A bioprocess engineering approach for the production of hydrocarbons and fatty acids from green microalga under high cobalt concentration as the feedstock of high-grade biofuels.

Botryococcus braunii Biofuels Fatty acids Hydrocarbons Open raceway pond Pyrolysis

Journal

Biotechnology for biofuels and bioproducts
ISSN: 2731-3654
Titre abrégé: Biotechnol Biofuels Bioprod
Pays: England
ID NLM: 9918300888906676

Informations de publication

Date de publication:
10 May 2024
Historique:
received: 01 01 2024
accepted: 01 05 2024
medline: 11 5 2024
pubmed: 11 5 2024
entrez: 10 5 2024
Statut: epublish

Résumé

Botryococcus braunii, a colonial green microalga which is well-known for its capacity to synthesize hydrocarbons, has significant promise as a long-term source of feedstock for the generation of biofuels. However, cultivating and scaling up B. braunii using conventional aqua-suspended cultivation systems remains a challenge. In this study, we optimized medium components and light intensity to enhance lipid and hydrocarbon production in a multi-cultivator airlift photobioreactor. BBM 3N medium with 200 μmol/m

Identifiants

pubmed: 38730294
doi: 10.1186/s13068-024-02512-6
pii: 10.1186/s13068-024-02512-6
doi:

Types de publication

Journal Article

Langues

eng

Pagination

64

Subventions

Organisme : Horizon 2020
ID : 101007130

Informations de copyright

© 2024. The Author(s).

