Longitudinal in vivo cationic contrast-enhanced computed tomography classifies equine articular cartilage injury and repair.

CT biomarker glycosaminoglycan imaging osteoarthritis

Journal

Journal of orthopaedic research : official publication of the Orthopaedic Research Society
ISSN: 1554-527X
Titre abrégé: J Orthop Res
Pays: United States
ID NLM: 8404726

Informations de publication

Date de publication:
08 May 2024
Historique:
revised: 12 03 2024
received: 30 12 2023
accepted: 23 04 2024
medline: 8 5 2024
pubmed: 8 5 2024
entrez: 8 5 2024
Statut: aheadofprint

Résumé

Cationic contrast-enhanced computed tomography (CECT) capitalizes on increased contrast agent affinity to the charged proteoglycans in articular cartilage matrix to provide quantitative assessment of proteoglycan content with enhanced images. While high resolution microCT has demonstrated success, we investigate cationic CECT use in longitudinal in vivo imaging at clinical resolution. We hypothesize that repeated administration of CA4+ will have no adverse side effects or complications, and that sequential in vivo imaging assessments will distinguish articular cartilage repair tissue from early degenerative and healthy cartilage in critically sized chondral defects. In an established equine translational preclinical model, lameness and synovial effusion scores are similar to controls after repeated injections of CA4+ (eight injections over 16 weeks) compared to controls. Synovial fluid total protein, leukocyte concentration, and sGAG and PGE

Identifiants

pubmed: 38715519
doi: 10.1002/jor.25869
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Päivikki ja Sakari Sohlbergin Säätiö
Organisme : Suomen Kulttuurirahasto
Organisme : Grayson-Jockey Club Research Foundation
Organisme : College of Veterinary Medicine and Biomedical Sciences Cooperative Veterinary Scientist Research Training Fellowship, Colorado State University
Organisme : William Fairfield Warren Distinguished Professorship
Organisme : Orion Research Foundation
Organisme : Finnish Cultural Foundation

Informations de copyright

© 2024 The Authors. Journal of Orthopaedic Research® published by Wiley Periodicals LLC on behalf of Orthopaedic Research Society.

