Amyloid-beta antibody binding to cerebral amyloid angiopathy fibrils and risk for amyloid-related imaging abnormalities.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
13 05 2024
Historique:
received: 22 12 2023
accepted: 08 05 2024
medline: 14 5 2024
pubmed: 14 5 2024
entrez: 13 5 2024
Statut: epublish

Résumé

Therapeutic antibodies have been developed to target amyloid-beta (Aβ), and some of these slow the progression of Alzheimer's disease (AD). However, they can also cause adverse events known as amyloid-related imaging abnormalities with edema (ARIA-E). We investigated therapeutic Aβ antibody binding to cerebral amyloid angiopathy (CAA) fibrils isolated from human leptomeningeal tissue to study whether this related to the ARIA-E frequencies previously reported by clinical trials. The binding of Aβ antibodies to CAA Aβ fibrils was evaluated in vitro using immunoprecipitation, surface plasmon resonance, and direct binding assay. Marked differences in Aβ antibody binding to CAA fibrils were observed. Solanezumab and crenezumab showed negligible CAA fibril binding and these antibodies have no reported ARIA-E cases. Lecanemab showed a low binding to CAA fibrils, consistent with its relatively low ARIA-E frequency of 12.6%, while aducanumab, bapineuzumab, and gantenerumab all showed higher binding to CAA fibrils and substantially higher ARIA-E frequencies (25-35%). An ARIA-E frequency of 24% was reported for donanemab, and its binding to CAA fibrils correlated with the amount of pyroglutamate-modified Aβ present. The findings of this study support the proposal that Aβ antibody-CAA interactions may relate to the ARIA-E frequency observed in patients treated with Aβ-based immunotherapies.

Identifiants

pubmed: 38740836
doi: 10.1038/s41598-024-61691-2
pii: 10.1038/s41598-024-61691-2
doi:

Substances chimiques

Amyloid beta-Peptides 0
Antibodies, Monoclonal, Humanized 0
bapineuzumab NC11WKO35D
Amyloid 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

10868

Informations de copyright

© 2024. The Author(s).