Références

Huang ST, Goh JL, Ahmadzadeh H, Murry MA. A rapid sampling technique for isolating highly productive lipid-rich algae strains from environmental samples. Biofuel Res J. 2019;6:920–6.
doi: 10.18331/BRJ2019.6.1.3
Vale MA, Ferreira A, Pires JCM, Gonçalves AL. CO2 capture using microalgae. Advances in carbon capture. Amsterdam: Elsevier; 2020. p. 381–405.
doi: 10.1016/B978-0-12-819657-1.00017-7
Sánchez J, Curt MD, Robert N, Fernández J. Biomass resources. Role bioenergy bioeconomy. Amsterdam: Elsevier; 2019. p. 25–111.
doi: 10.1016/B978-0-12-813056-8.00002-9
Cheng P, Ji B, Gao L, Zhang W, Wang J, Liu T. The growth, lipid and hydrocarbon production of Botryococcus braunii with attached cultivation. Bioresour Technol. 2013;138:95–100.
pubmed: 23612166 doi: 10.1016/j.biortech.2013.03.150
Patel A, Krikigianni E, Rova U, Christakopoulos P, Matsakas L. Bioprocessing of volatile fatty acids by oleaginous freshwater microalgae and their potential for biofuel and protein production. Chem Eng J. 2022;438: 135529. https://doi.org/10.1016/j.cej.2022.135529 .
doi: 10.1016/j.cej.2022.135529
Patel A, Karageorgou D, Rova E, Katapodis P, Rova U, Christakopoulos P, et al. An overview of potential oleaginous microorganisms and their role in biodiesel and omega-3 fatty acid-based industries. Microorganisms. 2020;8:434.
pubmed: 32204542 pmcid: 7143722 doi: 10.3390/microorganisms8030434
Klein BC, Chagas MF, Davis RE, Watanabe MDB, Wiatrowski MR, Morais ER, et al. A systematic multicriteria-based approach to support product portfolio selection in microalgae biorefineries. Chem Eng J. 2024;481: 148462. https://doi.org/10.1016/j.cej.2023.148462 .
doi: 10.1016/j.cej.2023.148462
Vidyashankar S, VenuGopal KS, Swarnalatha GV, Kavitha MD, Chauhan VS, Ravi R, et al. Characterization of fatty acids and hydrocarbons of chlorophycean microalgae towards their use as biofuel source. Biomass Bioenerg. 2015;77:75–91.
doi: 10.1016/j.biombioe.2015.03.001
Mkpuma VO, Ishika T, Moheimani NR, Ennaceri H. The potential of coupling wastewater treatment with hydrocarbon production using Botryococcus braunii. Algal Res. 2023;74: 103214. https://doi.org/10.1016/j.algal.2023.103214 .
doi: 10.1016/j.algal.2023.103214
Banerjee A, Sharma R, Chisti Y, Banerjee UC. Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Crit Rev Biotechnol. 2002;22:245–79.
pubmed: 12405558 doi: 10.1080/07388550290789513
Qin JG. Hydrocarbons from Algae. Handb. Hydrocarb. Lipid Microbiol. Springer Berlin Heidelberg; 2010. p. 2817–26.
Leyssens L, Vinck B, Van Der Straeten C, Wuyts F, Maes L. Cobalt toxicity in humans—a review of the potential sources and systemic health effects. Toxicology. 2017;387:43–56. https://doi.org/10.1016/j.tox.2017.05.015 .
doi: 10.1016/j.tox.2017.05.015 pubmed: 28572025
Cheng P, Wang J, Liu T. Effect of cobalt enrichment on growth and hydrocarbon accumulation of Botryococcus braunii with immobilized biofilm attached cultivation. Bioresour Technol. 2015;177:204–8. https://doi.org/10.1016/j.biortech.2014.11.088 .
doi: 10.1016/j.biortech.2014.11.088 pubmed: 25496939
Abdur Razzak S, Bahar K, Islam KMO, Haniffa AK, Faruque MO, Hossain SMZ, et al. Microalgae cultivation in photobioreactors: sustainable solutions for a greener future. Green Chem Eng. 2023. https://doi.org/10.1016/j.gce.2023.10.004 .
doi: 10.1016/j.gce.2023.10.004
Ashokkumar V, Rengasamy R. Mass culture of Botryococcus braunii Kutz. under open raceway pond for biofuel production. Bioresour Technol. 2012;104:394–9. https://doi.org/10.1016/j.biortech.2011.10.093 .
doi: 10.1016/j.biortech.2011.10.093 pubmed: 22115530
Yang C, Li R, Zhang B, Qiu Q, Wang B, Yang H, et al. Pyrolysis of microalgae: a critical review. Fuel Process Technol. 2019;186:53–72.
