Top-down mass spectrometry of native proteoforms and their complexes: a community study.
Journal
Nature methods
ISSN: 1548-7105
Titre abrégé: Nat Methods
Pays: United States
ID NLM: 101215604
Informations de publication
Date de publication:
14 May 2024
14 May 2024
Historique:
received:
02
08
2023
accepted:
10
04
2024
medline:
15
5
2024
pubmed:
15
5
2024
entrez:
14
5
2024
Statut:
aheadofprint
Résumé
The combination of native electrospray ionization with top-down fragmentation in mass spectrometry (MS) allows simultaneous determination of the stoichiometry of noncovalent complexes and identification of their component proteoforms and cofactors. Although this approach is powerful, both native MS and top-down MS are not yet well standardized, and only a limited number of laboratories regularly carry out this type of research. To address this challenge, the Consortium for Top-Down Proteomics initiated a study to develop and test protocols for native MS combined with top-down fragmentation of proteins and protein complexes across 11 instruments in nine laboratories. Here we report the summary of the outcomes to provide robust benchmarks and a valuable entry point for the scientific community.
Identifiants
pubmed: 38744918
doi: 10.1038/s41592-024-02279-6
pii: 10.1038/s41592-024-02279-6
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Hessisches Ministerium für Wissenschaft und Kunst (Hessen State Ministry of Higher Education, Research and the Arts)
ID : LOEWE - TRABITA
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : 461372424
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : 524226614
Organisme : U.S. Department of Health & Human Services | National Institutes of Health (NIH)
ID : GM007185
Organisme : NIGMS NIH HHS
ID : R01 GM125085
Pays : United States
Organisme : ODCDC CDC HHS
ID : S10 OD018475
Pays : United States
Organisme : U.S. Department of Health & Human Services | National Institutes of Health (NIH)
ID : R01GM103479
Organisme : U.S. Department of Health & Human Services | National Institutes of Health (NIH)
ID : R35GM145286
Organisme : U.S. Department of Health & Human Services | National Institutes of Health (NIH)
ID : S10RR028893
Organisme : DOE | SC | Biological and Environmental Research (BER)
ID : DE-AC05-76RL01830
Organisme : DOE | SC | Biological and Environmental Research (BER)
ID : DE-AC05-76RL01830
Organisme : NIGMS NIH HHS
ID : P41 GM108569
Pays : United States
Organisme : NIGMS NIH HHS
ID : R35 GM128624
Pays : United States
Organisme : U.S. Department of Energy (DOE)
ID : DEFC02-02ER63421
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer Nature America, Inc.
Références
Smith, L. M., Kelleher, N. L. & The Consortium for Top Down Proteomics Proteoform: a single term describing protein complexity. Nat. Methods 10, 186–187 (2013).
pubmed: 23443629
pmcid: 4114032
doi: 10.1038/nmeth.2369
Aebersold, R. et al. How many human proteoforms are there? Nat. Chem. Biol. 14, 206–214 (2018).
pubmed: 29443976
pmcid: 5837046
doi: 10.1038/nchembio.2576
Smith, L. M. & Kelleher, N. L. Proteoforms as the next proteomics currency. Science 359, 1106–1107 (2018).
pubmed: 29590032
pmcid: 5944612
doi: 10.1126/science.aat1884
Dang, X. et al. The first pilot project of the consortium for top-down proteomics: a status report. Proteomics 14, 1130–1140 (2014).
pubmed: 24644084
pmcid: 4146406
doi: 10.1002/pmic.201300438
Chen, B., Brown, K. A., Lin, Z. & Ge, Y. Top-down proteomics: ready for prime time? Anal. Chem. 90, 110–127 (2018).
pubmed: 29161012
doi: 10.1021/acs.analchem.7b04747
Donnelly, D. P. et al. Best practices and benchmarks for intact protein analysis for top-down mass spectrometry. Nat. Methods 16, 587–594 (2019).
pubmed: 31249407
pmcid: 6719561
doi: 10.1038/s41592-019-0457-0
Srzentic, K. et al. Interlaboratory study for characterizing monoclonal antibodies by top-down and middle-down mass spectrometry. J. Am. Soc. Mass Spectrom. 31, 1783–1802 (2020).
pubmed: 32812765
pmcid: 7539639
doi: 10.1021/jasms.0c00036
Habeck, T. & Lermyte, F. Seeing the complete picture: proteins in top-down mass spectrometry. Essays Biochem. 67, 283–300 (2023).
pubmed: 36468679
doi: 10.1042/EBC20220098
Brown, K. A., Melby, J. A., Roberts, D. S. & Ge, Y. Top-down proteomics: challenges, innovations, and applications in basic and clinical research. Expert Rev. Proteom. 17, 719–733 (2020).
doi: 10.1080/14789450.2020.1855982
Smith, L. M. et al. The Human Proteoform Project: defining the human proteome. Sci. Adv. 7, eabk0734 (2021).
pubmed: 34767442
pmcid: 8589312
doi: 10.1126/sciadv.abk0734
Leney, A. C. & Heck, A. J. Native mass spectrometry: what is in the name? J. Am. Soc. Mass Spectrom. 28, 5–13 (2017).
pubmed: 32020797
doi: 10.1007/s13361-016-1545-3
Robinson, C. V. Mass spectrometry: from plasma proteins to mitochondrial membranes. Proc. Natl Acad. Sci. USA 116, 2814–2820 (2019).
pubmed: 30718422
pmcid: 6386728
doi: 10.1073/pnas.1820450116
Tamara, S., den Boer, M. A. & Heck, A. J. R. High-resolution native mass spectrometry. Chem. Rev. 122, 7269–7326 (2022).
pubmed: 34415162
doi: 10.1021/acs.chemrev.1c00212
Bennett, J. L., Nguyen, G. T. H. & Donald, W. A. Protein-small molecule interactions in native mass spectrometry. Chem. Rev. 122, 7327–7385 (2022).
pubmed: 34449207
doi: 10.1021/acs.chemrev.1c00293
Rogawski, R. & Sharon, M. Characterizing endogenous protein complexes with biological mass spectrometry. Chem. Rev. 122, 7386–7414 (2022).
pubmed: 34406752
doi: 10.1021/acs.chemrev.1c00217
Skinner, O. S. et al. Top-down characterization of endogenous protein complexes with native proteomics. Nat. Chem. Biol. 14, 36–41 (2018).
pubmed: 29131144
doi: 10.1038/nchembio.2515
Ro, S. Y. et al. Native top-down mass spectrometry provides insights into the copper centers of membrane-bound methane monooxygenase. Nat. Commun. 10, 2675 (2019).
pubmed: 31209220
pmcid: 6572826
doi: 10.1038/s41467-019-10590-6
Gault, J. et al. Combining native and ‘omics’ mass spectrometry to identify endogenous ligands bound to membrane proteins. Nat. Methods 17, 505–508 (2020).
pubmed: 32371966
pmcid: 7332344
doi: 10.1038/s41592-020-0821-0
Vimer, S. et al. Comparative structural analysis of 20S proteasome ortholog protein complexes by native mass spectrometry. ACS Cent. Sci. 6, 573–588 (2020).
pubmed: 32342007
pmcid: 7181328
doi: 10.1021/acscentsci.0c00080
Schachner, L. F. et al. Decoding the protein composition of whole nucleosomes with Nuc-MS. Nat. Methods 18, 303–308 (2021).
pubmed: 33589837
pmcid: 7954958
doi: 10.1038/s41592-020-01052-9
Melani, R. D. et al. Mapping proteoforms and protein complexes from king cobra venom using both denaturing and native top-down proteomics. Mol. Cell Proteom. 15, 2423–2434 (2016).
doi: 10.1074/mcp.M115.056523
Lermyte, F., Tsybin, Y. O., O’Connor, P. B. & Loo, J. A. Top or middle? Up or down? Toward a standard lexicon for protein top-down and allied mass spectrometry approaches. J. Am. Soc. Mass Spectrom. 30, 1149–1157 (2019).
pubmed: 31073892
pmcid: 6591204
doi: 10.1007/s13361-019-02201-x
Zhou, M. et al. Higher-order structural characterisation of native proteins and complexes by top-down mass spectrometry. Chem. Sci. 11, 12918–12936 (2020).
pubmed: 34094482
pmcid: 8163214
doi: 10.1039/D0SC04392C
VanAernum, Z. L. et al. Rapid online buffer exchange for screening of proteins, protein complexes and cell lysates by native mass spectrometry. Nat. Protoc. 15, 1132–1157 (2020).
pubmed: 32005983
pmcid: 7203678
doi: 10.1038/s41596-019-0281-0
McCabe, J. W. et al. Implementing digital-waveform technology for extended m/z range operation on a native dual-quadrupole FT-IM-orbitrap mass spectrometer. J. Am. Soc. Mass Spectrom. 32, 2812–2820 (2021).
pubmed: 34797072
pmcid: 9026758
doi: 10.1021/jasms.1c00245
LeDuc, R. D. et al. ProForma: a standard proteoform notation. J. Proteome Res 17, 1321–1325 (2018).
pubmed: 29397739
pmcid: 5837035
doi: 10.1021/acs.jproteome.7b00851
Schachner, L. F. et al. Standard proteoforms and their complexes for native mass spectrometry. J. Am. Soc. Mass Spectrom. 30, 1190–1198 (2019).
pubmed: 30963455
pmcid: 6592724
doi: 10.1007/s13361-019-02191-w
Smith, L. M. et al. A five-level classification system for proteoform identifications. Nat. Methods 16, 939–940 (2019).
pubmed: 31451767
pmcid: 6857706
doi: 10.1038/s41592-019-0573-x
Iacobucci, C. et al. First community-wide, comparative cross-linking mass spectrometry study. Anal. Chem. 91, 6953–6961 (2019).
pubmed: 31045356
pmcid: 6625963
doi: 10.1021/acs.analchem.9b00658
Masson, G. R. et al. Recommendations for performing, interpreting and reporting hydrogen deuterium exchange mass spectrometry (HDX-MS) experiments. Nat. Methods 16, 595–602 (2019).
pubmed: 31249422
pmcid: 6614034
doi: 10.1038/s41592-019-0459-y
Allison, T. M. et al. Software requirements for the analysis and interpretation of native ion mobility mass spectrometry data. Anal. Chem. 92, 10881–10890 (2020).
pubmed: 32649184
doi: 10.1021/acs.analchem.9b05792
Allison, T. M. et al. Computational strategies and challenges for using native ion mobility mass spectrometry in biophysics and structural biology. Anal. Chem. 92, 10872–10880 (2020).
pubmed: 32667808
doi: 10.1021/acs.analchem.9b05791
Gabelica, V. et al. Recommendations for reporting ion mobility mass spectrometry measurements. Mass Spectrom. Rev. 38, 291–320 (2019).
pubmed: 30707468
pmcid: 6618043
doi: 10.1002/mas.21585
Konijnenberg, A., Butterer, A. & Sobott, F. Native ion mobility-mass spectrometry and related methods in structural biology. Biochim. Biophys. Acta 1834, 1239–1256 (2013).
pubmed: 23246828
doi: 10.1016/j.bbapap.2012.11.013
Konermann, L., Ahadi, E., Rodriguez, A. D. & Vahidi, S. Unraveling the mechanism of electrospray ionization. Anal. Chem. 85, 2–9 (2013).
pubmed: 23134552
doi: 10.1021/ac302789c
Hall, Z., Politis, A., Bush, M. F., Smith, L. J. & Robinson, C. V. Charge-state dependent compaction and dissociation of protein complexes: insights from ion mobility and molecular dynamics. J. Am. Chem. Soc. 134, 3429–3438 (2012).
pubmed: 22280183
doi: 10.1021/ja2096859
Rolland, A. D., Biberic, L. S. & Prell, J. S. Investigation of charge-state-dependent compaction of protein ions with native ion mobility-mass spectrometry and theory. J. Am. Soc. Mass Spectrom. 33, 369–381 (2022).
pubmed: 35073092
doi: 10.1021/jasms.1c00351
Sobott, F., Hernandez, H., McCammon, M. G., Tito, M. A. & Robinson, C. V. A tandem mass spectrometer for improved transmission and analysis of large macromolecular assemblies. Anal. Chem. 74, 1402–1407 (2002).
pubmed: 11922310
doi: 10.1021/ac0110552
Sobott, F., McCammon, M. G., Hernandez, H. & Robinson, C. V. The flight of macromolecular complexes in a mass spectrometer. Philos. Trans. A Math. Phys. Eng. Sci. 363, 379–389 (2005).
pubmed: 15664889
Rose, R. J., Damoc, E., Denisov, E., Makarov, A. & Heck, A. J. High-sensitivity Orbitrap mass analysis of intact macromolecular assemblies. Nat. Methods 9, 1084–1086 (2012).
pubmed: 23064518
doi: 10.1038/nmeth.2208
van de Waterbeemd, M. et al. High-fidelity mass analysis unveils heterogeneity in intact ribosomal particles. Nat. Methods 14, 283–286 (2017).
pubmed: 28114288
doi: 10.1038/nmeth.4147
Fort, K. L. et al. Expanding the structural analysis capabilities on an Orbitrap-based mass spectrometer for large macromolecular complexes. Analyst 143, 100–105 (2017).
pubmed: 29138777
doi: 10.1039/C7AN01629H
McGee, J. P. et al. Voltage rollercoaster filtering of low-mass contaminants during native protein analysis. J. Am. Soc. Mass Spectrom. 31, 763–767 (2020).
pubmed: 32126774
pmcid: 7274025
doi: 10.1021/jasms.9b00037
Snijder, J., Rose, R. J., Veesler, D., Johnson, J. E. & Heck, A. J. Studying 18 MDa virus assemblies with native mass spectrometry. Angew. Chem. Int. Ed. Engl. 52, 4020–4023 (2013).
pubmed: 23450509
pmcid: 3949431
doi: 10.1002/anie.201210197
Behnke, J. S. & Urner, L. H. Emergence of mass spectrometry detergents for membrane proteomics. Anal. Bioanal. Chem. 415, 3897–3909 (2023).
pubmed: 36808272
pmcid: 10328889
doi: 10.1007/s00216-023-04584-z
Borysik, A. J., Hewitt, D. J. & Robinson, C. V. Detergent release prolongs the lifetime of native-like membrane protein conformations in the gas-phase. J. Am. Chem. Soc. 135, 6078–6083 (2013).
pubmed: 23521660
doi: 10.1021/ja401736v
Reading, E. et al. The role of the detergent micelle in preserving the structure of membrane proteins in the gas phase. Angew. Chem. Int. Ed. Engl. 54, 4577–4581 (2015).
pubmed: 25693501
doi: 10.1002/anie.201411622
Ives, A. N. et al. Using 10,000 fragment ions to inform scoring in native top-down proteomics. J. Am. Soc. Mass Spectrom. 31, 1398–1409 (2020).
pubmed: 32436704
pmcid: 7539637
doi: 10.1021/jasms.0c00026
Lantz, C. et al. Native top-down mass spectrometry with collisionally activated dissociation yields higher-order structure information for protein complexes. J. Am. Chem. Soc. 144, 21826–21830 (2022).
pubmed: 36441927
pmcid: 10017227
doi: 10.1021/jacs.2c06726
Paizs, B. & Suhai, S. Fragmentation pathways of protonated peptides. Mass Spectrom. Rev. 24, 508–548 (2005).
pubmed: 15389847
doi: 10.1002/mas.20024
Skinner, O. S. et al. Fragmentation of integral membrane proteins in the gas phase. Anal. Chem. 86, 4627–4634 (2014).
pubmed: 24689519
pmcid: 4018139
doi: 10.1021/ac500864w
Horn, D. M., Zubarev, R. A. & McLafferty, F. W. Automated reduction and interpretation of high resolution electrospray mass spectra of large molecules. J. Am. Soc. Mass Spectrom. 11, 320–332 (2000).
pubmed: 10757168
doi: 10.1016/S1044-0305(99)00157-9
Zamdborg, L. et al. ProSight PTM 2.0: improved protein identification and characterization for top down mass spectrometry. Nucleic Acids Res. 35, W701–W706 (2007).
pubmed: 17586823
pmcid: 1933126
doi: 10.1093/nar/gkm371
Mayampurath, A. M. et al. DeconMSn: a software tool for accurate parent ion monoisotopic mass determination for tandem mass spectra. Bioinformatics 24, 1021–1023 (2008).
pubmed: 18304935
doi: 10.1093/bioinformatics/btn063
Li, L. & Tian, Z. Interpreting raw biological mass spectra using isotopic mass-to-charge ratio and envelope fingerprinting. Rapid Commun. Mass Spectrom. 27, 1267–1277 (2013).
pubmed: 23650040
doi: 10.1002/rcm.6565
Liu, X. et al. Deconvolution and database search of complex tandem mass spectra of intact proteins: a combinatorial approach. Mol. Cell Proteom. 9, 2772–2782 (2010).
doi: 10.1074/mcp.M110.002766
Compton, P. D., Zamdborg, L., Thomas, P. M. & Kelleher, N. L. On the scalability and requirements of whole protein mass spectrometry. Anal. Chem. 83, 6868–6874 (2011).
pubmed: 21744800
pmcid: 3165072
doi: 10.1021/ac2010795
Guner, H. et al. MASH Suite: a user-friendly and versatile software interface for high-resolution mass spectrometry data interpretation and visualization. J. Am. Soc. Mass Spectrom. 25, 464–470 (2014).
pubmed: 24385400
pmcid: 3940544
doi: 10.1007/s13361-013-0789-4
Cai, W. et al. MASH Suite Pro: a comprehensive software tool for top-down proteomics. Mol. Cell Proteom. 15, 703–714 (2016).
doi: 10.1074/mcp.O115.054387
Wu, Z. et al. MASH Explorer: a universal software environment for top-down proteomics. J. Proteome Res 19, 3867–3876 (2020).
pubmed: 32786689
pmcid: 7728713
doi: 10.1021/acs.jproteome.0c00469
McIlwain, S. J. et al. Enhancing top-down proteomics data analysis by combining deconvolution results through a machine learning strategy. J. Am. Soc. Mass Spectrom. 31, 1104–1113 (2020).
pubmed: 32223200
pmcid: 7909725
doi: 10.1021/jasms.0c00035
Larson, E. J. et al. MASH Native: a unified solution for native top-down proteomics data processing. Bioinformatics 39, btad359 (2023).
pubmed: 37294807
pmcid: 10283151
doi: 10.1093/bioinformatics/btad359
Kafader, J. O. et al. Multiplexed mass spectrometry of individual ions improves measurement of proteoforms and their complexes. Nat. Methods 17, 391–394 (2020).
pubmed: 32123391
pmcid: 7131870
doi: 10.1038/s41592-020-0764-5
Kafader, J. O. et al. Individual ion mass spectrometry enhances the sensitivity and sequence coverage of top-down mass spectrometry. J. Proteome Res. 19, 1346–1350 (2020).
pubmed: 32032494
pmcid: 7060802
doi: 10.1021/acs.jproteome.9b00797
Worner, T. P. et al. Resolving heterogeneous macromolecular assemblies by Orbitrap-based single-particle charge detection mass spectrometry. Nat. Methods 17, 395–398 (2020).
pubmed: 32152501
doi: 10.1038/s41592-020-0770-7
McGee, J. P. et al. Isotopic resolution of protein complexes up to 466 kDa using individual ion mass spectrometry. Anal. Chem. 93, 2723–2727 (2021).
pubmed: 33322893
doi: 10.1021/acs.analchem.0c03282
Marty, M. T. et al. Bayesian deconvolution of mass and ion mobility spectra: from binary interactions to polydisperse ensembles. Anal. Chem. 87, 4370–4376 (2015).
pubmed: 25799115
pmcid: 4594776
doi: 10.1021/acs.analchem.5b00140
Reid, D. J. et al. MetaUniDec: high-throughput deconvolution of native mass spectra. J. Am. Soc. Mass Spectrom. 30, 118–127 (2019).
pubmed: 29667162
doi: 10.1007/s13361-018-1951-9
Marty, M. T. A universal score for deconvolution of intact protein and native electrospray mass spectra. Anal. Chem. 92, 4395–4401 (2020).
pubmed: 32069030
doi: 10.1021/acs.analchem.9b05272
Park, J. et al. Informed-proteomics: open-source software package for top-down proteomics. Nat. Methods 14, 909–914 (2017).
pubmed: 28783154
pmcid: 5578875
doi: 10.1038/nmeth.4388
Zhou, M., Pasa-Tolic, L. & Stenoien, D. L. Profiling of histone post-translational modifications in mouse brain with high-resolution top-down mass spectrometry. J. Proteome Res 16, 599–608 (2017).
pubmed: 28001079
doi: 10.1021/acs.jproteome.6b00694
Deutsch, E. W. et al. The ProteomeXchange consortium in 2020: enabling ‘big data’ approaches in proteomics. Nucleic Acids Res. 48, D1145–D1152 (2020).
pubmed: 31686107
Perez-Riverol, Y. et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 50, D543–D552 (2022).
pubmed: 34723319
doi: 10.1093/nar/gkab1038