Top-down mass spectrometry of native proteoforms and their complexes: a community study.


Journal

Nature methods
ISSN: 1548-7105
Titre abrégé: Nat Methods
Pays: United States
ID NLM: 101215604

Informations de publication

Date de publication:
14 May 2024
Historique:
received: 02 08 2023
accepted: 10 04 2024
medline: 15 5 2024
pubmed: 15 5 2024
entrez: 14 5 2024
Statut: aheadofprint

Résumé

The combination of native electrospray ionization with top-down fragmentation in mass spectrometry (MS) allows simultaneous determination of the stoichiometry of noncovalent complexes and identification of their component proteoforms and cofactors. Although this approach is powerful, both native MS and top-down MS are not yet well standardized, and only a limited number of laboratories regularly carry out this type of research. To address this challenge, the Consortium for Top-Down Proteomics initiated a study to develop and test protocols for native MS combined with top-down fragmentation of proteins and protein complexes across 11 instruments in nine laboratories. Here we report the summary of the outcomes to provide robust benchmarks and a valuable entry point for the scientific community.

Identifiants

pubmed: 38744918
doi: 10.1038/s41592-024-02279-6
pii: 10.1038/s41592-024-02279-6
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Hessisches Ministerium für Wissenschaft und Kunst (Hessen State Ministry of Higher Education, Research and the Arts)
ID : LOEWE - TRABITA
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : 461372424
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : 524226614
Organisme : U.S. Department of Health & Human Services | National Institutes of Health (NIH)
ID : GM007185
Organisme : NIGMS NIH HHS
ID : R01 GM125085
Pays : United States
Organisme : ODCDC CDC HHS
ID : S10 OD018475
Pays : United States
Organisme : U.S. Department of Health & Human Services | National Institutes of Health (NIH)
ID : R01GM103479
Organisme : U.S. Department of Health & Human Services | National Institutes of Health (NIH)
ID : R35GM145286
Organisme : U.S. Department of Health & Human Services | National Institutes of Health (NIH)
ID : S10RR028893
Organisme : DOE | SC | Biological and Environmental Research (BER)
ID : DE-AC05-76RL01830
Organisme : DOE | SC | Biological and Environmental Research (BER)
ID : DE-AC05-76RL01830
Organisme : NIGMS NIH HHS
ID : P41 GM108569
Pays : United States
Organisme : NIGMS NIH HHS
ID : R35 GM128624
Pays : United States
Organisme : U.S. Department of Energy (DOE)
ID : DEFC02-02ER63421

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer Nature America, Inc.