Références

Murphy, M. P. & LeVine, H. Alzheimer’s disease and the amyloid-beta peptide. J. Alzheimer’s Dis. 19, 311–323. https://doi.org/10.3233/JAD-2010-1221 (2010).
doi: 10.3233/JAD-2010-1221
Greenberg, S. M. et al. Cerebral amyloid angiopathy and Alzheimer disease—One peptide, two pathways. Nat. Rev. Neurol. 16, 30–42. https://doi.org/10.1038/s41582-019-0281-2 (2020).
doi: 10.1038/s41582-019-0281-2 pubmed: 31827267
Charidimou, A. et al. The Boston criteria version 2.0 for cerebral amyloid angiopathy: A multicentre, retrospective, MRI-neuropathology diagnostic accuracy study. Lancet Neurol. 21, 714–725. https://doi.org/10.1016/S1474-4422(22)00208-3 (2022).
doi: 10.1016/S1474-4422(22)00208-3 pubmed: 35841910 pmcid: 9389452
Charidimou, A. et al. Emerging concepts in sporadic cerebral amyloid angiopathy. Brain 140, 1829–1850. https://doi.org/10.1093/brain/awx047 (2017).
doi: 10.1093/brain/awx047 pubmed: 28334869 pmcid: 6059159
Koemans, E. A. et al. Progression of cerebral amyloid angiopathy: A pathophysiological framework. Lancet Neurol. 22, 632–642. https://doi.org/10.1016/S1474-4422(23)00114-X (2023).
doi: 10.1016/S1474-4422(23)00114-X pubmed: 37236210
Thal, D. R. et al. Two types of sporadic cerebral amyloid angiopathy. J. Neuropathol. Exp. Neurol. 61, 282–293. https://doi.org/10.1093/jnen/61.3.282 (2002).
doi: 10.1093/jnen/61.3.282 pubmed: 11895043
Attems, J., Lintner, F. & Jellinger, K. A. Amyloid beta peptide 1–42 highly correlates with capillary cerebral amyloid angiopathy and Alzheimer disease pathology. Acta Neuropathol. 107, 283–291. https://doi.org/10.1007/s00401-004-0822-6 (2004).
doi: 10.1007/s00401-004-0822-6 pubmed: 14986026
Oshima, K. et al. Relative paucity of tau accumulation in the small areas with abundant Abeta42-positive capillary amyloid angiopathy within a given cortical region in the brain of patients with Alzheimer pathology. Acta Neuropathol. 111, 510–518. https://doi.org/10.1007/s00401-006-0070-z (2006).
doi: 10.1007/s00401-006-0070-z pubmed: 16718347
Gkanatsiou, E. et al. A distinct brain beta amyloid signature in cerebral amyloid angiopathy compared to Alzheimer’s disease. Neurosci. Lett. 701, 125–131. https://doi.org/10.1016/j.neulet.2019.02.033 (2019).
doi: 10.1016/j.neulet.2019.02.033 pubmed: 30807796
Rajpoot, J. et al. Insights into cerebral amyloid angiopathy Type 1 and Type 2 from comparisons of the fibrillar assembly and stability of the Aβ40-Iowa and Aβ40-Dutch peptides. Biochemistry 61, 1181–1198. https://doi.org/10.1021/acs.biochem.1c00781 (2022).
doi: 10.1021/acs.biochem.1c00781 pubmed: 35666749
Drzezga, A. et al. Effect of APOE genotype on amyloid plaque load and gray matter volume in Alzheimer disease. Neurology 72, 1487–1494. https://doi.org/10.1212/WNL.0b013e3181a2e8d0 (2009).
doi: 10.1212/WNL.0b013e3181a2e8d0 pubmed: 19339712
Grimmer, T. et al. Progression of cerebral amyloid load is associated with the apolipoprotein E ε4 genotype in Alzheimer’s disease. Biol. Psychiatry 68, 879–884. https://doi.org/10.1016/j.biopsych.2010.05.013 (2010).
doi: 10.1016/j.biopsych.2010.05.013 pubmed: 20598287 pmcid: 3045041
Nie, H. et al. Apolipoprotein E gene polymorphisms are risk factors for spontaneous intracerebral hemorrhage: A systematic review and meta-analysis. Curr. Med. Sci. 39, 111–117. https://doi.org/10.1007/s11596-019-2007-5 (2019).
doi: 10.1007/s11596-019-2007-5 pubmed: 30868499
Budd Haeberlein, S. et al. Two randomized phase 3 studies of aducanumab in early Alzheimer's disease. J. Prev. Alzheimers Dis. 9, 197–210. https://doi.org/10.14283/jpad.2022.30 (2022).
Salloway, S. et al. Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N. Engl. J. Med. 370, 322–333. https://doi.org/10.1056/NEJMoa1304839 (2014).
doi: 10.1056/NEJMoa1304839 pubmed: 24450891 pmcid: 4159618
Sims, J. R. et al. Donanemab in early symptomatic Alzheimer disease: The TRAILBLAZER-ALZ 2 randomized clinical trial. JAMA 330, 512–527. https://doi.org/10.1001/jama.2023.13239 (2023).
doi: 10.1001/jama.2023.13239 pubmed: 37459141 pmcid: 10352931
van Dyck, C. H. et al. Lecanemab in early Alzheimer’s disease. N. Engl. J. Med. 388, 9–21. https://doi.org/10.1056/NEJMoa2212948 (2023).
doi: 10.1056/NEJMoa2212948 pubmed: 36449413
Klein, G. et al. Gantenerumab reduces amyloid-β plaques in patients with prodromal to moderate Alzheimer’s disease: A PET substudy interim analysis. Alzheimers Res. Ther. 11, 101. https://doi.org/10.1186/s13195-019-0559-z (2019).
doi: 10.1186/s13195-019-0559-z pubmed: 31831056 pmcid: 6909550
Ostrowitzki, S. et al. Mechanism of amyloid removal in patients with Alzheimer disease treated with gantenerumab. Arch. Neurol. 69, 198–207. https://doi.org/10.1001/archneurol.2011.1538 (2012).
doi: 10.1001/archneurol.2011.1538 pubmed: 21987394
