Reading tea leaves worldwide: Decoupled drivers of initial litter decomposition mass-loss rate and stabilization.
citizen science
environmental drivers
global change
litter decomposition
mass loss
soil organic matter formation
stabilization
tea bag index
Journal
Ecology letters
ISSN: 1461-0248
Titre abrégé: Ecol Lett
Pays: England
ID NLM: 101121949
Informations de publication
Date de publication:
May 2024
May 2024
Historique:
revised:
26
01
2024
received:
18
02
2023
accepted:
27
02
2024
medline:
7
5
2024
pubmed:
7
5
2024
entrez:
7
5
2024
Statut:
ppublish
Résumé
The breakdown of plant material fuels soil functioning and biodiversity. Currently, process understanding of global decomposition patterns and the drivers of such patterns are hampered by the lack of coherent large-scale datasets. We buried 36,000 individual litterbags (tea bags) worldwide and found an overall negative correlation between initial mass-loss rates and stabilization factors of plant-derived carbon, using the Tea Bag Index (TBI). The stabilization factor quantifies the degree to which easy-to-degrade components accumulate during early-stage decomposition (e.g. by environmental limitations). However, agriculture and an interaction between moisture and temperature led to a decoupling between initial mass-loss rates and stabilization, notably in colder locations. Using TBI improved mass-loss estimates of natural litter compared to models that ignored stabilization. Ignoring the transformation of dead plant material to more recalcitrant substances during early-stage decomposition, and the environmental control of this transformation, could overestimate carbon losses during early decomposition in carbon cycle models.
Substances chimiques
Carbon
7440-44-0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e14415Informations de copyright
© 2024 The Authors. Ecology Letters published by John Wiley & Sons Ltd.
Références
Althuizen, I.H.J., Lee, H., Sarneel, J.M. & Vandvik, V. (2018) Long‐term climate regime modulates the impact of short‐term climate variability on decomposition in alpine grassland soils. Ecosystems, 21, 1580–1592.
Austin, A.T. & Vivanco, L. (2006) Plant litter decomposition in a semi‐arid ecosystem controlled by photodegradation. Nature, 442, 555–558.
Bahram, M., Netherway, T., Hildebrand, F., Pritsch, K., Drenkhan, R., Loit, K. et al. (2020) Plant nutrient‐acquisition strategies drive topsoil microbiome structure and function. New Phytologist, 227, 1189–1199.
Bardgett, R.D. & van der Putten, W.H. (2014) Belowground biodiversity and ecosystem functioning. Nature, 515, 505–511.
Berg, B., Berg, M.P., Bottner, P., Box, E., Breymeyer, A., Deanta, R.C. et al. (1993) Litter mass‐loss rates in pine forests of Europe and Eastern United States—some relationships with climate and litter quality. Biogeochemistry, 20, 127–159.
Berg, B. & McClaugherty, C. (2020) Plant litter; decomposition, humus formation, carbon sequestration, 4th edition. New York, USA: Springer.
Buckeridge, K.M., Mason, K.E., McNamara, N.P., Ostle, N., Puissant, J., Goodall, T. et al. (2020) Environmental and microbial controls on microbial necromass recycling, an important precursor for soil carbon stabilization. Communications Earth & Environment, 1, 36.
Cebrian, J. (1999) Patterns in the fate of production in plant communities. The American Naturalist, 154, 449–468.
Cotrufo, M.F., Soong, J.L., Horton, A.J., Campbell, E.E., Haddix, M.L., Wall, D.H. et al. (2015) Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nature Geoscience, 8, 776–779.
Cotrufo, M.F., Wallenstein, M.D., Boot, C.M., Denef, K. & Paul, E. (2013) The Microbial Efficiency‐Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Global Change Biology, 19, 988–995.
Daebeler, A., Petrová, E., Kinz, E., Grausenburger, S., Berthold, H., Sandén, T. et al. (2022) Pairing litter decomposition with microbial community structures using the Tea Bag Index (TBI). The Soil, 8, 163–176.
Djukic, I., Kepfer‐Rojas, S., Schmidt, I.K., Larsen, K.S., Beier, C., Berg, B. et al. (2018) Early stage litter decomposition across biomes. Science of the Total Environment, 628‐629, 1369–1394.
Duddigan, S., Alexander, P.D., Shaw, L.J., Sanden, T. & Collins, C.D. (2020) The Tea Bag Index‐UK: using citizen/community science to investigate organic matter decomposition rates in domestic gardens. Sustainability, 12, 6895.