Références

Bekkers JEJ, Creemers LB, Dhert WJA, Saris DBF. Review: diagnostic modalities for diseased articular cartilage‐from defect to degeneration: a review. Cartilage. 2010;1:157‐164.
Hayashi D, Roemer FW, Guermazi A. Imaging of osteoarthritis‐recent research developments and future perspective. Br J Radiol. 2018;91:20170349.
Taylor C, Carballido‐Gamio J, Majumdar S, Li X. Comparison of quantitative imaging of cartilage for osteoarthritis: T2, T1ρ, dGEMRIC and contrast‐enhanced computed tomography. Magn Reson Imaging. 2009;27:779‐784.
Bansal PN, Joshi NS, Entezari V, et al. Cationic contrast agents improve quantification of glycosaminoglycan (GAG) content by contrast enhanced CT imaging of cartilage. J Orthop Res. 2011;29:704‐709.
Bansal PN, Stewart RC, Entezari V, Snyder BD, Grinstaff MW. Contrast agent electrostatic attraction rather than repulsion to glycosaminoglycans affords a greater contrast uptake ratio and improved quantitative CT imaging in cartilage. Osteoarthritis Cartilage. 2011;19:970‐976.
Lakin BA, Ellis DJ, Shelofsky JS, Freedman JD, Grinstaff MW, Snyder BD. Contrast‐enhanced CT facilitates rapid, non‐destructive assessment of cartilage and bone properties of the human metacarpal. Osteoarthritis Cartilage. 2015;23:2158‐2166.
Lakin BA, Grasso DJ, Shah SS, et al. Cationic agent contrast‐enhanced computed tomography imaging of cartilage correlates with the compressive modulus and coefficient of friction. Osteoarthritis Cartilage. 2013;21:60‐68.
Lakin BA, Patel H, Holland C, et al. Contrast‐enhanced CT using a cationic contrast agent enables non‐destructive assessment of the biochemical and biomechanical properties of mouse tibial plateau cartilage. J Orthop Res. 2016;34:1130‐1138.
Stewart RC, Bansal PN, Entezari V, et al. Contrast‐enhanced CT with a high‐affinity cationic contrast agent for imaging ex vivo bovine, intact ex vivo rabbit and in vivo rabbit cartilage. Radiology. 2013;266:141‐150.
Stewart RC, Patwa AN, Lusic H, et al. Synthesis and preclinical characterization of a cationic iodinated imaging contrast agent (CA4+) and its use for quantitative computed tomography of ex vivo human hip cartilage. J Med Chem. 2017;60:5543‐5555.
Saukko AEA, Nykänen O, Sarin JK, et al. Dual‐contrast computed tomography enables detection of equine posttraumatic osteoarthritis in vitro. J Orthop Res. 2022;40:703‐711.
Orava H, Paakkari P, Jäntti J, et al. Triple contrast computed tomography reveals site‐specific biomechanical differences in the human knee joint—a proof of concept study. J Orthop Res. Published online 2023.
Nelson BB, Mäkelä JTA, Lawson TB, et al. Evaluation of equine articular cartilage degeneration after mechanical impact injury using cationic contrast‐enhanced computed tomography. Osteoarthritis Cartilage. 2019;27:1219‐1228.
Nelson BB, Mäkelä JTA, Lawson TB, et al. Cationic contrast‐enhanced computed tomography distinguishes between reparative, degenerative, and healthy equine articular cartilage. J Orthop Res. 2021;39:1647‐1657.
Stewart RC, Nelson BB, Kawcak CE, et al. Contrast‐enhanced computed tomography scoring system for distinguishing early osteoarthritis disease states: a feasibility study. J Orthop Res. 2019;37:2138‐2148.
Nelson BB, Stewart RC, Kawcak CE, et al. Quantitative evaluation of equine articular cartilage using cationic contrast‐enhanced computed tomography. Cartilage. 2021;12:211‐221.
McIlwraith CW, Fortier LA, Frisbie DD, Nixon AJ. Equine models of articular cartilage repair. Cartilage. 2011;2:317‐326.
Strauss EJ, Goodrich LR, Chen CT, Hidaka C, Nixon AJ. Biochemical and biomechanical properties of lesion and adjacent articular cartilage after chondral defect repair in an equine model. Am J Sports Med. 2005;33:1647‐1653.
Frisbie DD, Cross MW, McIlwraith CW. A comparative study of articular cartilage thickness in the stifle of animal species used in human pre‐clinical studies compared to articular cartilage thickness in the human knee. Vet Comp Orthop Traumatol. 2006;19:142‐146.
Frisbie DD, Bowman SM, Colhoun HA, DiCarlo EF, Kawcak CE, McIlwraith CW. Evaluation of autologous chondrocyte transplantation via a collagen membrane in equine articular defects—results at 12 and 18 months. Osteoarthritis Cartilage. 2008;16:667‐679.
Farndale R, Buttle D, Barrett A. Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim Biophys Acta—Gen Subj. 1986;883:173‐177.
Frisbie DD, Al‐Sobayil F, Billinghurst RC, Kawcak CE, McIlwraith CW. Changes in synovial fluid and serum biomarkers with exercise and early osteoarthritis in horses. Osteoarthritis Cartilage. 2008;16:1196‐1204.
Bertone AL, Palmer JL, Jones J. Synovial fluid cytokines and eicosanoids as markers of joint disease in horses. Vet Surg. 2001;30:528‐538.
Edwards RB, Lu Y, Uthamanthil RK, et al. Comparison of mechanical debridement and radiofrequency energy for chondroplasty in an in vivo equine model of partial thickness cartilage injury. Osteoarthritis Cartilage. 2007;15:169‐178.
McIlwraith CW, Frisbie DD, Kawcak CE, Fuller CJ, Hurtig M, Cruz A. The OARSI histopathology initiative—recommendations for histological assessments of osteoarthritis in the horse. Osteoarthritis Cartilage. 2010;18:S93‐S105.
Hurtig MB, Fretz PB, Doige CE, Schnurr DL. Effects of lesion size and location on equine articular cartilage repair. Can J Vet Res. 1988;52:137‐146.
Frisbie DD, Trotter GW, Powers BE, et al. Arthroscopic subchondral bone plate microfracture technique augments healing of large chondral defects in the radial carpal bone and medial femoral condyle of horses. Vet Surg. 1999;28:242‐255.
Brittberg M, Winalski CS. Evaluation of cartilage injuries and repair. J Bone Joint Surg Am. 2003;85‐A(suppl 2):58‐69.
Stewart HL, Siewerdsen JH, Nelson BB, Kawcak CE. Use of cone‐beam computed tomography for advanced imaging of the equine patient. Equine Vet J. 2021;53:872‐885.
McIlwraith CW, Nixon AJ, Wright IM. Diagnostic and surgical arthroscopy of the femoropatellar and femorotibial joints. In: McIlwraith CW, Nixon AJ, Wright IM, eds. Diagnostic and Surgical Arthroscopy in the Horse. 4th ed. Mosby Elsevier; 2015:175‐242.
Changoor A, Hurtig MB, Runciman RJ, Quesnel AJ, Dickey JP, Lowerison M. Mapping of donor and recipient site properties for osteochondral graft reconstruction of subchondral cystic lesions in the equine stifle joint. Equine Vet J. 2006;38:330‐336.
Huttu MRJ, Puhakka J, Mäkelä JTA, et al. Cell‐tissue interactions in osteoarthritic human hip joint articular cartilage. Connect Tissue Res. 2014;55:282‐291.
June RK, Mejia KL, Barone JR, Fyhrie DP. Cartilage stress‐relaxation is affected by both the charge concentration and valence of solution cations. Osteoarthritis Cartilage. 2009;17:669‐676.
Lippiello L, Hall D, Mankin HJ. Collagen synthesis in normal and osteoarthritic human cartilage. J Clin Invest. 1977;59:593‐600.
Venn M, Maroudas A. Chemical composition and swelling of normal and osteoarthrotic femoral head cartilage. I. Chemical composition. Ann Rheum Dis. 1977;36:121‐129.
Mainil‐Varlet P, Van Damme B, Nesic D, Knutsen G, Kandel R, Roberts S. A new histology scoring system for the assessment of the quality of human cartilage repair: ICRS II. Am J Sports Med. 2010;38:880‐890.
Sande EPS, Martinsen ACT, Hole EO, Olerud HM. Interphantom and interscanner variations for Hounsfield units—establishment of reference values for HU in a commercial QA phantom. Phys Med Biol. 2010;55:5123‐5135.
McIlwraith CW, Frisbie DD, Rodkey WG, et al. Evaluation of intra‐articular mesenchymal stem cells to augment healing of microfractured chondral defects. Arthrosc ‐ J Arthrosc Relat Surg. 2011;27:1552‐1561.
Bland JM, Altman DG. Calculating correlation coefficients with repeated observations: part 1—correlation within subjects. Br Med J (Clin Res Ed). 1995;310:446.
Brommer H, Brama PAJ, Laasanen MS, Helminen HJ, van Weeren PR, Jurvelin JS. Functional adaptation of articular cartilage from birth to maturity under the influence of loading: a biomechanical analysis. Equine Vet J. 2005;37:148‐154.
Firth EC. The response of bone, articular cartilage and tendon to exercise in the horse. J Anat. 2006;208:513‐526.
Burstein D, Velyvis J, Scott KT, et al. Protocol issues for delayed Gd(DTPA)(2‐)‐enhanced MRI (dGEMRIC) for clinical evaluation of articular cartilage. Magn Reson Med. 2001;45:36‐41.
Boom R, Lest CHA, Bull S, Brama PAJ, Weeren PR, Barneveld A. Influence of repeated arthrocentesis and exercise on synovial fluid concentrations of nitric oxide, prostaglandin E2 and glycosaminoglycans in healthy equine joints. Equine Vet J. 2005;37:250‐256.
Strickland CD, Ho CK, Merkle AN, Vidal AF. MR imaging of knee cartilage injury and repair surgeries. Magn Reson Imaging Clin N Am. 2022;30:227‐239.
Lechuga L, Weidlich GA. Cone beam CT vs. fan beam CT: a comparison of image quality and dose delivered between two differing CT imaging modalities. Cureus. 2016;8:e778.
Frisbie DD, McIlwraith CW, Kawcak CE, Werpy NM. Efficacy of intravenous administration of hyaluronan, sodium chondroitin sulfate, and N‐acetyl‐d‐glucosamine for prevention or treatment of osteoarthritis in horses. Am J Vet Res. 2016;77:1064‐1070.
Kawcak CE, Frisbie DD, Werpy NM, Park RD, McIlwraith CW. Effects of exercise vs experimental osteoarthritis on imaging outcomes. Osteoarthritis Cartilage. 2008;16:1519‐1525.
Smith AD, Morton AJ, Winter MD, et al. Magnetic resonance imaging scoring of an experimental model of post‐traumatic osteoarthritis in the equine carpus. Vet Radiol Ultrasound. 2016;57:502‐514.
Kester BS, Carpenter PM, Yu HJ, et al. T1ρ/T2 mapping and histopathology of degenerative cartilage in advanced knee osteoarthritis. World J Orthop. 2017;8:350‐356.