Boche, D. et al. Consequence of Abeta immunization on the vasculature of human Alzheimer’s disease brain. Brain 131, 3299–3310. https://doi.org/10.1093/brain/awn261 (2008).
doi: 10.1093/brain/awn261 pubmed: 18953056
Sperling, R. A. et al. Amyloid-related imaging abnormalities in amyloid-modifying therapeutic trials: Recommendations from the Alzheimer’s Association Research Roundtable Workgroup. Alzheimers Dement. 7, 367–385. https://doi.org/10.1016/j.jalz.2011.05.2351 (2011).
doi: 10.1016/j.jalz.2011.05.2351 pubmed: 21784348
Carare, R. O. et al. Clearance of interstitial fluid (ISF) and CSF (CLIC) group-part of Vascular Professional Interest Area (PIA): Cerebrovascular disease and the failure of elimination of Amyloid-β from the brain and retina with age and Alzheimer’s disease—Opportunities for therapy. Alzheimers Dement. 12, e12053. https://doi.org/10.1002/dad2.12053 (2020).
doi: 10.1002/dad2.12053
Hampel, H. et al. Amyloid-related imaging abnormalities (ARIA): Radiological, biological and clinical characteristics. Brain. 146, 4414–4424. https://doi.org/10.1093/brain/awad188 (2023).
doi: 10.1093/brain/awad188 pubmed: 37280110 pmcid: 10629981
Lemere, C. What we have learned about ARIA in anti-amyloid antibody treatment in mice and the implications for AD clinical trials. In 16th Clinical Trials on Alzhimer's Disease (CTAD), Boston (2023).
Salloway, S. et al. Amyloid-related imaging abnormalities in 2 Phase 3 studies evaluating aducanumab in patients with early Alzheimer disease. JAMA Neurol. 79, 13–21. https://doi.org/10.1001/jamaneurol.2021.4161 (2022).
doi: 10.1001/jamaneurol.2021.4161 pubmed: 34807243
Joseph-Mathurin, N. et al. Amyloid-related imaging abnormalities in the DIAN-TU-001 trial of gantenerumab and solanezumab: Lessons from a trial in dominantly inherited Alzheimer disease. Ann. Neurol. 92, 729–744. https://doi.org/10.1002/ana.26511 (2022).
doi: 10.1002/ana.26511 pubmed: 36151869 pmcid: 9828339
Salloway, S. et al. A trial of gantenerumab or solanezumab in dominantly inherited Alzheimer’s disease. Nat. Med. 27, 1187–1196. https://doi.org/10.1038/s41591-021-01369-8 (2021).
doi: 10.1038/s41591-021-01369-8 pubmed: 34155411 pmcid: 8988051
Bateman, R. J. et al. Two phase 3 trials of gantenerumab in early Alzheimer’s disease. N. Engl. J. Med. 389, 1862–1876. https://doi.org/10.1056/NEJMoa2304430 (2023).
doi: 10.1056/NEJMoa2304430 pubmed: 37966285
Cummings, J. L. et al. ABBY: A phase 2 randomized trial of crenezumab in mild to moderate Alzheimer disease. Neurology 90, e1889–e1897. https://doi.org/10.1212/WNL.0000000000005550 (2018).
doi: 10.1212/WNL.0000000000005550 pubmed: 29695589 pmcid: 5962917
Racke, M. M. et al. Exacerbation of cerebral amyloid angiopathy-associated microhemorrhage in amyloid precursor protein transgenic mice by immunotherapy is dependent on antibody recognition of deposited forms of amyloid beta. J. Neurosci. 25, 629–636. https://doi.org/10.1523/JNEUROSCI.4337-04.2005 (2005).
doi: 10.1523/JNEUROSCI.4337-04.2005 pubmed: 15659599 pmcid: 6725332
Doody, R. S. et al. Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease. N. Engl. J. Med. 370, 311–321. https://doi.org/10.1056/NEJMoa1312889 (2014).
doi: 10.1056/NEJMoa1312889 pubmed: 24450890
Honig, L. S. et al. Trial of solanezumab for mild dementia due to Alzheimer’s disease. N. Engl. J. Med. 378, 321–330. https://doi.org/10.1056/NEJMoa1705971 (2018).
doi: 10.1056/NEJMoa1705971 pubmed: 29365294
Bohrmann, B. et al. Gantenerumab: A novel human anti-Aβ antibody demonstrates sustained cerebral amyloid-β binding and elicits cell-mediated removal of human amyloid-β. J. Alzheimers Dis. 28, 49–69. https://doi.org/10.3233/JAD-2011-110977 (2012).
doi: 10.3233/JAD-2011-110977 pubmed: 21955818
Sevigny, J. et al. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature 537, 50–56. https://doi.org/10.1038/nature19323 (2016).
doi: 10.1038/nature19323 pubmed: 27582220
Mintun, M. A. et al. Donanemab in early Alzheimer’s disease. N. Engl. J. Med. 384, 1691–1704. https://doi.org/10.1056/NEJMoa2100708 (2021).
doi: 10.1056/NEJMoa2100708 pubmed: 33720637
Söderberg, L. et al. Lecanemab, aducanumab, and gantenerumab—binding profiles to different forms of amyloid-beta might explain efficacy and side effects in clinical trials for Alzheimer’s disease. Neurotherapeutics 20, 195–206. https://doi.org/10.1007/s13311-022-01308-6 (2023).
doi: 10.1007/s13311-022-01308-6 pubmed: 36253511
Rinne, J. O. et al. 11C-PiB PET assessment of change in fibrillar amyloid-beta load in patients with Alzheimer’s disease treated with bapineuzumab: A phase 2, double-blind, placebo-controlled, ascending-dose study. Lancet Neurol. 9, 363–372. https://doi.org/10.1016/S1474-4422(10)70043-0 (2010).
