Microbiota-derived 3-phenylpropionic acid promotes myotube hypertrophy by Foxo3/NAD

3-Phenylpropionic acid Acetylation Gut microbiota metabolites Muscle hypertrophy NAD+

Journal

Cell & bioscience
ISSN: 2045-3701
Titre abrégé: Cell Biosci
Pays: England
ID NLM: 101561195

Informations de publication

Date de publication:
15 May 2024
Historique:
received: 09 02 2024
accepted: 03 05 2024
medline: 16 5 2024
pubmed: 16 5 2024
entrez: 15 5 2024
Statut: epublish

Résumé

Gut microbiota and their metabolites play a regulatory role in skeletal muscle growth and development, which be known as gut-muscle axis. 3-phenylpropionic acid (3-PPA), a metabolite produced by colonic microorganisms from phenylalanine in the gut, presents in large quantities in the blood circulation. But few study revealed its function in skeletal muscle development. Here, we demonstrated the beneficial effects of 3-PPA on muscle mass increase and myotubes hypertrophy both in vivo and vitro. Further, we discovered the 3-PPA effectively inhibited protein degradation and promoted protein acetylation in C2C12 and chick embryo primary skeletal muscle myotubes. Mechanistically, we supported that 3-PPA reduced NAD This study firstly revealed the effect of 3-PPA on skeletal muscle growth and development, and newly discovered the interaction between 3-PPA and Foxo3/NAD

Sections du résumé

BACKGROUND BACKGROUND
Gut microbiota and their metabolites play a regulatory role in skeletal muscle growth and development, which be known as gut-muscle axis. 3-phenylpropionic acid (3-PPA), a metabolite produced by colonic microorganisms from phenylalanine in the gut, presents in large quantities in the blood circulation. But few study revealed its function in skeletal muscle development.
RESULTS RESULTS
Here, we demonstrated the beneficial effects of 3-PPA on muscle mass increase and myotubes hypertrophy both in vivo and vitro. Further, we discovered the 3-PPA effectively inhibited protein degradation and promoted protein acetylation in C2C12 and chick embryo primary skeletal muscle myotubes. Mechanistically, we supported that 3-PPA reduced NAD
CONCLUSIONS CONCLUSIONS
This study firstly revealed the effect of 3-PPA on skeletal muscle growth and development, and newly discovered the interaction between 3-PPA and Foxo3/NAD

Identifiants

pubmed: 38750565
doi: 10.1186/s13578-024-01244-2
pii: 10.1186/s13578-024-01244-2
doi:

Types de publication

Journal Article

Langues

eng

Pagination

62

Informations de copyright

© 2024. The Author(s).