Auteurs

Brad B Nelson (BB)

Orthopaedic Research Center, C. Wayne McIlwraith Translational Medicine Institute, Colorado State University, Fort Collins, Colorado, USA.

Janne T A Mäkelä (JTA)

Harvard Medical School, Beth Israel Deaconess Medical Center, Center for Advanced Orthopaedic Studies, Boston, Massachusetts, USA.
Department of Technical Physics, University of Eastern Finland, Kuopio, Finland.
Departments of Chemistry and Biomedical Engineering, Boston University, Boston, Massachusetts, USA.

Taylor B Lawson (TB)

Harvard Medical School, Beth Israel Deaconess Medical Center, Center for Advanced Orthopaedic Studies, Boston, Massachusetts, USA.
Departments of Chemistry and Biomedical Engineering, Boston University, Boston, Massachusetts, USA.

Amit N Patwa (AN)

Departments of Chemistry and Biomedical Engineering, Boston University, Boston, Massachusetts, USA.
Deparment of Chemistry, School of Science, Navrachana University, Vadodara, Gujarat, India.

Brian D Snyder (BD)

Harvard Medical School, Beth Israel Deaconess Medical Center, Center for Advanced Orthopaedic Studies, Boston, Massachusetts, USA.

C Wayne McIlwraith (CW)

Orthopaedic Research Center, C. Wayne McIlwraith Translational Medicine Institute, Colorado State University, Fort Collins, Colorado, USA.

Mark W Grinstaff (MW)

Departments of Chemistry and Biomedical Engineering, Boston University, Boston, Massachusetts, USA.

Kathryn A Seabaugh (KA)

Orthopaedic Research Center, C. Wayne McIlwraith Translational Medicine Institute, Colorado State University, Fort Collins, Colorado, USA.

Myra F Barrett (MF)

Orthopaedic Research Center, C. Wayne McIlwraith Translational Medicine Institute, Colorado State University, Fort Collins, Colorado, USA.

Laurie R Goodrich (LR)

Orthopaedic Research Center, C. Wayne McIlwraith Translational Medicine Institute, Colorado State University, Fort Collins, Colorado, USA.

Christopher E Kawcak (CE)

Orthopaedic Research Center, C. Wayne McIlwraith Translational Medicine Institute, Colorado State University, Fort Collins, Colorado, USA.

Classifications MeSH