Références

Smith, L. M., Kelleher, N. L. & The Consortium for Top Down Proteomics Proteoform: a single term describing protein complexity. Nat. Methods 10, 186–187 (2013).
pubmed: 23443629 pmcid: 4114032 doi: 10.1038/nmeth.2369
Aebersold, R. et al. How many human proteoforms are there? Nat. Chem. Biol. 14, 206–214 (2018).
pubmed: 29443976 pmcid: 5837046 doi: 10.1038/nchembio.2576
Smith, L. M. & Kelleher, N. L. Proteoforms as the next proteomics currency. Science 359, 1106–1107 (2018).
pubmed: 29590032 pmcid: 5944612 doi: 10.1126/science.aat1884
Dang, X. et al. The first pilot project of the consortium for top-down proteomics: a status report. Proteomics 14, 1130–1140 (2014).
pubmed: 24644084 pmcid: 4146406 doi: 10.1002/pmic.201300438
Chen, B., Brown, K. A., Lin, Z. & Ge, Y. Top-down proteomics: ready for prime time? Anal. Chem. 90, 110–127 (2018).
pubmed: 29161012 doi: 10.1021/acs.analchem.7b04747
Donnelly, D. P. et al. Best practices and benchmarks for intact protein analysis for top-down mass spectrometry. Nat. Methods 16, 587–594 (2019).
pubmed: 31249407 pmcid: 6719561 doi: 10.1038/s41592-019-0457-0
Srzentic, K. et al. Interlaboratory study for characterizing monoclonal antibodies by top-down and middle-down mass spectrometry. J. Am. Soc. Mass Spectrom. 31, 1783–1802 (2020).
pubmed: 32812765 pmcid: 7539639 doi: 10.1021/jasms.0c00036
Habeck, T. & Lermyte, F. Seeing the complete picture: proteins in top-down mass spectrometry. Essays Biochem. 67, 283–300 (2023).
pubmed: 36468679 doi: 10.1042/EBC20220098
Brown, K. A., Melby, J. A., Roberts, D. S. & Ge, Y. Top-down proteomics: challenges, innovations, and applications in basic and clinical research. Expert Rev. Proteom. 17, 719–733 (2020).
doi: 10.1080/14789450.2020.1855982
Smith, L. M. et al. The Human Proteoform Project: defining the human proteome. Sci. Adv. 7, eabk0734 (2021).
pubmed: 34767442 pmcid: 8589312 doi: 10.1126/sciadv.abk0734
Leney, A. C. & Heck, A. J. Native mass spectrometry: what is in the name? J. Am. Soc. Mass Spectrom. 28, 5–13 (2017).
pubmed: 32020797 doi: 10.1007/s13361-016-1545-3
Robinson, C. V. Mass spectrometry: from plasma proteins to mitochondrial membranes. Proc. Natl Acad. Sci. USA 116, 2814–2820 (2019).
pubmed: 30718422 pmcid: 6386728 doi: 10.1073/pnas.1820450116
Tamara, S., den Boer, M. A. & Heck, A. J. R. High-resolution native mass spectrometry. Chem. Rev. 122, 7269–7326 (2022).
pubmed: 34415162 doi: 10.1021/acs.chemrev.1c00212
Bennett, J. L., Nguyen, G. T. H. & Donald, W. A. Protein-small molecule interactions in native mass spectrometry. Chem. Rev. 122, 7327–7385 (2022).
pubmed: 34449207 doi: 10.1021/acs.chemrev.1c00293
Rogawski, R. & Sharon, M. Characterizing endogenous protein complexes with biological mass spectrometry. Chem. Rev. 122, 7386–7414 (2022).
pubmed: 34406752 doi: 10.1021/acs.chemrev.1c00217
Skinner, O. S. et al. Top-down characterization of endogenous protein complexes with native proteomics. Nat. Chem. Biol. 14, 36–41 (2018).
pubmed: 29131144 doi: 10.1038/nchembio.2515
Ro, S. Y. et al. Native top-down mass spectrometry provides insights into the copper centers of membrane-bound methane monooxygenase. Nat. Commun. 10, 2675 (2019).
pubmed: 31209220 pmcid: 6572826 doi: 10.1038/s41467-019-10590-6
Gault, J. et al. Combining native and ‘omics’ mass spectrometry to identify endogenous ligands bound to membrane proteins. Nat. Methods 17, 505–508 (2020).
pubmed: 32371966 pmcid: 7332344 doi: 10.1038/s41592-020-0821-0
Vimer, S. et al. Comparative structural analysis of 20S proteasome ortholog protein complexes by native mass spectrometry. ACS Cent. Sci. 6, 573–588 (2020).
pubmed: 32342007 pmcid: 7181328 doi: 10.1021/acscentsci.0c00080
Schachner, L. F. et al. Decoding the protein composition of whole nucleosomes with Nuc-MS. Nat. Methods 18, 303–308 (2021).