doi: 10.1016/j.fuproc.2018.12.012
Huang Z, Zhang J, Pan M, Hao Y, Hu R, Xiao W, et al. Valorisation of microalgae residues after lipid extraction: pyrolysis characteristics for biofuel production. Biochem Eng J. 2022;179: 108330.
doi: 10.1016/j.bej.2021.108330
Vardon DR, Sharma BK, Blazina GV, Rajagopalan K, Strathmann TJ. Thermochemical conversion of raw and defatted algal biomass via hydrothermal liquefaction and slow pyrolysis. Bioresour Technol. 2012;109:178–87.
pubmed: 22285293 doi: 10.1016/j.biortech.2012.01.008
Narayanan M. Promising biorefinery products from marine macro and microalgal biomass: a review. Renew Sustain Energy Rev. 2024;190: 114081. https://doi.org/10.1016/j.rser.2023.114081 .
doi: 10.1016/j.rser.2023.114081
Bleakley S, Hayes M. Algal proteins: extraction, application, and challenges concerning production. Foods. 2017;6:1–34.
doi: 10.3390/foods6050033
Furuhashi K, Saga K, Okada S, Imou K. Seawater-cultured Botryococcus braunii for efficient hydrocarbon extraction. PLoS ONE. 2013;8:2–6.
doi: 10.1371/journal.pone.0066483
García J, Mujeriego R, Hernández-Mariné M. High rate algal pond operating strategies for urban wastewater nitrogen removal. J Appl Phycol. 2000;12:331–9.
doi: 10.1023/A:1008146421368
Van Wychen S, Ramirez K, Laurens LM. Determination of Total Lipids as Fatty Acid Methyl Esters (FAME) by in situ Transesterification. Lab Anal Proced Natl Renew Energy Lab. 2013.
Patel A, Delgado Vellosillo I, Rova U, Matsakas L, Christakopoulos P. A novel bioprocess engineering approach to recycle hydrophilic and hydrophobic waste under high salinity conditions for the production of nutraceutical compounds. Chem Eng J. 2022;431: 133955. https://doi.org/10.1016/j.cej.2021.133955 .
doi: 10.1016/j.cej.2021.133955
Pancha I, Chokshi K, George B, Ghosh T, Paliwal C, Maurya R, et al. Nitrogen stress triggered biochemical and morphological changes in the microalgae Scenedesmus sp. CCNM 1077. Bioresour Technol. 2014;156:146–54. https://doi.org/10.1016/j.biortech.2014.01.025 .
doi: 10.1016/j.biortech.2014.01.025 pubmed: 24495540
Thapa HR, Naik MT, Okada S, Takada K, Molnár I, Xu Y, et al. A squalene synthase-like enzyme initiates production of tetraterpenoid hydrocarbons in Botryococcus braunii Race L. Nat Commun. 2016;7:1–13.
doi: 10.1038/ncomms11198
Dayananda C, Sarada R, Bhattacharya S, Ravishankar GA. Effect of media and culture conditions on growth and hydrocarbon production by Botryococcus braunii. Process Biochem. 2005;40:3125–31.
doi: 10.1016/j.procbio.2005.03.006
Patel A, Arora N, Sartaj K, Pruthi V, Pruthi PA. Sustainable biodiesel production from oleaginous yeasts utilizing hydrolysates of various non-edible lignocellulosic biomasses. Renew Sustain Energy Rev. 2016;62:836–55.
doi: 10.1016/j.rser.2016.05.014
Cheng P, Wang J, Liu T. Effects of nitrogen source and nitrogen supply model on the growth and hydrocarbon accumulation of immobilized biofilm cultivation of B. braunii. Bioresour Technol. 2014;166:527–33. https://doi.org/10.1016/j.biortech.2014.05.045 .
doi: 10.1016/j.biortech.2014.05.045 pubmed: 24951939
Zhila NO, Kalacheva GS, Volova TG. Effect of nitrogen limitation on the growth and lipid composition of the green alga Botryococcus braunii Kütz IPPAS H-252. Russ J Plant Physiol. 2005;52:311–9.
doi: 10.1007/s11183-005-0047-0
Velichkova K, Sirakov I, Georgiev G. Cultivation of Botryococcus braunii strain in relation of its use for biodiesel production. J Biosci Biotechnol. 2012;157–62. http://www.researchgate.net/publication/271326530_Cultivation_of_Botryococcus_braunii_strain_in_relation_of_its_use_for_biodiesel_production
Choi GG, Kim BH, Ahn CY, Oh HM. Effect of nitrogen limitation on oleic acid biosynthesis in Botryococcus braunii. J Appl Phycol. 2011;23:1031–7.