doi: 10.1016/S1474-4422(10)70043-0 pubmed: 20189881
Meilandt, W. J. et al. Characterization of the selective in vitro and in vivo binding properties of crenezumab to oligomeric Aβ. Alzheimers Res. Ther. 11, 97. https://doi.org/10.1186/s13195-019-0553-5 (2019).
doi: 10.1186/s13195-019-0553-5 pubmed: 31787113 pmcid: 6886224
Farlow, M. et al. Safety and biomarker effects of solanezumab in patients with Alzheimer’s disease. Alzheimers Dement. 8, 261–271. https://doi.org/10.1016/j.jalz.2011.09.224 (2012).
doi: 10.1016/j.jalz.2011.09.224 pubmed: 22672770
Klingstedt, T. et al. The structural basis for optimal performance of oligothiophene-based fluorescent amyloid ligands: Conformational flexibility is essential for spectral assignment of a diversity of protein aggregates. Chemistry 19, 10179–10192. https://doi.org/10.1002/chem.201301463 (2013).
doi: 10.1002/chem.201301463 pubmed: 23780508 pmcid: 3884759
Kollmer, M. et al. Cryo-EM structure and polymorphism of Aβ amyloid fibrils purified from Alzheimer’s brain tissue. Nat. Commun. 10, 4760. https://doi.org/10.1038/s41467-019-12683-8 (2019).
doi: 10.1038/s41467-019-12683-8 pubmed: 31664019 pmcid: 6820800
Miller, D. L. et al. Peptide compositions of the cerebrovascular and senile plaque core amyloid deposits of Alzheimer’s disease. Arch. Biochem. Biophys. 301, 41–52. https://doi.org/10.1006/abbi.1993.1112 (1993).
doi: 10.1006/abbi.1993.1112 pubmed: 8442665
Gerth, J. et al. Modified amyloid variants in pathological subgroups of β -amyloidosis. Ann. Clin. Transl. Neurol. 5, 815–831. https://doi.org/10.1002/acn3.577 (2018).
doi: 10.1002/acn3.577 pubmed: 30009199 pmcid: 6043770
Swanson, C. J. et al. A randomized, double-blind, phase 2b proof-of-concept clinical trial in early Alzheimer’s disease with lecanemab, an anti-Aβ protofibril antibody. Alzheimers Res. Ther. 13, 80. https://doi.org/10.1186/s13195-021-00813-8 (2021).
doi: 10.1186/s13195-021-00813-8 pubmed: 33865446 pmcid: 8053280
Lannfelt, L. et al. Binding profiles of lecanemab and donanemab to different amyloid-beta species. JPAD S26 (2023).
Piazza, F. et al. Anti-amyloid β autoantibodies in cerebral amyloid angiopathy-related inflammation: Implications for amyloid-modifying therapies. Ann. Neurol. 73, 449–458. https://doi.org/10.1002/ana.23857 (2013).
doi: 10.1002/ana.23857 pubmed: 23625526
Piazza, F. et al. Association of microglial activation with spontaneous ARIA-E and CSF levels of anti-Aβ autoantibodies. Neurology 99, e1265–e1277. https://doi.org/10.1212/WNL.0000000000200892 (2022).
doi: 10.1212/WNL.0000000000200892 pubmed: 35940900 pmcid: 9576297
Antolini, L. et al. Spontaneous ARIA-like events in cerebral amyloid angiopathy-related inflammation: A multicenter prospective longitudinal cohort study. Neurology 97, e1809–e1822. https://doi.org/10.1212/WNL.0000000000012778 (2021).
doi: 10.1212/WNL.0000000000012778 pubmed: 34531298 pmcid: 8610623
Crehan, H. et al. Effector function of anti-pyroglutamate-3 Aβ antibodies affects cognitive benefit, glial activation and amyloid clearance in Alzheimer’s-like mice. Alzheimers Res. Ther. 12, 12. https://doi.org/10.1186/s13195-019-0579-8 (2020).
doi: 10.1186/s13195-019-0579-8 pubmed: 31931873 pmcid: 6958628
Lin, Y. T. et al. APOE4 causes widespread molecular and cellular alterations associated with Alzheimer’s disease phenotypes in human iPSC-derived brain cell types. Neuron 98, 1294. https://doi.org/10.1016/j.neuron.2018.06.011 (2018).
doi: 10.1016/j.neuron.2018.06.011 pubmed: 29953873 pmcid: 6048952
Liu, C. C. et al. Cell-autonomous effects of APOE4 in restricting microglial response in brain homeostasis and Alzheimer’s disease. Nat. Immunol. 24, 1854–1866. https://doi.org/10.1038/s41590-023-01640-9 (2023).
doi: 10.1038/s41590-023-01640-9 pubmed: 37857825
Yin, Z. et al. APOE4 impairs the microglial response in Alzheimer’s disease by inducing TGFβ-mediated checkpoints. Nat. Immunol. 24, 1839–1853. https://doi.org/10.1038/s41590-023-01627-6 (2023).
doi: 10.1038/s41590-023-01627-6 pubmed: 37749326
Lowe, S. L. et al. Donanemab (LY3002813) dose-escalation study in Alzheimer’s disease. Alzheimers Dement. 7, e12112. https://doi.org/10.1002/trc2.12112 (2021).
doi: 10.1002/trc2.12112
Ostrowitzki, S. et al. Evaluating the safety and efficacy of crenezumab vs placebo in adults with early Alzheimer disease: Two phase 3 randomized placebo-controlled trials. JAMA Neurol. 79, 1113–1121. https://doi.org/10.1001/jamaneurol.2022.2909 (2022).
doi: 10.1001/jamaneurol.2022.2909 pubmed: 36121669 pmcid: 9486635
Thal, D. R., Rüb, U., Orantes, M. & Braak, H. Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology 58, 1791–1800. https://doi.org/10.1212/wnl.58.12.1791 (2002).
doi: 10.1212/wnl.58.12.1791 pubmed: 12084879