Duddigan, S., Shaw, L.J., Alexander, P.D. & Collins, C.D. (2020) Chemical underpinning of the tea bag index: an examination of the decomposition of tea leaves. Applied and Environmental Soil Science, 2020, 8.
Fanin, N., Bezaud, S., Sarneel, J.M., Cecchini, S., Nicolas, M. & Augusto, L. (2020) Relative importance of climate, soil and plant functional traits during the early decomposition stage of standardized litter. Ecosystems, 23, 1004–1018.
Foley, J.A. (2005) Integrated biosphere simulator model (IBIS), version 2.5. Available at: https://daac.ornl.gov/cgi‐bin/dsviewer.pl?ds_id=8082020
Gessner, M.O., Chauvet, E. & Dobson, M. (1999) A perspective on leaf litter breakdown in streams. Oikos, 85, 377–384.
Gholz, H.L., Wedin, D.A., Smitherman, S.M., Harmon, M.E. & Parton, W.J. (2000) Long‐term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition. Global Change Biology, 6, 751–765.
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D. & Moore, R. (2017) Google earth engine: planetary‐scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27.
Harmon, M.E. (2016) LTER Intersite fine litter decomposition experiment (LIDET), 1990 to 2002 version 11. (ed. Site, AFL) Corvallis.
He, Y., Wang, X.H., Wang, K., Tang, S.C., Xu, H., Chen, A.P. et al. (2021) Data‐driven estimates of global litter production imply slower vegetation carbon turnover. Global Change Biology, 27, 1678–1688.
Heimann, M. & Reichstein, M. (2008) Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature, 451, 289–292.
Hobbie, S.E., Eddy, W.C., Buyarski, C.R., Adair, E.C., Ogdahl, M.L. & Weisenhorn, P. (2012) Response of decomposing litter and its microbial community to multiple forms of nitrogen enrichment. Ecological Monographs, 82, 389–405.
IPCC. (2022) Climate change 2022: impacts, adaptation, and vulnerability. In: Pörtner, H.‐O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., et al. (Eds.) Contribution of working group II to the sixth assessment report of the intergovernmental panel on climate change, Cambridge, UK and New York, USA, p. 3056.
Joly, F.X., Scherer‐Lorenzen, M. & Hättenschwiler, S. (2023) Resolving the intricate role of climate in litter decomposition. Nature Ecology & Evolution, 7, 214–223.
Keuskamp, J.A., Dingemans, B.J.J., Lehtinen, T., Sarneel, J.M. & Hefting, M.M. (2013) Tea Bag Index: a novel approach to collect uniform decomposition data across ecosystems. Methods in Ecology and Evolution, 4, 1070–1075.
Kwon, T., Shibata, H., Kepfer‐Rojas, S., Schmidt, I.K., Larsen, K.S., Beier, C. et al. (2021) Effects of climate and atmospheric nitrogen deposition on early to mid‐term stage litter decomposition across biomes. Frontiers in Forests and Global Change, 4, 678480.
Le Noë, J., Manzoni, S., Abramoff, R., Bölscher, T., Bruni, E., Cardinael, R. et al. (2023) Soil organic carbon models need independent time‐series validation for reliable prediction. Communications Earth & Environment, 4, 158.
Lenth, R.V., Bolker, B., Buerkner, P., Gine‐Vasquez, I., Herve, M., Jung, M. et al. (2023) Emmeans: estimated marginal means, aka least‐squares means.
Li, R.S., Guo, X.Y., Han, J.M., Yang, Q.P., Zhang, W.D., Yu, X. et al. (2023) Global pattern and drivers of stable residue size from decomposing leaf litter. Catena, 232, 107390.
Minasny, B., Malone, B.P., McBratney, A.B., Angers, D.A., Arrouays, D., Chambers, A. et al. (2017) Soil carbon 4 per mille. Geoderma, 292, 59–86.
Mori, T., Nakamura, R. & Aoyagi, R. (2022) Risk of misinterpreting the Tea Bag Index: field observations and a random simulation. Ecological Research, 37, 381–389.
Mueller, P., Schile‐Beers, L.M., Mozdzer, T.J., Chmura, G.L., Dinter, T., Kuzyakov, Y. et al. (2018) Global‐change effects on early‐stage decomposition processes in tidal wetlands—implications from a global survey using standardized litter. Biogeosciences, 15, 3189–3202.