Références

Baskin KK, Winders BR, Olson EN. Muscle as a “mediator” of systemic metabolism. Cell Metab. 2015;21(2):237–48.
pubmed: 25651178 pmcid: 4398026 doi: 10.1016/j.cmet.2014.12.021
Li P, Feng J, Jiang H, Feng X, Yang J, Yuan Y, et al. Microbiota derived d-malate inhibits skeletal muscle growth and angiogenesis during aging via acetylation of cyclin a. EMBO Rep. 2024;25(2):524–43.
pubmed: 38253688 pmcid: 10897302 doi: 10.1038/s44319-023-00028-y
Kang SH, Lee HA, Kim M, Lee E, Sohn UD, Kim I. Forkhead box O3 plays a role in skeletal muscle atrophy through expression of E3 ubiquitin ligases MuRF-1 and atrogin-1 in cushing’s syndrome. Am J Physiol Endocrinol Metab. 2017;312(6):E495-e507.
pubmed: 28246104 doi: 10.1152/ajpendo.00389.2016
Gellhaus B, Böker KO, Gsaenger M, Rodenwaldt E, Hüser MA, Schilling AF, et al. Foxo3 knockdown mediates decline of myod1 and myog reducing myoblast conversion to myotubes. Cells. 2023. https://doi.org/10.3390/cells12172167 .
doi: 10.3390/cells12172167 pubmed: 38132107 pmcid: 10741475
Soulez M, Tanguay PL, Dô F, Dort J, Crist C, Kotlyarov A, et al. ERK3-MK5 signaling regulates myogenic differentiation and muscle regeneration by promoting FoxO3 degradation. J Cell Physiol. 2022;237(4):2271–87.
pubmed: 35141958 doi: 10.1002/jcp.30695
Raffaello A, Milan G, Masiero E, Carnio S, Lee D, Lanfranchi G, et al. JunB transcription factor maintains skeletal muscle mass and promotes hypertrophy. J Cell Biol. 2010;191(1):101–13.
pubmed: 20921137 pmcid: 2953439 doi: 10.1083/jcb.201001136
Seok YM, Yoo JM, Nam Y, Kim J, Kim JS, Son JH, et al. Mountain ginseng inhibits skeletal muscle atrophy by decreasing muscle RING finger protein-1 and atrogin1 through forkhead box O3 in L6 myotubes. J Ethnopharmacol. 2021;270: 113557.
pubmed: 33161026 doi: 10.1016/j.jep.2020.113557
Jing Y, Zuo Y, Sun L, Yu ZR, Ma S, Hu H, et al. SESN1 is a FOXO3 effector that counteracts human skeletal muscle ageing. Cell Prolif. 2023;56(5): e13455.
pubmed: 37199024 pmcid: 10212707 doi: 10.1111/cpr.13455
Yin J, Yang L, Xie Y, Liu Y, Li S, Yang W, et al. Dkk3 dependent transcriptional regulation controls age related skeletal muscle atrophy. Nat Commun. 2018;9(1):1752.
pubmed: 29717119 pmcid: 5931527 doi: 10.1038/s41467-018-04038-6
Wang LF, Huang CC, Xiao YF, Guan XH, Wang XN, Cao Q, et al. CD38 deficiency protects heart from high fat diet-induced oxidative stress via activating Sirt3/FOXO3 pathway. Cell Physiol Biochem. 2018;48(6):2350–63.
pubmed: 30114710 doi: 10.1159/000492651
Pauline R, Carolina LB, Valentina dE, Brigitte I, David S, Saghi G. SIRT1 deacetylase is essential for hematopoietic stem cell activity via regulation of foxo3. Blood. 2012;120(21):2315.
doi: 10.1182/blood.V120.21.2315.2315
Giron M, Thomas M, Dardevet D, Chassard C, Savary-Auzeloux I. Gut microbes and muscle function: can probiotics make our muscles stronger? J Cachexia Sarcopenia Muscle. 2022;13(3):1460–76.
pubmed: 35278043 pmcid: 9178375 doi: 10.1002/jcsm.12964
Lahiri S, Kim H, Garcia-Perez I, Reza MM, Martin KA, Kundu P, et al. The gut microbiota influences skeletal muscle mass and function in mice. Sci Transl Med. 2019. https://doi.org/10.1126/scitranslmed.aan5662 .
doi: 10.1126/scitranslmed.aan5662 pubmed: 31341063 pmcid: 7501733
Grosicki GJ, Fielding RA, Lustgarten MS. Gut microbiota contribute to age-related changes in skeletal muscle size, composition, and function: biological basis for a gut-muscle axis. Calcif Tissue Int. 2018;102(4):433–42.
pubmed: 29058056 doi: 10.1007/s00223-017-0345-5
Lefevre C, Bindels LB. Role of the gut microbiome in skeletal muscle physiology and pathophysiology. Curr Osteoporos Rep. 2022;20(6):422–32.
pubmed: 36121571 doi: 10.1007/s11914-022-00752-9
Frampton J, Murphy KG, Frost G, Chambers ES. Short-chain fatty acids as potential regulators of skeletal muscle metabolism and function. Nat Metab. 2020;2(9):840–8.
pubmed: 32694821 doi: 10.1038/s42255-020-0188-7
Liu Y, Hou Y, Wang G, Zheng X, Hao H. Gut microbial metabolites of aromatic amino acids as signals in host-microbe interplay. Trend Endocrinol Metab. 2020;31(11):818–34.
doi: 10.1016/j.tem.2020.02.012
Du L, Qi R, Wang J, Liu Z, Wu Z. Indole-3-propionic acid, a functional metabolite of clostridium sporogenes, promotes muscle tissue development and reduces muscle cell inflammation. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms222212435 .
doi: 10.3390/ijms222212435 pubmed: 35008859 pmcid: 8745762
Agudelo LZ, Ferreira DMS, Dadvar S, Cervenka I, Ketscher L, Izadi M, et al. Skeletal muscle PGC-1α1 reroutes kynurenine metabolism to increase energy efficiency and fatigue-resistance. Nat Commun. 2019;10(1):2767.
pubmed: 31235694 pmcid: 6591322 doi: 10.1038/s41467-019-10712-0
Jang C, Hui S, Zeng X, Cowan AJ, Wang L, Chen L, et al. Metabolite exchange between mammalian organs quantified in pigs. Cell Metab. 2019;30(3):594-606.e3.
pubmed: 31257152 pmcid: 6726553 doi: 10.1016/j.cmet.2019.06.002
Kuranov SO, Luzina OA, Onopchenko O, Pishel I, Zozulya S, Gureev M, et al. Exploring bulky natural and natural-like periphery in the design of p-(benzyloxy)phenylpropionic acid agonists of free fatty acid receptor 1 (GPR40). Bioorganic Chem. 2020. https://doi.org/10.1016/j.bioorg.2020.103830 .
doi: 10.1016/j.bioorg.2020.103830
Li Z, Liu C, Xu X, Shi W, Li H, Dai Y, et al. Design, synthesis, and biological evaluation of deuterated phenylpropionic acid derivatives as potent and long-acting free fatty acid receptor 1 agonists. Bioorg Chem. 2018;76:303–13.
pubmed: 29223807 doi: 10.1016/j.bioorg.2017.12.012
Palanikumar L, Karpauskaite L, Al-Sayegh M, Chehade I, Alam M, Hassan S, et al. Protein mimetic amyloid inhibitor potently abrogates cancer-associated mutant p53 aggregation and restores tumor suppressor function. Nat Commun. 2021;12(1):3962.
pubmed: 34172723 pmcid: 8233319 doi: 10.1038/s41467-021-23985-1
Sartori R, Romanello V, Sandri M. Mechanisms of muscle atrophy and hypertrophy: implications in health and disease. Nat Commun. 2021;12(1):330.
pubmed: 33436614 pmcid: 7803748 doi: 10.1038/s41467-020-20123-1
Choi S, Jeong HJ, Kim H, Choi D, Cho SC, Seong JK, et al. Skeletal muscle-specific Prmt1 deletion causes muscle atrophy via deregulation of the PRMT6-FOXO3 axis. Autophagy. 2019;15(6):1069–81.
pubmed: 30653406 pmcid: 6526864 doi: 10.1080/15548627.2019.1569931
Eijkelenboom A, Burgering BM. FOXOs: signalling integrators for homeostasis maintenance. Nat Rev Mol Cell Biol. 2013;14(2):83–97.
pubmed: 23325358 doi: 10.1038/nrm3507
