A meta-analysis on global change drivers and the risk of infectious disease.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
08 May 2024
08 May 2024
Historique:
received:
02
08
2022
accepted:
03
04
2024
medline:
9
5
2024
pubmed:
9
5
2024
entrez:
8
5
2024
Statut:
aheadofprint
Résumé
Anthropogenic change is contributing to the rise in emerging infectious diseases, which are significantly correlated with socioeconomic, environmental and ecological factors
Identifiants
pubmed: 38720068
doi: 10.1038/s41586-024-07380-6
pii: 10.1038/s41586-024-07380-6
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Jones, K. E. et al. Global trends in emerging infectious diseases. Nature 451, 990–994 (2008).
doi: 10.1038/nature06536
pubmed: 18288193
pmcid: 5960580
Civitello, D. J. et al. Biodiversity inhibits parasites: broad evidence for the dilution effect. Proc. Natl Acad. Sci USA 112, 8667–8671 (2015).
doi: 10.1073/pnas.1506279112
pubmed: 26069208
pmcid: 4507196
Halliday, F. W., Rohr, J. R. & Laine, A.-L. Biodiversity loss underlies the dilution effect of biodiversity. Ecol. Lett. 23, 1611–1622 (2020).
doi: 10.1111/ele.13590
pubmed: 32808427
pmcid: 7693066
Rohr, J. R. et al. Towards common ground in the biodiversity–disease debate. Nat. Ecol. Evol. 4, 24–33 (2020).
doi: 10.1038/s41559-019-1060-6
pubmed: 31819238
Johnson, P. T. J., Ostfeld, R. S. & Keesing, F. Frontiers in research on biodiversity and disease. Ecol. Lett. 18, 1119–1133 (2015).
doi: 10.1111/ele.12479
pubmed: 26261049
pmcid: 4860816
Keesing, F. et al. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 468, 647–652 (2010).
doi: 10.1038/nature09575
pubmed: 21124449
pmcid: 7094913
Cohen, J. M., Sauer, E. L., Santiago, O., Spencer, S. & Rohr, J. R. Divergent impacts of warming weather on wildlife disease risk across climates. Science 370, eabb1702 (2020).
doi: 10.1126/science.abb1702
pubmed: 33214248
pmcid: 8588056
Rohr, J. R. et al. Frontiers in climate change-disease research. Trends Ecol. Evol. 26, 270–277 (2011).
doi: 10.1016/j.tree.2011.03.002
pubmed: 21481487
pmcid: 3374867
Altizer, S., Ostfeld, R. S., Johnson, P. T. J., Kutz, S. & Harvell, C. D. Climate change and infectious diseases: from evidence to a predictive framework. Science 341, 514–519 (2013).
doi: 10.1126/science.1239401
pubmed: 23908230
Rohr, J. R. & Cohen, J. M. Understanding how temperature shifts could impact infectious disease. PLoS Biol. 18, e3000938 (2020).
doi: 10.1371/journal.pbio.3000938
pubmed: 33232316
pmcid: 7685459
Carlson, C. J. et al. Climate change increases cross-species viral transmission risk. Nature 607, 555–562 (2022).
doi: 10.1038/s41586-022-04788-w
pubmed: 35483403
Halstead, N. T. et al. Agrochemicals increase risk of human schistosomiasis by supporting higher densities of intermediate hosts. Nat. Commun. 9, 837 (2018).
doi: 10.1038/s41467-018-03189-w
pubmed: 29483531
pmcid: 5826950
Martin, L. B., Hopkins, W. A., Mydlarz, L. D. & Rohr, J. R. The effects of anthropogenic global changes on immune functions and disease resistance. Ann. N. Y. Acad. Sci. 1195, 129–148 (2010).
Rumschlag, S. L. et al. Effects of pesticides on exposure and susceptibility to parasites can be generalised to pesticide class and type in aquatic communities. Ecol. Lett. 22, 962–972 (2019).
doi: 10.1111/ele.13253
pubmed: 30895712
pmcid: 6483824
Allan, B. F., Keesing, F. & Ostfeld, R. S. Effect of forest fragmentation on Lyme disease risk. Conserv. Biol. 17, 267–272 (2003).
doi: 10.1046/j.1523-1739.2003.01260.x
Brearley, G. et al. Wildlife disease prevalence in human‐modified landscapes. Biol. Rev. 88, 427–442 (2013).
doi: 10.1111/brv.12009
pubmed: 23279314
Rohr, J. R. et al. Emerging human infectious diseases and the links to global food production. Nat. Sustain. 2, 445–456 (2019).
doi: 10.1038/s41893-019-0293-3
pubmed: 32219187
pmcid: 7091874
Bradley, C. A. & Altizer, S. Urbanization and the ecology of wildlife diseases. Trends Ecol. Evol. 22, 95–102 (2007).
doi: 10.1016/j.tree.2006.11.001
pubmed: 17113678
Allen, T. et al. Global hotspots and correlates of emerging zoonotic diseases. Nat. Commun. 8, 1124 (2017).
doi: 10.1038/s41467-017-00923-8
pubmed: 29066781
pmcid: 5654761
Sokolow, S. H. et al. Ecological and socioeconomic factors associated with the human burden of environmentally mediated pathogens: a global analysis. Lancet Planet. Health 6, e870–e879 (2022).
doi: 10.1016/S2542-5196(22)00248-0
pubmed: 36370725
pmcid: 9669458
Young, H. S., Parker, I. M., Gilbert, G. S., Guerra, A. S. & Nunn, C. L. Introduced species, disease ecology, and biodiversity–disease relationships. Trends Ecol. Evol. 32, 41–54 (2017).
doi: 10.1016/j.tree.2016.09.008
pubmed: 28029377
Barouki, R. et al. The COVID-19 pandemic and global environmental change: emerging research needs. Environ. Int. 146, 106272 (2021).
doi: 10.1016/j.envint.2020.106272
pubmed: 33238229
Nova, N., Athni, T. S., Childs, M. L., Mandle, L. & Mordecai, E. A. Global change and emerging infectious diseases. Ann. Rev. Resour. Econ. 14, 333–354 (2021).
doi: 10.1146/annurev-resource-111820-024214
Zhang, L. et al. Biological invasions facilitate zoonotic disease emergences. Nat. Commun. 13, 1762 (2022).
doi: 10.1038/s41467-022-29378-2
pubmed: 35365665
pmcid: 8975888
Olival, K. J. et al. Host and viral traits predict zoonotic spillover from mammals. Nature 546, 646–650 (2017).
doi: 10.1038/nature22975
pubmed: 28636590
pmcid: 5570460
Guth, S. et al. Bats host the most virulent—but not the most dangerous—zoonotic viruses. Proc. Natl Acad. Sci. USA 119, e2113628119 (2022).
doi: 10.1073/pnas.2113628119
pubmed: 35349342
pmcid: 9168486
Nelson, G. C. et al. in Ecosystems and Human Well-Being (Millennium Ecosystem Assessment) Vol. 2 (eds Rola, A. et al) Ch. 7, 172–222 (Island Press, 2005).
Read, A. F., Graham, A. L. & Raberg, L. Animal defenses against infectious agents: is damage control more important than pathogen control? PLoS Biol. 6, 2638–2641 (2008).
doi: 10.1371/journal.pbio.1000004
Medzhitov, R., Schneider, D. S. & Soares, M. P. Disease tolerance as a defense strategy. Science 335, 936–941 (2012).
doi: 10.1126/science.1214935
pubmed: 22363001
pmcid: 3564547
Torchin, M. E. & Mitchell, C. E. Parasites, pathogens, and invasions by plants and animals. Front. Ecol. Environ. 2, 183–190 (2004).
doi: 10.1890/1540-9295(2004)002[0183:PPAIBP]2.0.CO;2
Bellay, S., de Oliveira, E. F., Almeida-Neto, M. & Takemoto, R. M. Ectoparasites are more vulnerable to host extinction than co-occurring endoparasites: evidence from metazoan parasites of freshwater and marine fishes. Hydrobiologia 847, 2873–2882 (2020).
doi: 10.1007/s10750-020-04279-x
Scheffer, M. Critical Transitions in Nature and Society Vol. 16 (Princeton Univ. Press, 2020).