Auteurs

Linda Söderberg (L)

BioArctic AB, Warfvinges väg 35, 112 51, Stockholm, Sweden. linda.soderberg@bioarctic.com.

Malin Johannesson (M)

BioArctic AB, Warfvinges väg 35, 112 51, Stockholm, Sweden.

Eleni Gkanatsiou (E)

BioArctic AB, Warfvinges väg 35, 112 51, Stockholm, Sweden.

Patrik Nygren (P)

BioArctic AB, Warfvinges väg 35, 112 51, Stockholm, Sweden.

Nicolas Fritz (N)

BioArctic AB, Warfvinges väg 35, 112 51, Stockholm, Sweden.

Olof Zachrisson (O)

BioArctic AB, Warfvinges väg 35, 112 51, Stockholm, Sweden.

Adeline Rachalski (A)

BioArctic AB, Warfvinges väg 35, 112 51, Stockholm, Sweden.

Anne-Sophie Svensson (AS)

BioArctic AB, Warfvinges väg 35, 112 51, Stockholm, Sweden.

Emily Button (E)

BioArctic AB, Warfvinges väg 35, 112 51, Stockholm, Sweden.

Giacomo Dentoni (G)

BioArctic AB, Warfvinges väg 35, 112 51, Stockholm, Sweden.

Gunilla Osswald (G)

BioArctic AB, Warfvinges väg 35, 112 51, Stockholm, Sweden.

Lars Lannfelt (L)

BioArctic AB, Warfvinges väg 35, 112 51, Stockholm, Sweden.
Department of Public Health/Geriatrics, Uppsala University, 751 85, Uppsala, Sweden.

Christer Möller (C)

BioArctic AB, Warfvinges väg 35, 112 51, Stockholm, Sweden.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH