Science, 277, 515–522.
Drake, J., Lambin, X., Sutherland, C., & Gaillard, M. (2022). Spatiotemporal connectivity dynamics in spatially structured populations. Journal of Animal Ecology, 91, 2050–2060.
Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, Z. I., Knowler, D. J., Lévêque, C., Naiman, R. J., Prieur‐Richard, A. H., Soto, D., Stiassny, M. L. J., & Sullivan, C. A. (2006). Freshwater biodiversity: Importance, threats, status and conservation challenges. Biological Reviews, 81, 163–182.
Dufresnes, C., Leuenberger, J., Amrhein, V., Bühler, C., Thiébaud, J., Bohnenstengel, T., & Dubey, S. (2018). Invasion genetics of marsh frogs (Pelophylax ridibundus sensu lato) in Switzerland. Biological Journal of the Linnean Society, 123, 402–410.
Durrer, H. (2014). Amphibienschutz im siedlungsnahen Raum um Basel (CH): 40 Jahre Erfahrung in Bau und Pflege von Weiherbiotopen. Mitteilungen Naturforschende Gesellschaften beider Basel, 15, 51–76.
Fahrig, L., Watling, J. I., Arnillas, C. A., Arroyo‐Rodríguez, V., Jörger‐Hickfang, T., Müller, J., Pereira, H. M., Riva, F., Rösch, V., Seibold, S., Tscharntke, T., & May, F. (2022). Resolving the SLOSS dilemma for biodiversity conservation: A research agenda. Biological Reviews, 97, 99–114.
Falaschi, M., Giachello, S., Parrino, E. L., Muraro, M., Manenti, R., & Ficetola, G. F. (2020). Long‐term drivers of persistence and colonization dynamics in spatially structured amphibian populations. Conservation Biology, 35, 1530–1539.
Federal Office for the Environment (FOEN). (2012). Swiss biodiversity strategy. https://www.bafu.admin.ch/ud‐1060‐e
Federal Office for the Environment (FOEN). (2017). Action plan for the Swiss biodiversity strategy. https://www.bafu.admin.ch/aktionsplan‐biodiversitaet
Federal Office for the Environment (FOEN). (2023). Biodiversität in der Schweiz. Zustand und Entwicklung. https://www.bafu.admin.ch/uz‐2306‐d
Fluet‐Chouinard, E., Stocker, B. D., Zhang, Z., Malhotra, A., Melton, J. R., Poulter, B., Kaplan, J. O., Goldewijk, K. K., Siebert, S., Minayeva, T., Hugelius, G., Joosten, H., Barthelmes, A., Prigent, C., Aires, F., Hoyt, A. M., Davidson, N., Finlayson, C. M., Lehner, B., … McIntyre, P. B. (2023). Extensive global wetland loss over the past three centuries. Nature, 614, 281–286.
Gann, G. D., McDonald, T., Walder, B., Aronson, J., Nelson, C. R., Jonson, J., Hallett, J. G., Eisenberg, C., Guariguata, M. R., Liu, J., Hua, F., Echeverría, C., Gonzales, E., Shaw, N., Decleer, K., & Dixon, K. W. (2019). International principles and standards for the practice of ecological restoration. Restoration Ecology, 27, S1–S46.
Gimmi, U., Lachat, T., & Bürgi, M. (2011). Reconstructing the collapse of wetland networks in the Swiss lowlands 1850–2000. Landscape Ecology, 26, 1071–1083.
Grant, E. H. C., Muths, E., Schmidt, B. R., & Petrovan, S. O. (2019). Amphibian conservation in the Anthropocene. Biological Conservation, 236, 543–547.
Green, D. M. (2003). The ecology of extinction: population fluctuation and decline in amphibians. Biological Conservation, 111(3), 331–343. https://doi.org/10.1016/s0006‐3207(02)00302‐6
Hanski, I. (1994). Patch‐occupancy dynamics in fragmented landscapes. Trends in Ecology and Evolution, 9, 131–135.
Hanski, I., & Gilpin, M. (1991). Metapopulation dynamics: Brief history and conceptual domain. Biological Journal of the Linnean Society, 42, 3–16.
Harper, M., Mejbel, H. S., Longert, D., Abell, R., Beard, T. D., Bennett, J. R., Carlson, S. M., Darwall, W., Dell, A., Domisch, S., Dudgeon, D., Freyhof, J., Harrison, I., Hughes, K. A., Jähnig, S. C., Jeschke, J. M., Lansdown, R., Lintermans, M., Lynch, A. J., … Cooke, S. J. (2021). Twenty‐five essential research questions to inform the protection and restoration of freshwater biodiversity. Aquatic Conservation: Marine and Freshwater Ecosystems, 31, 2632–2653.
Heard, G. W., McCarthy, M. A., Scroggie, M. P., Baumgartner, J. B., & Parris, K. M. (2013). A Bayesian model of metapopulation viability, with application to an endangered amphibian. Diversity and Distributions, 19, 555–566.
Hill, M. J., Greaves, H. M., Sayer, C. D., Hassall, C., Milin, M., Milner, V. S., Marazzi, L., Hall, R., Harper, L. R., Thornhill, I., Walton, R., Biggs, J., Ewald, N., Law, A., Willby, N., White, J. C., Briers, R. A., Mathers, K. L., Jeffries, M. J., & Wood, P. J. (2021). Pond ecology and conservation: Research priorities and knowledge gaps. Ecosystems, 12, Article e03853.
Hill, M. J., Hassall, C., Oertli, B., Fahrig, L., Robson, B. J., Biggs, J., Samways, M. J., Usio, N., Takamura, N., Krishnaswamy, J., & Wood, P. J. (2018). New policy directions for global pond conservation. Conservation Letters, 11, Article e12447.
Howell, P. E., Hossack, B. R., Muths, E., Sigafus, B. H., & Chandler, R. B. (2020). Informing amphibian conservation efforts with abundance‐based metapopulation models. Herpetologica, 76, 240–250.
Howell, P. E., Hossack, B. R., Muths, E., Sigafus, B. H., Chenevert‐Steffler, A., & Chandler, R. B. (2020). A statistical forecasting approach to metapopulation viability analysis. Ecological Applications, 30, Article e02038.
Ilg, C., & Oertli, B. (2017). Effectiveness of amphibians as biodiversity surrogates in pond conservation. Conservation Biology, 31, 437–445.
Jaureguiberry, P., Titeux, N., Wiemers, M., Bowler, D. E., Coscieme, L., Golden, A. S., Guerra, C. A., Jacob, U., Takahashi, Y., Settele, J., Díaz, S., Molnár, Z., & Purvis, A. (2022). The direct drivers of recent global anthropogenic biodiversity loss. Science Advances, 8, Article eabm9982.
Jehle, R., & Sinsch, U. (2007). Wanderleistung und Orientierung von Amphibien: Eine Übersicht. Zeitschrift für Feldherpetologie, 14, 137–152.
Jeliazkov, A., Lorrillière, R., Besnard, A., Garnier, J., Silvestre, M., & Chiron, F. (2019). Cross‐scale effects of structural and functional connectivity in pond networks on amphibian distribution in agricultural landscapes. Freshwater Biology, 64, 997–1014.
Keeley, A. T. H., Beier, P., & Jenness, J. S. (2021). Connectivity metrics for conservation planning and monitoring. Biological Conservation, 255, Article 109008.
Kunc, H. P., & Schmidt, R. (2019). The effects of anthropogenic noise on animals: A meta‐analysis. Biology Letters, 15, Article 20190649.
Lewis‐Phillips, J., Brooks, S., Sayer, C. D., McCrea, R., Siriwardena, G., & Axmacher, J. C. (2019). Pond management enhances the local abundance and species richness of farmland bird communities. Agriculture, Ecosystems and Environment, 273, 130–140.
MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Royle, A. A., & Langtimm, C. A. (2002). Estimating site occupancy rates when detection probabilities are less than one. Ecology, 83, 2248–2255.
Magnus, R., & Rannap, R. (2019). Pond construction for threatened amphibians is an important conservation tool, even in landscapes with extant natural water bodies. Wetlands Ecology and Management, 27, 323–341.
McCaffery, R. M., Eby, L. A., Maxell, B. A., & Corn, P. S. (2014). Breeding site heterogeneity reduces variability in frog recruitment and population dynamics. Biological Conservation, 170, 169–176.
Meier, C., & Schelbert, B. (1999). Amphibienschutzkonzept Kanton Aargau. Mitteilungen Aargauische Naturforschende Gesellschaft, 35, 41–69.
Moilanen, A. (2004). SPOMSIM: Software for stochastic patch occupancy models of metapopulation dynamics. Ecological Modelling, 179, 533–550.
Moilanen, A., & Nieminen, M. (2002). Simple connectivity measures in spatial ecology. Ecology, 83, 1131–1145.
Moor, H., Bergamini, A., Vorburger, C., Holderegger, R., Bühler, C., Egger, S., & Schmidt, B. R. (2022). Bending the curve: Simple but massive conservation action leads to landscape‐scale recovery of amphibians. Proceedings of the National Academy of Sciences of the United States of America, 119, Article e2123070119.
Moor, H., Bühler, C., Bergamini, A., Vorburger, C., Holderegger, R., Schmidt, B. R., & Egger, S. (2022). Amphibian observation and pond data (Aargau, Switzerland). EnviDat. https://doi.org/10.16904/envidat.270
O'Hara, R. B., Arjas, E., Toivonen, H., & Hanski, I. (2002). Bayesian analysis of metapopulation data. Ecology, 83, 2408–2415.
Oldham, R. S., Keeble, J., Swan, M. J. S., & Jeffcote, M. (2000). Evaluating the suitability of habitat for the Great Crested Newt (Triturus cristatus). Herpetological Journal, 10, 143–155.
Pellet, J. (2014). Temporäre Gewässer für gefährdete Amphibien schaffen—Leitfaden für die Praxis. Beiträge zum Naturschutz in der Schweiz, 35, 1–25.
Pellet, J., Fleishman, E., Dobkin, D. S., Gander, A., & Murphy, D. D. (2007). An empirical evaluation of the area and isolation paradigm of metapopulation dynamics. Biological Conservation, 136, 483–495.
Pellet, J., Guisan, A., & Perrin, N. (2004). A concentric analysis of the impact of urbanization on the threatened European tree frog in an agricultural landscape. Conservation Biology, 18, 1599–1606.
Perring, M. P., Standish, R. J., Price, J. N., Caig, M. D., Erickson, T. E., Ruthrof, K. X., Whiteley, A. S., Valentine, L. E., & Hobbs, R. J. (2015). Advances in restoration ecology: Rising to the challenges of the coming decades. Ecosphere, 6, Article 131.
Prugh, L. R. (2009). An evaluation of patch connectivity measures. Ecological Applications, 19, 1300–1310.
Pulliam, H. R. (1988). Sources, sinks, and population regulation. American Naturalist, 132, 652–661.
Rannap, R., Lõhmus, A., & Briggs, L. (2009). Restoring ponds for amphibians: A success story. Hydrobiologia, 634, 87–95.
Reid, A. J., Carlson, A. K., Creed, I. F., Eliason, E. J., Gell, P. A., Johnson, P. T. J., Kidd, K. A., MacCormack, T. J., Olden, J. D., Ormerod, S. J., Smol, J. P., Taylor, W. W., Tockner, K., Vermaire, J. C., Dudgeon, D., & Cooke, S. J. (2019). Emerging threats and persistent conservation challenges for freshwater biodiversity. Biological Reviews, 94, 849–873.
Roth, T., Bühler, C., & Amrhein, V. (2016). Estimating effects of species interactions on populations of endangered species. American Naturalist, 187, 457–467.
Royle, J. A., & Kéry, M. (2007). A Bayesian state‐space formulation of dynamic occupancy models. Ecology, 88, 1813–1823.
Schielzeth, H. (2010). Simple means to improve the interpretability of regression coefficients. Methods in Ecology and Evolution, 1, 103–113.
Schmidt, B. R., Arlettaz, R., Schaub, M., Lüscher, B., & Kröpfli, M. (2019). Benefits and limits of comparative effectiveness studies in evidence‐based conservation. Biological Conservation, 236, 115–123.
Schmidt, B. R., Cruickshank, S. S., Bühler, C., & Bergamini, A. (2023). Observers are a key source of detection heterogeneity and biased occupancy estimates in species monitoring. Biological Conservation, 283, Article 110102.
Schmidt, B. R., & Pellet, J. (2005). Relative importance of population processes and habitat characteristics in determining site occupancy of two anurans. Journal of Wildlife Management, 69, 884–893.
Schmidt, B. R., & Zumbach, S. (2019). Amphibian conservation in Switzerland. In H. Heatwole & J. W. Wilkinson (Eds.), Amphibian biology, Volume 11: Status of conservation and decline of amphibians: Eastern Hemisphere, Part 5: Northern Europe (pp. 46–51). Pelagic Publishing.
Schmidt, B. R., Zumbach, S., Tobler, U., & Lippuner, M. (2015). Amphibien brauchen temporäre Gewässer. Zeitschrift für Feldherpetologie, 22, 137–150.
Semlitsch, R. D. (2002). Critical elements for biologically based recovery plans of aquatic‐breeding amphibians. Conservation Biology, 16, 619–629.
Shoemaker, L. G., Sullivan, L. L., Donohue, I., Cabral, J. S., Williams, R. J., Mayfield, M. M., Chase, J. M., Chu, C., Harpole, W. S., Huth, A., HilleRisLambers, J., James, A. R. M., Kraft, N. J. B., May, F., Muthukrishnan, R., Satterlee, S., Taubert, F., Wang, X., Wiegand, T., … Abbott, K. C. (2020). Integrating the underlying structure of stochasticity into community ecology. Ecology, 101, Article e02922.
Siffert, O., Pellet, J., Ramseier, P., Tobler, U., Bergamini, A., & Schmidt, B. R. (2022). Where land and water meet: Making amphibian breeding sites attractive for amphibians. Diversity, 14, Article 834.
Sjögren, P. (1991). Extinction and isolation gradients in metapopulations: The case of the pool frog (Rana lessonae). Biological Journal of the Linnean Society, 42, 135–147.
Sjögren‐Gulve, P., & Hanski, I. (2000). Metapopulation viability analysis using occupancy models. Ecological Bulletins, 48, 53–71.
Smith, R. K., Meredith, H. M. R., & Sutherland, W. J. (2020). Amphibian conservation. In W. J. Sutherland, L. V. Dicks, S. O. Petrovan, & R. K. Smith (Eds.), What works in conservation 2020 (pp. 9–64). Open Book Publishers.
Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & Van Der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society Series B: Statistical Methodology, 64(4), 583–639. https://doi.org/10.1111/1467‐9868.00353
Tanadini, L. G., & Schmidt, B. R. (2011). Population size influences amphibian detection probability: Implications for biodiversity monitoring programs. PLoS ONE, 6, Article e28244.
Ter Braak, C. J. F., & Etienne, R. S. (2003). Improved Bayesian analysis of metapopulation data with an application to a tree frog metapopulation. Ecology, 84, 231–241.
Tews, J., Brose, U., Grimm, V., Tielbörger, K., Wichmann, M. C., Schwager, M., & Jeltsch, F. (2004). Animal species diversity driven by habitat heterogeneity/diversity: The importance of keystone structures. Journal of Biogeography, 31, 79–92.
Török, P., & Helm, A. (2017). Ecological theory provides strong support for habitat restoration. Biological Conservation, 206, 85–91.
Tredennick, A. T., Hooker, G., Ellner, S. P., & Adler, P. B. (2021). A practical guide to selecting models for exploration, inference, and prediction in ecology. Ecology, 102, Article e03336.
Unglaub, B., Cayuela, H., Schmidt, B. R., Preißler, K., Glos, J., & Steinfartz, S. (2021). Context‐dependent dispersal determines relatedness and genetic structure in a patchy amphibian population. Molecular Ecology, 30, 5009–5028.
United Nations (UN). (2019). United Nations General Assembly (UN) Res 73/284 (6 March 2019) UN Doc A/RES/73/284. https://digitallibrary.un.org/record/3794317?ln=en
Van Buskirk, J. (2003). Habitat partitioning in European and North American pond‐breeding frogs and toads. Diversity and Distributions, 9, 399–410.
Wellborn, G. A., Skelly, D. K., & Werner, E. E. (1996). Mechanisms creating community structure across a freshwater habitat gradient. Annual Review of Ecology and Systematics, 27, 337–363.
White, K. J., Mayes, W. M., & Petrovan, S. O. (2017). Identifying pathways of exposure to highway pollutants in great crested newt (Triturus cristatus) road mitigation tunnels. Water and Environment Journal, 31, 310–316.
Williams, P., Biggs, J., Stoate, C., Szczur, J., Brown, C., & Bonney, S. (2020). Nature based measures increase freshwater biodiversity in agricultural catchments. Biological Conservation, 244, Article 108515.
Williams, P., Whitfield, M., Biggs, J., Bray, S., Fox, G., Nicolet, P., & Sear, D. (2003). Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern England. Biological Conservation, 115, 329–341.
Yackulic, C. B., Nichols, J. D., Reid, J., & Der, R. (2015). To predict the niche, model colonization and extinction. Ecology, 96, 16–23.
Zanini, F., Klingemann, A., Schlaepfer, R., & Schmidt, B. R. (2008). Landscape effects on anuran pond occupancy in an agricultural countryside: Barrier‐based buffers predict distributions better than circular buffers. Canadian Journal of Zoology, 86, 692–699.

Auteurs

Helen Moor (H)

Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland.
Swiss Federal Institute of Aquatic Science and Technology Eawag, Dübendorf, Switzerland.

Ariel Bergamini (A)

Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland.

Christoph Vorburger (C)

Swiss Federal Institute of Aquatic Science and Technology Eawag, Dübendorf, Switzerland.
Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland.

Rolf Holderegger (R)

Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland.
Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland.

Christoph Bühler (C)

Hintermann & Weber AG, Reinach, Switzerland.

Nicolas Bircher (N)

Sektion Natur and Landschaft, Kanton Aargau, Aarau, Switzerland.

Benedikt R Schmidt (BR)

info fauna karch, Neuchâtel, Switzerland.
Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland.

Classifications MeSH