Striatin knock out induces a gain of function of I
Striatin
arrhythmias
calcium
microtubules
sodium current
Journal
Acta physiologica (Oxford, England)
ISSN: 1748-1716
Titre abrégé: Acta Physiol (Oxf)
Pays: England
ID NLM: 101262545
Informations de publication
Date de publication:
15 May 2024
15 May 2024
Historique:
revised:
23
04
2024
received:
13
06
2023
accepted:
24
04
2024
medline:
15
5
2024
pubmed:
15
5
2024
entrez:
15
5
2024
Statut:
aheadofprint
Résumé
Striatin (Strn) is a scaffold protein expressed in cardiomyocytes (CMs) and alteration of its expression are described in various cardiac diseases. However, the alteration underlying its pathogenicity have been poorly investigated. We studied the role(s) of cardiac Strn gene (STRN) by comparing the functional properties of CMs, generated from Strn-KO and isogenic WT mouse embryonic stem cell lines. The spontaneous beating rate of Strn-KO CMs was faster than WT cells, and this correlated with a larger fast I Loss of STRN alters CMs electrical and contractile profiles and affects cell functionality by a disarrangement of Strn-related multi-protein complexes. This leads to impaired microtubules dynamics and Na
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e14160Subventions
Organisme : Department of Innovation, Research and University of the Autonomous Province of Bolzano, Italy, through a core funding initiative to the Eurac Institute for Biomedicine
Organisme : This work was also supported by the Universities of Milano and Milano Bicocca
Informations de copyright
© 2024 The Authors. Acta Physiologica published by John Wiley & Sons Ltd on behalf of Scandinavian Physiological Society.
Références
Castets F, Bartoli M, Barnier JV, et al. A novel calmodulin‐binding protein, belonging to the WD‐repeat family, is localized in dendrites of a subset of CNS neurons. J Cell Biol. 1996;134(4):1051‐1062.
Castets F, Rakitina T, Gaillard S, Moqrich A, Mattei MG, Monneron A. Zinedin, SG2NA, and striatin are calmodulin‐binding, WD repeat proteins principally expressed in the brain. J Biol Chem. 2000;275(26):19970‐19977.
Gaillard S, Bartoli M, Castets F, Monneron A. Striatin, a calmodulin‐dependent scaffolding protein, directly binds caveolin‐1. FEBS Lett. 2001;508(1):49‐52.
Meurs KM, Mauceli E, Lahmers S, Acland GM, White SN, Lindblad‐Toh K. Genome‐wide association identifies a deletion in the 3′ untranslated region of striatin in a canine model of arrhythmogenic right ventricular cardiomyopathy. Hum Genet. 2010;128(3):315‐324.
Meurs KM, Stern JA, Sisson DD, et al. Association of dilated cardiomyopathy with the striatin mutation genotype in boxer dogs. J Vet Intern Med. 2013;27(6):1437‐1440.
Sotoodehnia N, Isaacs A, De Bakker PIW, et al. Common variants in 22 loci are associated with QRS duration and cardiac ventricular conduction. Nat Genet. 2010;42(12):1068‐1076.
van der Harst P, van Setten J, Verweij N, et al. 52 genetic loci influencing myocardial mass. J Am Coll Cardiol. 2016;68(13):1435‐1448.
Fassina L, di Grazia A, Naro F, Monaco L, de Angelis MGC, Magenes G. Video evaluation of the kinematics and dynamics of the beating cardiac syncytium: an alternative to the Langendorff method. Int J Artif Organs. 2011;34(7):546‐558.
Huang J, Lin YC, Hileman S, Martin KH, Hull R, Yu HG. PP2 prevents isoproterenol stimulation of cardiac pacemaker activity. J Cardiovasc Pharmacol. 2015;65(2):193‐202.
Derangeon M, Montnach J, Bard I, Charpentier F. Mouse models of SCN5A‐related cardiac arrhythmias. Front Physiol. 2012;3:3. doi:10.3389/FPHYS.2012.00210
Rocchetti M, Sala L, Rizzetto R, et al. Ranolazine prevents INaL enhancement and blunts myocardial remodelling in a model of pulmonary hypertension. Cardiovasc Res. 2014;104(1):37‐48.
Casini S, Tan HL, Demirayak I, et al. Tubulin polymerization modifies cardiac sodium channel expression and gating. Cardiovasc Res. 2010;85(4):691‐700.
Kaźmierczak‐Barańska J, Pęczek Ł, Przygodzka P, Cies̈lak MJ. Downregulation of striatin leads to hyperphosphorylation of MAP2, induces depolymerization of microtubules and inhibits proliferation of HEK293T cells. FEBS Lett. 2015;589(2):222‐230.
Barbuti A, Crespi A, Capilupo D, Mazzocchi N, Baruscotti M, DiFrancesco D. Molecular composition and functional properties of f‐channels in murine embryonic stem cell‐derived pacemaker cells. J Mol Cell Cardiol. 2009;46(3):343‐351.
Scavone A, Capilupo D, Mazzocchi N, et al. Embryonic stem cell‐derived CD166+ precursors develop into fully functional sinoatrial‐like cells. Circ Res. 2013;113(4):389‐398.
Giannetti F, Benzoni P, Campostrini G, et al. A detailed characterization of the hyperpolarization‐activated ‘funny’ current (if) in human‐induced pluripotent stem cell (iPSC)‐derived cardiomyocytes with pacemaker activity. Pflugers Arch. 2021;473(7):1009‐1021.
Lei M, Jones SA, Liu J, et al. Requirement of neuronal‐ and cardiac‐type sodium channels for murine sinoatrial node pacemaking. J Physiol. 2004;559(Pt 3):835‐848.
Zaza A, Rocchetti M. The late Na+ current—origin and pathophysiological relevance. Cardiovasc Drugs Ther. 2013;27(1):61‐68.
Wagner S, Dybkova N, Rasenack ECL, et al. Ca2+/calmodulin‐dependent protein kinase II regulates cardiac Na+ channels. J Clin Invest. 2006;116(12):3127‐3138.
Hwang J, Pallas DC. STRIPAK complexes: structure, biological function, and involvement in human diseases. Int J Biochem Cell Biol. 2014;47(1):118‐148.
Guzzo RM, Salih M, Moore ED, Tuana BS. Molecular properties of cardiac tail‐anchored membrane protein SLMAP are consistent with structural role in arrangement of excitation‐contraction coupling apparatus. Am J Physiol Heart Circ Physiol. 2005;288(4):H1810‐H1819. doi:10.1152/AJPHEART.01015.2004
Nader M, Westendorp B, Hawari O, et al. Tail‐anchored membrane protein SLMAP is a novel regulator of cardiac function at the sarcoplasmic reticulum. Am J Physiol Heart Circ Physiol. 2012;302(5):H1138‐H1145. doi:10.1152/AJPHEART.00872.2011
Xu Z, Schaedel L, Portran D, et al. Microtubules acquire resistance from mechanical breakage through intralumenal acetylation. Science. 2017;356(6335):328‐332.
Salomon AK, Phyo SA, Okami N, et al. Desmin intermediate filaments and tubulin detyrosination stabilize growing microtubules in the cardiomyocyte. Basic Res Cardiol. 2022;117(1):53. doi:10.1007/S00395-022-00962-3
Motlagh D, Alden KJ, Russell B, García J. Sodium current modulation by a tubulin/GTP coupled process in rat neonatal cardiac myocytes. J Physiol. 2002;540(Pt 1):93‐103.
Asatryan B. Cardiac Sodium Channel dysfunction and dilated cardiomyopathy: a contemporary reappraisal of pathophysiological concepts. J Clin Med. 2019;8(7):1029. doi:10.3390/JCM8071029
Elling U, Wimmer RA, Leibbrandt A, et al. A reversible haploid mouse embryonic stem cell biobank resource for functional genomics. Nature. 2017;550(7674):114‐118.
Elling C, Erben P, Walz C, et al. Novel imatinib‐sensitive PDGFRA‐activating point mutations in hypereosinophilic syndrome induce growth factor independence and leukemia‐like disease. Blood. 2011;117(10):2935‐2943.
Benzoni P, Nava L, Giannetti F, et al. Dual role of miR‐1 in the development and function of sinoatrial cells. J Mol Cell Cardiol. 2021;157:104‐112.
Andersen CL, Jensen JL, Ørntoft TF. Normalization of real‐time quantitative reverse transcription‐PCR data: a model‐based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004;64(15):5245‐5250.
Saito Y, Nakamura K, Yoshida M, et al. Enhancement of spontaneous activity by HCN4 overexpression in mouse embryonic stem cell‐derived cardiomyocytes ‐ a possible biological pacemaker. PLoS One. 2015;10(9):e0138193. doi:10.1371/JOURNAL.PONE.0138193
Rocchetti M, Sala L, Dreizehnter L, et al. Elucidating arrhythmogenic mechanisms of long‐QT syndrome CALM1‐F142L mutation in patient‐specific induced pluripotent stem cell‐derived cardiomyocytes. Cardiovasc Res. 2017;113(5):531‐541.
Heijman J, Zaza A, Johnson DM, et al. Determinants of beat‐to‐beat variability of repolarization duration in the canine ventricular myocyte: a computational analysis. PLoS Comput Biol. 2013;9(8):e1003202. doi:10.1371/JOURNAL.PCBI.1003202
Altomare C, Bartolucci C, Sala L, et al. IKr impact on repolarization and its variability assessed by dynamic clamp. Circ Arrhythm Electrophysiol. 2015;8(5):1265‐1275.
Jost N, Nagy N, Corici C, et al. ORM‐10103, a novel specific inhibitor of the Na+/Ca2+ exchanger, decreases early and delayed afterdepolarizations in the canine heart. Br J Pharmacol. 2013;170(4):768‐778.
Bolte S, Cordelières FP. A guided tour into subcellular colocalization analysis in light microscopy. J Microsc. 2006;224(Pt 3):213‐232.
Boulting GL, Kiskinis E, Croft GF, et al. A functionally characterized test set of human induced pluripotent stem cells. Nat Biotechnol. 2011;29(3):279‐287.
Jonsson MKB, Wang QD, Becker B. Impedance‐based detection of beating rhythm and proarrhythmic effects of compounds on stem cell‐derived cardiomyocytes. Assay Drug Dev Technol. 2011;9(6):589‐599.
Shen N, Knopf A, Westendorf C, et al. Steps toward maturation of embryonic stem cell‐derived cardiomyocytes by defined physical signals. Stem Cell Reports. 2017;9:122‐135. doi:10.1016/j.stemcr.2017.04.021