doi: 10.1007/s10811-010-9636-1
Fang L, Sun D, Xu Z, He J, Qi S, Chen X, et al. Transcriptomic analysis of a moderately growing subisolate Botryococcus braunii 779 (Chlorophyta) in response to nitrogen deprivation. Biotechnol Biofuels. 2015;8:1–21.
doi: 10.1186/s13068-015-0307-y
Casadevall E, Dif D, Largeau C, Gudin C, Chaumont D, Desanti O. Studies on batch and continuous cultures of Botryococcus braunii: hydrocarbon production in relation to physiological state, cell ultrastructure, and phosphate nutrition. Biotechnol Bioeng. 1985;27:286–95.
pubmed: 18553671 doi: 10.1002/bit.260270312
Ranga Rao A, Sarada R, Ravishankar GA. Influence of CO2 on growth and hydrocarbon production in Botryococcus braunii. J Microbiol Biotechnol. 2007;17:414–9.
pubmed: 18050944
da Silva AF, Lourenço SO, Chaloub RM. Effects of nitrogen starvation on the photosynthetic physiology of a tropical marine microalga Rhodomonas sp. (Cryptophyceae). Aquat Bot. 2009;91:291–7.
doi: 10.1016/j.aquabot.2009.08.001
Wu LF, Chen PC, Lee CM. The effects of nitrogen sources and temperature on cell growth and lipid accumulation of microalgae. Int Biodeterior Biodegrad. 2013;85:506–10. https://doi.org/10.1016/j.ibiod.2013.05.016 .
doi: 10.1016/j.ibiod.2013.05.016
Li Y, Horsman M, Wang B, Wu N, Lan CQ. Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl Microbiol Biotechnol. 2008;81:629–36.
pubmed: 18795284 doi: 10.1007/s00253-008-1681-1
Xin L, Hong-ying H, Ke G, Ying-xue S. Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresour Technol. 2010;101:5494–500. https://doi.org/10.1016/j.biortech.2010.02.016 .
doi: 10.1016/j.biortech.2010.02.016 pubmed: 20202827
Ratledge C, Wynn JP. The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv Appl Microbiol. 2002;51:1–51.
pubmed: 12236054 doi: 10.1016/S0065-2164(02)51000-5
Knothe G. “Designer” biodiesel: optimizing fatty ester composition to improve fuel properties. Energy Fuels. 2008;22:1358–64.
doi: 10.1021/ef700639e
Cheng P, Ji B, Gao L, Zhang W, Wang J, Liu T. The growth, lipid and hydrocarbon production of Botryococcus braunii with attached cultivation. Bioresour Technol. 2013;138:95–100. https://doi.org/10.1016/j.biortech.2013.03.150 .
doi: 10.1016/j.biortech.2013.03.150 pubmed: 23612166
Ruangsomboon S. Effect of light, nutrient, cultivation time and salinity on lipid production of newly isolated strain of the green microalga, Botryococcus braunii KMITL 2. Bioresour Technol. 2012;109:261–5. https://doi.org/10.1016/j.biortech.2011.07.025 .
doi: 10.1016/j.biortech.2011.07.025 pubmed: 21803571
Qin JG, Li Y. Optimization of the growth environment of Botryococcus braunii strain chn 357. J Freshw Ecol. 2006;21:169–76.
doi: 10.1080/02705060.2006.9664110
Singh Khichi S, Anis A, Ghosh S. Mathematical modeling of light energy flux balance in flat panel photobioreactor for Botryococcus braunii growth, CO2 biofixation and lipid production under varying light regimes. Biochem Eng J. 2018;134:44–56. https://doi.org/10.1016/j.bej.2018.03.001 .
doi: 10.1016/j.bej.2018.03.001
Zhang K, Kojima E. Effect of light intensity on colony size of microalga Botryococcus braunii in bubble column photobioreactors. J Ferment Bioeng. 1998;86:573–6.
doi: 10.1016/S0922-338X(99)80009-9
Vishwakarma R, Dhar DW, Saxena S. Influence of nutrient formulations on growth, lipid yield, carbon partitioning and biodiesel quality potential of Botryococcus sp. and Chlorella sp. Environ Sci Pollut Res. 2019;26:7589–600.
doi: 10.1007/s11356-019-04213-2
Melis A. Carbon partitioning in photosynthesis. Curr Opin Chem Biol. 2013;17:453–6. https://doi.org/10.1016/j.cbpa.2013.03.010 .
doi: 10.1016/j.cbpa.2013.03.010 pubmed: 23542013
Xu Z, He J, Qi S, Liu J. Nitrogen deprivation-induced de novo transcriptomic profiling of the oleaginous green alga Botryococcus braunii 779. Genomics Data. 2015;6:231–3. https://doi.org/10.1016/j.gdata.2015.09.019 .
doi: 10.1016/j.gdata.2015.09.019 pubmed: 26697382 pmcid: 4664756
Kleinert C, Griehl C. Identification of suitable Botryococcus braunii strains for non-destructive in situ hydrocarbon extraction. J Appl Phycol. 2021;33:785–98.
doi: 10.1007/s10811-020-02342-7
Arif M, Bai Y, Usman M, Jalalah M, Harraz FA, Al-Assiri MS, et al. Highest accumulated microalgal lipids (polar and non-polar) for biodiesel production with advanced wastewater treatment: role of lipidomics. Bioresour Technol. 2020;298: 122299. https://doi.org/10.1016/j.biortech.2019.122299 .
doi: 10.1016/j.biortech.2019.122299 pubmed: 31706891
Griehl C, Kleinert C, Griehl C, Bieler S. Design of a continuous milking bioreactor for non-destructive hydrocarbon extraction from Botryococcus braunii. J Appl Phycol. 2015;27:1833–43.
doi: 10.1007/s10811-014-0472-6
Metzger P, Largeau C. Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol. 2005;66:486–96.
pubmed: 15630516 doi: 10.1007/s00253-004-1779-z
Weiss TL, Roth R, Goodson C, Vitha S, Black I, Azadi P, et al. Colony organization in the green alga Botryococcus braunii (Race B) is specified by a complex extracellular matrix. Eukaryot Cell. 2012;11:1424–40.
pubmed: 22941913 pmcid: 3536293 doi: 10.1128/EC.00184-12
Moheimani NR, Matsuura H, Watanabe MM, Borowitzka MA. Non-destructive hydrocarbon extraction from Botryococcus braunii BOT-22 (race B). J Appl Phycol. 2014;26:1453–63.
doi: 10.1007/s10811-013-0179-0
Kleinert C, Griehl C. In situ extraction (milking) of the two promising Botryococcus braunii strains Showa and Bot22 under optimized extraction time. J Appl Phycol. 2022;34:269–83. https://doi.org/10.1007/s10811-021-02633-7 .
doi: 10.1007/s10811-021-02633-7
Ranga Rao A, Ravishankar GA, Sarada R. Cultivation of green alga Botryococcus braunii in raceway, circular ponds under outdoor conditions and its growth, hydrocarbon production. Bioresour Technol. 2012;123:528–33. https://doi.org/10.1016/j.biortech.2012.07.009 .
doi: 10.1016/j.biortech.2012.07.009 pubmed: 22940364
Ippoliti JT, Speros J, Schewe S, Warner RW, Everson D. Polymers having lipophilic hydrocarbon and biodegradable polymeric segments. Patent. 2011. p. 10–3. https://patents.google.com/patent/US20110166249
Templier J, Largeau C, Casadevall E. Non-specific elongation-decarboxylation in biosynthesis of cis- and trans-alkadienes by Botryococcus braunii. Phytochemistry. 1991;30:175–83.
doi: 10.1016/0031-9422(91)84120-H
Templier L, Largeau C, Casadevall E. Effect of various inhibitors on biosynthesis of non-isoprenoid hydrocarbons in Botryococcus braunii. Phytochemistry. 1987;26:377–83.
doi: 10.1016/S0031-9422(00)81418-1
Templier J, Largeau C, Casadevall E. Mechanism of non-isoprenoid hydrocarbon biosynthesis in Botryococcus braunii. Phytochemistry. 1984;23:1017–28.
doi: 10.1016/S0031-9422(00)82602-3
Singh Y, Kumar HD. Lipid and hydrocarbon production by Botryococcus spp. under nitrogen limitation and anaerobiosis. World J Microbiol Biotechnol. 1992;8:121–4.
pubmed: 24425391 doi: 10.1007/BF01195829
Tredici MR. Photobiology of microalgae mass cultures: understanding the tools for the next green revolution. Biofuels. 2010;1:143–62.
doi: 10.4155/bfs.09.10
Yoon K, Han D, Li Y, Sommerfeld M, Hu Q. Phospholipid: diacylglycerol acyltransferase is a multifunctional enzyme involved in membrane lipid turnover and degradation while synthesizing triacylglycerol in the unicellular green microalga Chlamydomonas reinhardtii. Plant Cell. 2012;24:3708–24.
pubmed: 23012436 pmcid: 3480297 doi: 10.1105/tpc.112.100701
Cheng P, Chang T, Wang C, Yao C, Zhou C, Liu T, et al. High cobalt exposure facilitates bioactive exopolysaccharides production with a novel molecular structure in Botryococcus braunii. Chem Eng J. 2022;442: 136294. https://doi.org/10.1016/j.cej.2022.136294 .
doi: 10.1016/j.cej.2022.136294
Cheng P, Zhou C, Wang Y, Xu Z, Xu J, Zhou D, et al. Comparative transcriptome analyses of oleaginous Botryococcus braunii race A reveal significant differences in gene expression upon cobalt enrichment. Biotechnol Biofuels. 2018;11:1–19. https://doi.org/10.1186/s13068-018-1331-5 .
doi: 10.1186/s13068-018-1331-5
Palit S, Sharma A, Talukder G. Effects of cobalt on plants. Bot Rev. 1994;60:149–81.
doi: 10.1007/BF02856575
Blaby-Haas CE, Merchant SS. Regulating cellular trace metal economy in algae. Curr Opin Plant Biol. 2017;39:88–96. https://doi.org/10.1016/j.pbi.2017.06.005 .
doi: 10.1016/j.pbi.2017.06.005 pubmed: 28672168 pmcid: 5595633
van den Berg TE, van Oort B, Croce R. Light-harvesting complexes of Botryococcus braunii. Photosynth Res. 2018;135:191–201.
pubmed: 28551868 doi: 10.1007/s11120-017-0405-8
Hassan M, Blanc P, Granger L-M, Pareilleux A, Goma G. Lipid production by an unsaturated fatty acid auxotroph of the oleaginous yeast Apiotrichum curvatum grown in single-stage continuous culture. Appl Microbiol Biotechnol. 1993;40:483–8.
doi: 10.1007/BF00175735
Meesters PEP, Huijberts GNM, Eggink G. High-cell-density cultivation of the lipid accumulating yeast Cryptococcus curvatus using glycerol as a carbon source. Appl Microbiol Biotechnol. 1996;45:575–9.
doi: 10.1007/s002530050731
Moreton RS. Modification of fatty acid composition of lipid accumulating yeasts with cyclopropene fatty acid desaturase inhibitors. Appl Microbiol Biotechnol. 1985;22:41–5. https://doi.org/10.1007/BF00252154 .
doi: 10.1007/BF00252154
Blifernez-Klassen O, Chaudhari S, Klassen V, Wördenweber R, Steffens T, Cholewa D, et al. Metabolic survey of Botryococcus braunii: impact of the physiological state on product formation. PLoS ONE. 2018;13:1–23.
doi: 10.1371/journal.pone.0198976
Cheng P, Wang Y, Osei-Wusu D, Liu T, Liu D. Effects of seed age, inoculum density, and culture conditions on growth and hydrocarbon accumulation of Botryococcus braunii SAG807–1 with attached culture. Bioresour Bioprocess. 2018. https://doi.org/10.1186/s40643-018-0198-4 .
doi: 10.1186/s40643-018-0198-4
Lee SY, Kim HM, Cheon S. Metabolic engineering for the production of hydrocarbon fuels. Curr Opin Biotechnol. 2015;33:15–22. https://doi.org/10.1016/j.copbio.2014.09.008 .
doi: 10.1016/j.copbio.2014.09.008 pubmed: 25445543
Suzuki R, Ito N, Uno Y, Nishii I, Kagiwada S, Okada S, et al. Transformation of lipid bodies related to hydrocarbon accumulation in a green alga, Botryococcus braunii (race B). PLoS ONE. 2013;8: e81626.
pubmed: 24339948 pmcid: 3855424 doi: 10.1371/journal.pone.0081626
Murata K, Liu Y, Watanabe MM, Inaba M, Takahara I. Hydrocracking of algae oil into aviation fuel-range hydrocarbons using a Pt–Re catalyst. Energy Fuels. 2014;28:6999–7006. https://doi.org/10.1021/ef5018994 .
doi: 10.1021/ef5018994
McKirdy DM, Cox RE, Volkman JK, Howell VJ. Botryococcane in a new class of Australian non-marine crude oils. Nature. 1986;320:57–9. https://doi.org/10.1021/ef5018994 .
doi: 10.1021/ef5018994
Eroglu E, Melis A. Extracellular terpenoid hydrocarbon extraction and quantitation from the green microalgae Botryococcus braunii var. Showa. Bioresour Technol. 2010;101:2359–66. https://doi.org/10.1016/j.biortech.2009.11.043 .
doi: 10.1016/j.biortech.2009.11.043 pubmed: 20005092
Solovchenko AE, Khozin-Goldberg I, Cohen Z, Merzlyak MN. Carotenoid-to-chlorophyll ratio as a proxy for assay of total fatty acids and arachidonic acid content in the green microalga Parietochloris incisa. J Appl Phycol. 2009;21:361–6.
doi: 10.1007/s10811-008-9377-6
Indrayani I, Egeland ES, Moheimani NR, Borowitzka MA. Carotenoid production of Botryococcus braunii CCAP 807/2 under different growth conditions. J Appl Phycol. 2022;34:1177–88. https://doi.org/10.1007/s10811-022-02682-6 .
doi: 10.1007/s10811-022-02682-6
Subagyono RRDJN, Masdalifa W, Aminah S, Nugroho RA, Mollah M, Londong Allo V, et al. Kinetic study of copyrolysis of the green microalgae Botryococcus braunii and victorian brown coal by thermogravimetric analysis. ACS Omega. 2021;6:32032–42.
pubmed: 34870026 pmcid: 8637957 doi: 10.1021/acsomega.1c04818
Subagyono DJN, Marshall M, Jackson WR, Chow M, Chaffee AL. Reactions with CO/H2O of two marine algae and comparison with reactions under H2 and N2. Energy Fuels. 2014;28:3143–56.
doi: 10.1021/ef500267r
Chen C, Ma X, He Y. Co-pyrolysis characteristics of microalgae Chlorella vulgaris and coal through TGA. Bioresour Technol. 2012;117:264–73. https://doi.org/10.1016/j.biortech.2012.04.077 .
doi: 10.1016/j.biortech.2012.04.077 pubmed: 22617036
Li Y, Moore RB, Qin JG, Scott A, Ball AS. Extractable liquid, its energy and hydrocarbon content in the green alga Botryococcus braunii. Biomass Bioenerg. 2013;52:103–12.
doi: 10.1016/j.biombioe.2013.03.002
Agrawal A, Chakraborty S. A kinetic study of pyrolysis and combustion of microalgae Chlorella vulgaris using thermo-gravimetric analysis. Bioresour Technol. 2013;128:72–80. https://doi.org/10.1016/j.biortech.2012.10.043 .
doi: 10.1016/j.biortech.2012.10.043 pubmed: 23196224
Liu YQ, Lim LRX, Wang J, Yan R, Mahakhant A. Investigation on pyrolysis of microalgae Botryococcus braunii and Hapalosiphon sp. Ind Eng Chem Res. 2012;51:10320–6.
doi: 10.1021/ie202799e
Nguyen RT, Harvey HR, Zang X, Van Heemst JDH, Hetényi M, Hatcher PG. Preservation of algaenan and proteinaceous material during the oxic decay of Botryococcus braunii as revealed by pyrolysis-gas chromatography/mass spectrometry and 13C NMR spectroscopy. Org Geochem. 2003;34:483–97.
doi: 10.1016/S0146-6380(02)00261-9
Kazemi Targhi N, Tavakoli O, Nazemi AH. Co-pyrolysis of lentil husk wastes and Chlorella vulgaris: bio-oil and biochar yields optimization. J Anal Appl Pyrolysis. 2022;165: 105548. https://doi.org/10.1016/j.jaap.2022.105548 .
doi: 10.1016/j.jaap.2022.105548
Derenne S, Largeau C, Casadevall E, Sellier N. Direct relationship between the resistant biopolymer and the tetraterpenic hydrocarbon in the lycopadiene race of Botryococcus braunii. Phytochemistry. 1990;29:2187–92.
doi: 10.1016/0031-9422(90)83035-Y
1,3-Butadiene. https://www.chemeurope.com/en/encyclopedia/1%2C3-Butadiene.html#_note-ECT4thEd/
Chen W, Chen Y, Yang H, Xia M, Li K, Chen X, et al. Co-pyrolysis of lignocellulosic biomass and microalgae: products characteristics and interaction effect. Bioresour Technol. 2017;245:860–8.
pubmed: 28926919 doi: 10.1016/j.biortech.2017.09.022
Hu Y, Wang S, Li J, Wang Q, He Z, Feng Y, et al. Co-pyrolysis and co-hydrothermal liquefaction of seaweeds and rice husk: comparative study towards enhanced biofuel production. J Anal Appl Pyrolysis. 2018;129:162–70. https://doi.org/10.1016/j.jaap.2017.11.016 .
doi: 10.1016/j.jaap.2017.11.016

Auteurs

Alok Patel (A)

Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87, Luleå, Sweden. alok.kumar.patel@ltu.se.

Chloe Rantzos (C)

Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87, Luleå, Sweden.

Eleni Krikigianni (E)

Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87, Luleå, Sweden.

Ulrika Rova (U)

Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87, Luleå, Sweden.

Paul Christakopoulos (P)

Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87, Luleå, Sweden.

Leonidas Matsakas (L)

Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87, Luleå, Sweden.

Classifications MeSH