Pattern-recognition receptors and immunometabolic reprogramming: what we know and what to explore.
Journal
Journal of innate immunity
ISSN: 1662-8128
Titre abrégé: J Innate Immun
Pays: Switzerland
ID NLM: 101469471
Informations de publication
Date de publication:
13 May 2024
13 May 2024
Historique:
received:
21
12
2023
accepted:
07
05
2024
medline:
14
5
2024
pubmed:
14
5
2024
entrez:
13
5
2024
Statut:
aheadofprint
Résumé
Evolutionarily, immune response is a complex mechanism that protects the host from internal and external threats. Pattern recognition receptors (PRRs) recognize MAMPs, PAMPs, and DAMPs to initiate a protective pro-inflammatory immune response. PRRs are expressed on the cell membranes by TLR1, 2, 4, and 6 and in the cytosolic organelles by TLR3, 7, 8, and 9, NLRs, ALRs, and cGLRs. We know their downstream signaling pathways controlling immunoregulatory and pro-inflammatory immune response. However, the impact of PRRs on metabolic control of immune cells to control their pro- and anti-inflammatory activity has not been discussed extensively. Immune cell metabolism or immunometabolism critically determines immune cells' pro-inflammatory phenotype and function. The current article discusses immunometabolic reprogramming (IR) upon activation of different PRRs, such as TLRs, NLRs, cGLRs, and RLRs. The duration and type of PRR activated, species studied, and location of immune cells to specific organ are critical factors to determine the IR-induced immune response. The work herein describes IR upon TLR, NLR, cGLR, and RLR activation. Understanding IR upon activating different PRRs is critical for designing better immune cell-specific immunotherapeutics and immunomodulators targeting inflammation and inflammatory diseases.
Sections du résumé
BACKGROUND
BACKGROUND
Evolutionarily, immune response is a complex mechanism that protects the host from internal and external threats. Pattern recognition receptors (PRRs) recognize MAMPs, PAMPs, and DAMPs to initiate a protective pro-inflammatory immune response. PRRs are expressed on the cell membranes by TLR1, 2, 4, and 6 and in the cytosolic organelles by TLR3, 7, 8, and 9, NLRs, ALRs, and cGLRs. We know their downstream signaling pathways controlling immunoregulatory and pro-inflammatory immune response. However, the impact of PRRs on metabolic control of immune cells to control their pro- and anti-inflammatory activity has not been discussed extensively.
SUMMARY
CONCLUSIONS
Immune cell metabolism or immunometabolism critically determines immune cells' pro-inflammatory phenotype and function. The current article discusses immunometabolic reprogramming (IR) upon activation of different PRRs, such as TLRs, NLRs, cGLRs, and RLRs. The duration and type of PRR activated, species studied, and location of immune cells to specific organ are critical factors to determine the IR-induced immune response.
KEY MESSAGE
CONCLUSIONS
The work herein describes IR upon TLR, NLR, cGLR, and RLR activation. Understanding IR upon activating different PRRs is critical for designing better immune cell-specific immunotherapeutics and immunomodulators targeting inflammation and inflammatory diseases.
Identifiants
pubmed: 38740018
pii: 000539278
doi: 10.1159/000539278
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
The Author(s). Published by S. Karger AG, Basel.