pubmed: 33589837 pmcid: 7954958 doi: 10.1038/s41592-020-01052-9
Melani, R. D. et al. Mapping proteoforms and protein complexes from king cobra venom using both denaturing and native top-down proteomics. Mol. Cell Proteom. 15, 2423–2434 (2016).
doi: 10.1074/mcp.M115.056523
Lermyte, F., Tsybin, Y. O., O’Connor, P. B. & Loo, J. A. Top or middle? Up or down? Toward a standard lexicon for protein top-down and allied mass spectrometry approaches. J. Am. Soc. Mass Spectrom. 30, 1149–1157 (2019).
pubmed: 31073892 pmcid: 6591204 doi: 10.1007/s13361-019-02201-x
Zhou, M. et al. Higher-order structural characterisation of native proteins and complexes by top-down mass spectrometry. Chem. Sci. 11, 12918–12936 (2020).
pubmed: 34094482 pmcid: 8163214 doi: 10.1039/D0SC04392C
VanAernum, Z. L. et al. Rapid online buffer exchange for screening of proteins, protein complexes and cell lysates by native mass spectrometry. Nat. Protoc. 15, 1132–1157 (2020).
pubmed: 32005983 pmcid: 7203678 doi: 10.1038/s41596-019-0281-0
McCabe, J. W. et al. Implementing digital-waveform technology for extended m/z range operation on a native dual-quadrupole FT-IM-orbitrap mass spectrometer. J. Am. Soc. Mass Spectrom. 32, 2812–2820 (2021).
pubmed: 34797072 pmcid: 9026758 doi: 10.1021/jasms.1c00245
LeDuc, R. D. et al. ProForma: a standard proteoform notation. J. Proteome Res 17, 1321–1325 (2018).
pubmed: 29397739 pmcid: 5837035 doi: 10.1021/acs.jproteome.7b00851
Schachner, L. F. et al. Standard proteoforms and their complexes for native mass spectrometry. J. Am. Soc. Mass Spectrom. 30, 1190–1198 (2019).
pubmed: 30963455 pmcid: 6592724 doi: 10.1007/s13361-019-02191-w
Smith, L. M. et al. A five-level classification system for proteoform identifications. Nat. Methods 16, 939–940 (2019).
pubmed: 31451767 pmcid: 6857706 doi: 10.1038/s41592-019-0573-x
Iacobucci, C. et al. First community-wide, comparative cross-linking mass spectrometry study. Anal. Chem. 91, 6953–6961 (2019).
pubmed: 31045356 pmcid: 6625963 doi: 10.1021/acs.analchem.9b00658
Masson, G. R. et al. Recommendations for performing, interpreting and reporting hydrogen deuterium exchange mass spectrometry (HDX-MS) experiments. Nat. Methods 16, 595–602 (2019).
pubmed: 31249422 pmcid: 6614034 doi: 10.1038/s41592-019-0459-y
Allison, T. M. et al. Software requirements for the analysis and interpretation of native ion mobility mass spectrometry data. Anal. Chem. 92, 10881–10890 (2020).
pubmed: 32649184 doi: 10.1021/acs.analchem.9b05792
Allison, T. M. et al. Computational strategies and challenges for using native ion mobility mass spectrometry in biophysics and structural biology. Anal. Chem. 92, 10872–10880 (2020).
pubmed: 32667808 doi: 10.1021/acs.analchem.9b05791
Gabelica, V. et al. Recommendations for reporting ion mobility mass spectrometry measurements. Mass Spectrom. Rev. 38, 291–320 (2019).
pubmed: 30707468 pmcid: 6618043 doi: 10.1002/mas.21585
Konijnenberg, A., Butterer, A. & Sobott, F. Native ion mobility-mass spectrometry and related methods in structural biology. Biochim. Biophys. Acta 1834, 1239–1256 (2013).
pubmed: 23246828 doi: 10.1016/j.bbapap.2012.11.013
Konermann, L., Ahadi, E., Rodriguez, A. D. & Vahidi, S. Unraveling the mechanism of electrospray ionization. Anal. Chem. 85, 2–9 (2013).
pubmed: 23134552 doi: 10.1021/ac302789c
Hall, Z., Politis, A., Bush, M. F., Smith, L. J. & Robinson, C. V. Charge-state dependent compaction and dissociation of protein complexes: insights from ion mobility and molecular dynamics. J. Am. Chem. Soc. 134, 3429–3438 (2012).
pubmed: 22280183 doi: 10.1021/ja2096859
Rolland, A. D., Biberic, L. S. & Prell, J. S. Investigation of charge-state-dependent compaction of protein ions with native ion mobility-mass spectrometry and theory. J. Am. Soc. Mass Spectrom. 33, 369–381 (2022).
pubmed: 35073092 doi: 10.1021/jasms.1c00351
Sobott, F., Hernandez, H., McCammon, M. G., Tito, M. A. & Robinson, C. V. A tandem mass spectrometer for improved transmission and analysis of large macromolecular assemblies. Anal. Chem. 74, 1402–1407 (2002).
pubmed: 11922310 doi: 10.1021/ac0110552
Sobott, F., McCammon, M. G., Hernandez, H. & Robinson, C. V. The flight of macromolecular complexes in a mass spectrometer. Philos. Trans. A Math. Phys. Eng. Sci. 363, 379–389 (2005).
pubmed: 15664889
Rose, R. J., Damoc, E., Denisov, E., Makarov, A. & Heck, A. J. High-sensitivity Orbitrap mass analysis of intact macromolecular assemblies. Nat. Methods 9, 1084–1086 (2012).
pubmed: 23064518 doi: 10.1038/nmeth.2208
van de Waterbeemd, M. et al. High-fidelity mass analysis unveils heterogeneity in intact ribosomal particles. Nat. Methods 14, 283–286 (2017).
pubmed: 28114288 doi: 10.1038/nmeth.4147
Fort, K. L. et al. Expanding the structural analysis capabilities on an Orbitrap-based mass spectrometer for large macromolecular complexes. Analyst 143, 100–105 (2017).
pubmed: 29138777 doi: 10.1039/C7AN01629H
McGee, J. P. et al. Voltage rollercoaster filtering of low-mass contaminants during native protein analysis. J. Am. Soc. Mass Spectrom. 31, 763–767 (2020).
pubmed: 32126774 pmcid: 7274025 doi: 10.1021/jasms.9b00037
Snijder, J., Rose, R. J., Veesler, D., Johnson, J. E. & Heck, A. J. Studying 18 MDa virus assemblies with native mass spectrometry. Angew. Chem. Int. Ed. Engl. 52, 4020–4023 (2013).
pubmed: 23450509 pmcid: 3949431 doi: 10.1002/anie.201210197
Behnke, J. S. & Urner, L. H. Emergence of mass spectrometry detergents for membrane proteomics. Anal. Bioanal. Chem. 415, 3897–3909 (2023).
pubmed: 36808272 pmcid: 10328889 doi: 10.1007/s00216-023-04584-z
Borysik, A. J., Hewitt, D. J. & Robinson, C. V. Detergent release prolongs the lifetime of native-like membrane protein conformations in the gas-phase. J. Am. Chem. Soc. 135, 6078–6083 (2013).
pubmed: 23521660 doi: 10.1021/ja401736v
Reading, E. et al. The role of the detergent micelle in preserving the structure of membrane proteins in the gas phase. Angew. Chem. Int. Ed. Engl. 54, 4577–4581 (2015).
pubmed: 25693501 doi: 10.1002/anie.201411622
Ives, A. N. et al. Using 10,000 fragment ions to inform scoring in native top-down proteomics. J. Am. Soc. Mass Spectrom. 31, 1398–1409 (2020).
pubmed: 32436704 pmcid: 7539637 doi: 10.1021/jasms.0c00026
Lantz, C. et al. Native top-down mass spectrometry with collisionally activated dissociation yields higher-order structure information for protein complexes. J. Am. Chem. Soc. 144, 21826–21830 (2022).
pubmed: 36441927 pmcid: 10017227 doi: 10.1021/jacs.2c06726
Paizs, B. & Suhai, S. Fragmentation pathways of protonated peptides. Mass Spectrom. Rev. 24, 508–548 (2005).
pubmed: 15389847 doi: 10.1002/mas.20024
Skinner, O. S. et al. Fragmentation of integral membrane proteins in the gas phase. Anal. Chem. 86, 4627–4634 (2014).
pubmed: 24689519 pmcid: 4018139 doi: 10.1021/ac500864w
Horn, D. M., Zubarev, R. A. & McLafferty, F. W. Automated reduction and interpretation of high resolution electrospray mass spectra of large molecules. J. Am. Soc. Mass Spectrom. 11, 320–332 (2000).
pubmed: 10757168 doi: 10.1016/S1044-0305(99)00157-9
Zamdborg, L. et al. ProSight PTM 2.0: improved protein identification and characterization for top down mass spectrometry. Nucleic Acids Res. 35, W701–W706 (2007).
pubmed: 17586823 pmcid: 1933126 doi: 10.1093/nar/gkm371
Mayampurath, A. M. et al. DeconMSn: a software tool for accurate parent ion monoisotopic mass determination for tandem mass spectra. Bioinformatics 24, 1021–1023 (2008).
pubmed: 18304935 doi: 10.1093/bioinformatics/btn063
Li, L. & Tian, Z. Interpreting raw biological mass spectra using isotopic mass-to-charge ratio and envelope fingerprinting. Rapid Commun. Mass Spectrom. 27, 1267–1277 (2013).
pubmed: 23650040 doi: 10.1002/rcm.6565
Liu, X. et al. Deconvolution and database search of complex tandem mass spectra of intact proteins: a combinatorial approach. Mol. Cell Proteom. 9, 2772–2782 (2010).
doi: 10.1074/mcp.M110.002766
Compton, P. D., Zamdborg, L., Thomas, P. M. & Kelleher, N. L. On the scalability and requirements of whole protein mass spectrometry. Anal. Chem. 83, 6868–6874 (2011).
pubmed: 21744800 pmcid: 3165072 doi: 10.1021/ac2010795
Guner, H. et al. MASH Suite: a user-friendly and versatile software interface for high-resolution mass spectrometry data interpretation and visualization. J. Am. Soc. Mass Spectrom. 25, 464–470 (2014).
pubmed: 24385400 pmcid: 3940544 doi: 10.1007/s13361-013-0789-4
Cai, W. et al. MASH Suite Pro: a comprehensive software tool for top-down proteomics. Mol. Cell Proteom. 15, 703–714 (2016).
doi: 10.1074/mcp.O115.054387
Wu, Z. et al. MASH Explorer: a universal software environment for top-down proteomics. J. Proteome Res 19, 3867–3876 (2020).
pubmed: 32786689 pmcid: 7728713 doi: 10.1021/acs.jproteome.0c00469
McIlwain, S. J. et al. Enhancing top-down proteomics data analysis by combining deconvolution results through a machine learning strategy. J. Am. Soc. Mass Spectrom. 31, 1104–1113 (2020).
pubmed: 32223200 pmcid: 7909725 doi: 10.1021/jasms.0c00035
Larson, E. J. et al. MASH Native: a unified solution for native top-down proteomics data processing. Bioinformatics 39, btad359 (2023).
pubmed: 37294807 pmcid: 10283151 doi: 10.1093/bioinformatics/btad359
Kafader, J. O. et al. Multiplexed mass spectrometry of individual ions improves measurement of proteoforms and their complexes. Nat. Methods 17, 391–394 (2020).
pubmed: 32123391 pmcid: 7131870 doi: 10.1038/s41592-020-0764-5
Kafader, J. O. et al. Individual ion mass spectrometry enhances the sensitivity and sequence coverage of top-down mass spectrometry. J. Proteome Res. 19, 1346–1350 (2020).
pubmed: 32032494 pmcid: 7060802 doi: 10.1021/acs.jproteome.9b00797
Worner, T. P. et al. Resolving heterogeneous macromolecular assemblies by Orbitrap-based single-particle charge detection mass spectrometry. Nat. Methods 17, 395–398 (2020).
pubmed: 32152501 doi: 10.1038/s41592-020-0770-7
McGee, J. P. et al. Isotopic resolution of protein complexes up to 466 kDa using individual ion mass spectrometry. Anal. Chem. 93, 2723–2727 (2021).
pubmed: 33322893 doi: 10.1021/acs.analchem.0c03282
Marty, M. T. et al. Bayesian deconvolution of mass and ion mobility spectra: from binary interactions to polydisperse ensembles. Anal. Chem. 87, 4370–4376 (2015).
pubmed: 25799115 pmcid: 4594776 doi: 10.1021/acs.analchem.5b00140
Reid, D. J. et al. MetaUniDec: high-throughput deconvolution of native mass spectra. J. Am. Soc. Mass Spectrom. 30, 118–127 (2019).
pubmed: 29667162 doi: 10.1007/s13361-018-1951-9
Marty, M. T. A universal score for deconvolution of intact protein and native electrospray mass spectra. Anal. Chem. 92, 4395–4401 (2020).
pubmed: 32069030 doi: 10.1021/acs.analchem.9b05272
Park, J. et al. Informed-proteomics: open-source software package for top-down proteomics. Nat. Methods 14, 909–914 (2017).
pubmed: 28783154 pmcid: 5578875 doi: 10.1038/nmeth.4388
Zhou, M., Pasa-Tolic, L. & Stenoien, D. L. Profiling of histone post-translational modifications in mouse brain with high-resolution top-down mass spectrometry. J. Proteome Res 16, 599–608 (2017).
pubmed: 28001079 doi: 10.1021/acs.jproteome.6b00694
Deutsch, E. W. et al. The ProteomeXchange consortium in 2020: enabling ‘big data’ approaches in proteomics. Nucleic Acids Res. 48, D1145–D1152 (2020).
pubmed: 31686107
Perez-Riverol, Y. et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 50, D543–D552 (2022).
pubmed: 34723319 doi: 10.1093/nar/gkab1038

Auteurs

Tanja Habeck (T)

Technische Universität Darmstadt, Darmstadt, Germany.

Kyle A Brown (KA)

University of Wisconsin-Madison, Madison, WI, USA.

Benjamin Des Soye (B)

Northwestern University, Evanston, IL, USA.

Carter Lantz (C)

University of California, Los Angeles, CA, USA.

Mowei Zhou (M)

Pacific Northwest National Laboratory, Richland, WA, USA.
Zhejiang University, Zhejiang, China.

Novera Alam (N)

Northeastern University, Boston, MA, USA.

Md Amin Hossain (MA)

Northeastern University, Boston, MA, USA.

Wonhyeuk Jung (W)

University of California, Los Angeles, CA, USA.

James E Keener (JE)

University of Arizona, Tuscon, AZ, USA.

Michael Volny (M)

Genentech Inc., San Francisco, CA, USA.

Jesse W Wilson (JW)

Pacific Northwest National Laboratory, Richland, WA, USA.

Yujia Ying (Y)

Sun Yat-sen University, Guangzhou, China.

Jeffrey N Agar (JN)

Northeastern University, Boston, MA, USA.
Consortium for Top-Down Proteomics, Cambridge, MA, USA.

Paul O Danis (PO)

Consortium for Top-Down Proteomics, Cambridge, MA, USA.

Ying Ge (Y)

University of Wisconsin-Madison, Madison, WI, USA.
Consortium for Top-Down Proteomics, Cambridge, MA, USA.

Neil L Kelleher (NL)

Northwestern University, Evanston, IL, USA.
Consortium for Top-Down Proteomics, Cambridge, MA, USA.

Huilin Li (H)

Sun Yat-sen University, Guangzhou, China.

Joseph A Loo (JA)

University of California, Los Angeles, CA, USA.
Consortium for Top-Down Proteomics, Cambridge, MA, USA.

Michael T Marty (MT)

University of Arizona, Tuscon, AZ, USA.

Ljiljana Paša-Tolić (L)

Pacific Northwest National Laboratory, Richland, WA, USA.
Consortium for Top-Down Proteomics, Cambridge, MA, USA.

Wendy Sandoval (W)

Genentech Inc., San Francisco, CA, USA.

Frederik Lermyte (F)

Technische Universität Darmstadt, Darmstadt, Germany. frederik.lermyte@tu-darmstadt.de.

Classifications MeSH