Impact of Obesity on Cardiac Autonomic System Functioning in Military Police Officers.
Autonomic modulation
Heart rate variability
Military police
Obesity
Physical activity
Journal
High blood pressure & cardiovascular prevention : the official journal of the Italian Society of Hypertension
ISSN: 1179-1985
Titre abrégé: High Blood Press Cardiovasc Prev
Pays: New Zealand
ID NLM: 9421087
Informations de publication
Date de publication:
12 May 2024
12 May 2024
Historique:
received:
20
01
2024
accepted:
22
04
2024
medline:
13
5
2024
pubmed:
13
5
2024
entrez:
12
5
2024
Statut:
aheadofprint
Résumé
Cardiac autonomic system functioning may be altered by obesity leading to cardiovascular diseases and associated complications. Military police officers are exposed to traditional and occupational risk factors for the development of CVD, however data on the cardiovascular health in this population is still scarce. In this cross-sectional study, we investigated the impact of obesity on cardiac autonomic modulation and the hemodynamic profile in male active-duty military police officers. The body composition of the volunteers was assessed by octapolar electrical bioimpedance. Participants were classified as non-obese or obese in accordance with their body fat, with further subgroups as physically active obese or insufficiently active obese using International Physical Activity Questionnaire (IPAQ). Cardiac autonomic modulation was assessed by heart rate variability and the automatic oscillometric method allowed us to assess hemodynamic features. 102 military police officers from the state of São Paulo participated in the study. Cardiac autonomic modulation revealed significant impairment in time and frequency domains and non-linear methods in the obese group compared to the non-obese (p < 0.05). A higher physical activity level did not alter these results in the obese group. However, no significant differences in the hemodynamic profile were observed between groups (p > 0.05). These findings suggest a negative association between obesity and cardiac autonomic modulation in military police officers, unaffected by increased physical activity.
Identifiants
pubmed: 38735994
doi: 10.1007/s40292-024-00647-z
pii: 10.1007/s40292-024-00647-z
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. The Author(s).
Références
Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, et al. Global burden of cardiovascular diseases and risk factors, 1990–2019: update from the GBD 2019 study. J Am Coll Cardiol. 2020;76:2982–3021.
doi: 10.1016/j.jacc.2020.11.010
pubmed: 33309175
pmcid: 7755038
Goldberger JJ, Arora R, Buckley U, Shivkumar K. Autonomic nervous system dysfunction: JACC focus seminar. J Am Coll Cardiol. 2019;73:1189–206.
doi: 10.1016/j.jacc.2018.12.064
pubmed: 30871703
pmcid: 6958998
Jamali HK, Waqar F, Gerson MC. Cardiac autonomic innervation. J Nucl Cardiol. 2017;24:1558–70.
doi: 10.1007/s12350-016-0725-7
pubmed: 27844333
Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2014;384:766–81.
doi: 10.1016/S0140-6736(14)60460-8
pubmed: 24880830
pmcid: 4624264
Kaufman CL, Kaiser DR, Steinberger J, Kelly AS, Dengel DR. Relationships of cardiac autonomic function with metabolic abnormalities in childhood obesity. Obesity (Silver Spring). 2007;15:1164–71.
doi: 10.1038/oby.2007.619
pubmed: 17495192
Trivedi G, Saboo B, Singh R, Maheshwari A, Sharma K, Verma N. Can decreased heart rate variability be a marker of autonomic dysfunction, metabolic syndrome and diabetes? J Diabetol. 2019;10:48–56.
doi: 10.4103/jod.jod_17_18
Lavie CJ, Ozemek C, Carbone S, Katzmarzyk SPT, Blair SN. Sedentary behavior, exercise, and cardiovascular health. Circ Res. 2019;124:799–815.
doi: 10.1161/CIRCRESAHA.118.312669
pubmed: 30817262
Valenzuela PL, Carrera-Bastos P, Gálvez BG, Ruiz-Hurtado G, Ordovas JM, Ruilope LM, et al. Lifestyle interventions for the prevention and treatment of hypertension. Nat Rev Cardiol. 2021;18:251–75.
doi: 10.1038/s41569-020-00437-9
pubmed: 33037326
Magnavita N, Capitanelli I, Garbarino S, Pira E. Work-related stress as a cardiovascular risk factor in police officers: a systematic review of evidence. Int Arch Occup Environ Health. 2018;91:377–89.
doi: 10.1007/s00420-018-1290-y
pubmed: 29344727
Wise SR, Trigg SSD. Optimizing health, wellness, and performance of the tactical athlete. Curr Sports Med Rep. 2020;19:70–5.
doi: 10.1249/JSR.0000000000000684
pubmed: 32028351
Zimmerman FH. Cardiovascular disease and risk factors in law enforcement personnel: a comprehensive review. Cardiol Rev. 2012;20:159–66.
doi: 10.1097/CRD.0b013e318248d631
pubmed: 22314143
Souza DR, Silva EN, Santos LP, Oliveira LCS, Augusto TD, Silva EB, et al. Prevalence of metabolic syndrome in military police officers of São Paulo City: the health promotion in military police (HPMP) study. Research, Society and Development. 2021;10:p. e61101421142.
WHO. [Internet] [cited 2024 Feb 09]. https://www.who.int/health-topics/obesity .
Merino PS. Mortalidade em efetivos da polícia militar do Estado de São Paulo. Universidade Federal de São Paulo (UNIFESP) [Internet]. 2010. https://repositorio.unifesp.br/handle/11600/9828 .
Barroso WKS, Rodrigues CIS, Bortolotto LA, Mota-Gomes MA, Brandão AA, Feitosa ADM, et al. Brazilian Guidelines of Hypertension—2020. Arq Bras Cardiol. 2021;116:516-658.
Matsudo S, Araújo T, Marsudo V, Andrade D, Andrade E, Oliveira LC, et al. Questionário internacional de atividade física (IPAQ): estudo de validade e reprodutibilidade no Brasil. Rev Brasil Atividade Física & Saúde. 2001;6:5–18.
Craig CL, Marshall AL, Sjöström M, Bauman AE, Booth ML, Ainsworth BE, et al. International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc. 2003;35:1381–95.
doi: 10.1249/01.MSS.0000078924.61453.FB
pubmed: 12900694
IPAQ. [Internet] [cited 2024 Feb 09]. https://sites.google.com/view/ipaq/home .
Lobman TG, Houtkooper L, Going SB. Body fat measurement goes high-tech: not all are created equal. ACSMs Health Fit J. 1997;1:30.
Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Eur Heart J. 1996;17:354-81.
Shaffer F, Ginsberg JP. An overview of heart rate variability metrics and norms. Front Public Health. 2017;5:258.
doi: 10.3389/fpubh.2017.00258
pubmed: 29034226
pmcid: 5624990
Cohen J. Statistical power analysis for the behavioral sciences, 2nd ed. Hillsdale, N.J: L. Erlbaum Associates, 1988.
Fritz CO, Morris PE, Richler JJ. Effect size estimates: current use, calculations, and interpretation. J Exp Psychol Gen. 2012;141:2–18.
doi: 10.1037/a0024338
pubmed: 21823805
Jarczok MN, Weimer K, Braun C, Williams DP, Thayer JF, Gündel HO, et al. Heart rate variability in the prediction of mortality: A systematic review and meta-analysis of healthy and patient populations. Neurosci Biobehav Rev. 2022;143:104907.
Nunan D, Sandercock GRH, Brodie DA. A quantitative systematic review of normal values for short-term heart rate variability in healthy adults. Pacing Clin Electrophysiol. 2010;33:1407–17.
doi: 10.1111/j.1540-8159.2010.02841.x
pubmed: 20663071
Dantas EM, Kemp AH, Andreão RV, Silva VJD, BrunoniAR, Hoshi RA, et al. Reference values for short-term resting-state heart rate variability in healthy adults: Results from the Brazilian Longitudinal Study of Adult Health-ELSA-Brasil study. Psychophysiology. 2018;55:p e13052.
Köchli S, Schutte AE, Kruger R. Adiposity and physical activity are related to heart rate variability: the African-PREDICT study. Eur J Clin Invest. 2020;50:e13330.
doi: 10.1111/eci.13330
pubmed: 32589287
Yadav RL, Yadav PK, Yadav LK, Agrawal K, Sah SK, Islam MN. Association between obesity and heart rate variability indices: an intuition toward cardiac autonomic alteration—a risk of CVD. Diabetes Metab Syndr Obes. 2017;10:57–64.
doi: 10.2147/DMSO.S123935
pubmed: 28255249
pmcid: 5322847
Tebar WR, Ritti-Dias R, Mota J, Saraiva BTC, Damato TM, Delfino LD, et al. Relationship of cardiac autonomic modulation with cardiovascular parameters in adults, according to body mass index and physical activity. J Cardiovasc Transl Res. 2021;14:975–83.
doi: 10.1007/s12265-021-10101-3
pubmed: 33483920
Wu JS, Lu FH, Yang YC, Lin TS, Huang YH, Wu CH, et al. Epidemiological evidence of altered cardiac autonomic function in overweight but not underweight subjects. Int J Obes (Lond). 2008;32:788–94.
doi: 10.1038/sj.ijo.0803791
pubmed: 18227846
Santa-Rosa FA, Shimojo GL, Dias DS, Viana A, Lanza FC, Irigoyen MC, et al. Impact of an active lifestyle on heart rate variability and oxidative stress markers in offspring of hypertensives. Sci Rep. 2020;10:12439.
Seravalle G, Mancia G, Grassi G. Role of the sympathetic nervous system in hypertension and hypertension-related cardiovascular disease. High Blood Press Cardiovasc Prev. 2014;2:89–105.
doi: 10.1007/s40292-014-0056-1
Ittermann T, Werner N, Lieb W, Merz B, Nöthlings U, Kluttig A, et al. Changes in fat mass and fat-free-mass are associated with incident hypertension in four population-based studies from Germany. Int J Cardiol. 2019;274:372–7.
doi: 10.1016/j.ijcard.2018.09.035
pubmed: 30217425
Oliveira CM, Ulbrich AZ, Neves FS, Dias FAL, Horimoto ARVR, Krieger JE, et al. Association between anthropometric indicators of adiposity and hypertension in a Brazilian population: Baependi Heart Study. PLoS ONE. 2017;12:e0185225.
doi: 10.1371/journal.pone.0185225
pubmed: 29023455
pmcid: 5638240
Leskinen T, Stenholm S, Heinonen OJ, Pulakka A, Aalto V, Kivimäki M, et al. Change in physical activity and accumulation of cardiometabolic risk factors. Prev Med. 2018;112:31–7.
doi: 10.1016/j.ypmed.2018.03.020
pubmed: 29605421
Tebar WR, Ritti-Dias R, Mota J, Farah BQ, Saraiva BTC, Damato TMM, et al. Relationship between domains of physical activity and cardiac autonomic modulation in adults: a cross-sectional study. Sci Rep. 2020;10:15510.
doi: 10.1038/s41598-020-72663-7
pubmed: 32968194
pmcid: 7511906
O’Brien PD, Hinder LM, Callaghan BC, Feldman EL. Neurological consequences of obesity. Lancet Neurol. 2017;16:465–77.
doi: 10.1016/S1474-4422(17)30084-4
pubmed: 28504110
pmcid: 5657398
Erdogan D, Gonul E, Icli A, Yucel H, Arslan A, Akcay S, et al. Effects of normal blood pressure, prehypertension, and hypertension on autonomic nervous system function. Int J Cardiol. 2011;151:50–3.
doi: 10.1016/j.ijcard.2010.04.079
pubmed: 20472314