Rohr, J. R. et al. A planetary health innovation for disease, food and water challenges in Africa. Nature 619, 782–787 (2023).
doi: 10.1038/s41586-023-06313-z
pubmed: 37438520
Reaser, J. K., Witt, A., Tabor, G. M., Hudson, P. J. & Plowright, R. K. Ecological countermeasures for preventing zoonotic disease outbreaks: when ecological restoration is a human health imperative. Restor. Ecol. 29, e13357 (2021).
doi: 10.1111/rec.13357
pubmed: 33785998
pmcid: 7995086
Hopkins, S. R. et al. Evidence gaps and diversity among potential win–win solutions for conservation and human infectious disease control. Lancet Planet. Health 6, e694–e705 (2022).
doi: 10.1016/S2542-5196(22)00148-6
pubmed: 35932789
pmcid: 9364143
Mitchell, C. E. & Power, A. G. Release of invasive plants from fungal and viral pathogens. Nature 421, 625–627 (2003).
doi: 10.1038/nature01317
pubmed: 12571594
Chamberlain, S. A. & Szöcs, E. taxize: taxonomic search and retrieval in R. F1000Research 2, 191 (2013).
Newman, M. Fundamentals of Ecotoxicology (CRC Press/Taylor & Francis Group, 2010).
Rohatgi, A. WebPlotDigitizer v.4.5 (2021); automeris.io/WebPlotDigitizer .
Lüdecke, D. esc: effect size computation for meta analysis (version 0.5.1). Zenodo https://doi.org/10.5281/zenodo.1249218 (2019).
Lipsey, M. W. & Wilson, D. B. Practical Meta-Analysis (SAGE, 2001).
R Core Team. R: A Language and Environment for Statistical Computing Vol. 2022 (R Foundation for Statistical Computing, 2020); www.R-project.org/ .
Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).
doi: 10.18637/jss.v036.i03
Pustejovsky, J. E. & Tipton, E. Meta-analysis with robust variance estimation: Expanding the range of working models. Prev. Sci. 23, 425–438 (2022).
doi: 10.1007/s11121-021-01246-3
pubmed: 33961175
Lenth, R. emmeans: estimated marginal means, aka least-squares means. R package v.1.5.1 (2020).
Bartoń, K. MuMIn: multi-modal inference. Model selection and model averaging based on information criteria (AICc and alike) (2019).
Burnham, K. P. & Anderson, D. R. Multimodel inference: understanding AIC and BIC in model selection. Sociol. Methods Res. 33, 261–304 (2004).
doi: 10.1177/0049124104268644
Marks‐Anglin, A. & Chen, Y. A historical review of publication bias. Res. Synth. Methods 11, 725–742 (2020).
doi: 10.1002/jrsm.1452
pubmed: 32893970
Nakagawa, S. et al. Methods for testing publication bias in ecological and evolutionary meta‐analyses. Methods Ecol. Evol. 13, 4–21 (2022).
doi: 10.1111/2041-210X.13724
Gurevitch, J., Koricheva, J., Nakagawa, S. & Stewart, G. Meta-analysis and the science of research synthesis. Nature 555, 175–182 (2018).
doi: 10.1038/nature25753
pubmed: 29517004
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
Mahon, M. B. et al. Data and code for ‘A meta-analysis on global change drivers and the risk of infectious disease’. Zenodo https://doi.org/10.5281/zenodo.8169979 (2024).
Mahon, M. B. et al. Data and code for ‘A meta-analysis on global change drivers and the risk of infectious disease’. GitHub github.com/mahonmb/GCDofDisease (2024).