Njoroge, D.M., Chen, S.C., Zuo, J., Dossa, G.G.O. & Cornelissen, J.H.C. (2022) Soil fauna accelerate litter mixture decomposition globally, especially in dry environments. Journal of Ecology, 110, 659–672.
Ochoa‐Hueso, R., Borer, E.T., Seabloom, E.W., Hobbie, S.E., Risch, A.C., Collins, S.L. et al. (2020) Microbial processing of plant remains is co‐limited by multiple nutrients in global grasslands. Global Change Biology, 26, 4572–4582.
Olson, D.M., Dinerstein, E., Wikramanayake, E.D., Burgess, N.D., Powell, G.V.N., Underwood, E.C. et al. (2001) Terrestrial ecoregions of the worlds: a new map of life on Earth. Bioscience, 51, 933–938.
Parton, W., Silver, W.L., Burke, I.C., Grassens, L., Harmon, M.E., Currie, W.S. et al. (2007) Global‐scale similarities in nitrogen release patterns during long‐term decomposition. Science, 315, 361–364.
Parton, W.J., Hartman, M., Ojima, D. & Schimel, D. (1998) DAYCENT and its land surface submodel: description and testing. Global and Planetary Change, 19, 35–48.
Post, E., Alley, R.B., Christensen, T.R., Macias‐Fauria, M., Forbes, B.C., Gooseff, M.N. et al. (2019) The polar regions in a 2 degrees C warmer world. Science Advances, 5, eaaw9883.
Prescott, C.E. (2010) Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils? Biogeochemistry, 101, 133–149.
R Core Team. (2023) R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
Robbins, C.J., Norman, B.C., Halvorson, H.M., Manning, D.W., Bastias, E., Biasi, C. et al. (2022) Nutrient and stoichiometric time series measurements of decomposing coarse detritus in freshwaters worldwide from literature published between 1976–2020 ver 1. (ed. Initiative, ED).
Sanchez, P.A., Ahamed, S., Carre, F., Hartemink, A.E., Hempel, J., Huising, J. et al. (2009) Digital soil map of the world. Science, 325, 680–681.
Sarneel, J.M., Barel, J.M., Duddigan, S., Keuskamp, J.A., Pastor Oliveras, A., Sanden, T. et al. (2023) Reasons to not correct for leaching in TBI; reply to Lind et al 2022. Authorea, 13, e10133.
Sarneel, J.M.J. & Veen, G.F.C. (2017) Legacy effects of altered flooding regimes on decomposition in a boreal floodplain. Plant and Soil, 421, 57–66.
Stockmann, U., Padarian, J., McBratney, A., Minasny, B., de Brogniez, D., Montanarella, L. et al. (2015) Global soil organic carbon assessment. Global Food Security‐Agriculture Policy Economics and Environment, 6, 9–16.
Tang, H., Nolte, S., Jensen, K., Yang, Z., Wu, J. & Mueller, P. (2020) Grazing mediates soil microbial activity and litter decomposition in salt marshes. Science of the Total Environment, 720, 137559.
Thomas, H.J.D., Myers‐Smith, I.H., Høye, T.T., Bon, M.P., Lembrechts, J., Walker, E.R. et al. (2023) Litter quality outweighs climate as a driver of decomposition across the tundra biome. EcoEvoRxiv.
Trofymow, J.A., Moore, T.R., Titus, B., Prescott, C., Morrison, I., Siltanen, M. et al. (2002) Rates of litter decomposition over 6 years in Canadian forests: influence of litter quality and climate. Canadian Journal of Forest Research‐Revue Canadienne De Recherche Forestiere, 32, 789–804.
van den Brink, L., Canessa, R., Neidhardt, H., Knuver, T., Rios, R.S., Saldana, A. et al. (2023) No home‐field advantage in litter decomposition from the desert to temperate forest. Functional Ecology, 37, 1315–1327.
van den Hoogen, J., Geisen, S., Routh, D., Ferris, H., Traunspurger, W., Wardle, D.A. et al. (2019) Soil nematode abundance and functional group composition at a global scale. Nature, 572, 194–198.
Veen, G.F., Freschet, G.T., Ordonez, A. & Wardle, D.A. (2015) Litter quality and environmental controls of home‐field advantage effects on litter decomposition. Oikos, 124, 187–195.