Winbanks CE, Weeks KL, Thomson RE, Sepulveda PV, Beyer C, Qian H, et al. Follistatin-mediated skeletal muscle hypertrophy is regulated by Smad3 and mTOR independently of myostatin. J Cell Biol. 2012;197(7):997–1008.
pubmed: 22711699 pmcid: 3384410 doi: 10.1083/jcb.201109091
Hwang SY, Sung B, Kim ND. Roles of folate in skeletal muscle cell development and functions. Arch Pharmacal Res. 2019;42(4):319–25.
doi: 10.1007/s12272-018-1100-9
Zammit PS. Function of the myogenic regulatory factors Myf5, MyoD, Myogenin and MRF4 in skeletal muscle, satellite cells and regenerative myogenesis. Semin Cell Dev Biol. 2017;72:19–32.
pubmed: 29127046 doi: 10.1016/j.semcdb.2017.11.011
Kovanda A, Režen T, Rogelj B. MicroRNA in skeletal muscle development, growth, atrophy, and disease. Wiley Interdiscip Rev RNA. 2014;5(4):509–25.
pubmed: 24838768 doi: 10.1002/wrna.1227
Walsh ME, Bhattacharya A, Sataranatarajan K, Qaisar R, Sloane L, Rahman MM, et al. The histone deacetylase inhibitor butyrate improves metabolism and reduces muscle atrophy during aging. Aging Cell. 2015;14(6):957–70.
pubmed: 26290460 pmcid: 4693467 doi: 10.1111/acel.12387
Russell WR, Duncan SH, Scobbie L, Duncan G, Cantlay L, Calder AG, et al. Major phenylpropanoid-derived metabolites in the human gut can arise from microbial fermentation of protein. Mol Nutr Food Res. 2013;57(3):523–35.
pubmed: 23349065 doi: 10.1002/mnfr.201200594
Amaresh CP, Kotb A, Je-Hyun Y, Jennifer LM, Xiaoling Y, Jessica C, et al. RNA-binding protein AUF1 promotes myogenesis by regulating MEF2C expression levels. Mol Cell Biol. 2014;34(16):3106–19.
doi: 10.1128/MCB.00423-14
Yaping N, Hu C, Cilin G, Zhuning Y, Xingyu Z, Xumeng Z, et al. Palmdelphin promotes myoblast differentiation and muscle regeneration. Sci Rep. 2017;7(1):41608.
doi: 10.1038/srep41608
Bo L, Nan L, Yuling J, Chao L, Le M, Cong W, et al. Effects of excessive retinoic acid on C2C12 myogenesis. J Hard Tissue Biol. 2016;25(2):97–103.
doi: 10.2485/jhtb.25.97
Sun Young P, Georgia K, Hugo RR, Hong S. Effects of energy drinks on myogenic differentiation of murine C2C12 myoblasts. Sci Rep. 2023;13(1):8481.
doi: 10.1038/s41598-023-35338-7
Woodall BP, Woodall MC, Luongo TS, Grisanti LA, Tilley DG, Elrod JW, et al. Skeletal muscle-specific G protein-coupled receptor kinase 2 ablation alters isolated skeletal muscle mechanics and enhances clenbuterol-stimulated hypertrophy. J Biol Chem. 2016;291(42):21913–24.
pubmed: 27566547 pmcid: 5063976 doi: 10.1074/jbc.M116.721282
Attwaters M, Hughes SM. Cellular and molecular pathways controlling muscle size in response to exercise. FEBS J. 2022;289(6):1428–56.
pubmed: 33755332 doi: 10.1111/febs.15820
Wahlström A, Sayin SI, Marschall HU, Bäckhed F. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab. 2016;24(1):41–50.
pubmed: 27320064 doi: 10.1016/j.cmet.2016.05.005
Pan JH, Kim JH, Kim HM, Lee ES, Shin DH, Kim S, et al. Acetic acid enhances endurance capacity of exercise-trained mice by increasing skeletal muscle oxidative properties. Biosci Biotechnol Biochem. 2015;79(9):1535–41.
pubmed: 26000971 doi: 10.1080/09168451.2015.1034652
Nishida Y, Nawaz A, Kado T, Takikawa A, Igarashi Y, Onogi Y, et al. Astaxanthin stimulates mitochondrial biogenesis in insulin resistant muscle via activation of AMPK pathway. J Cachexia Sarcopenia Muscle. 2020;11(1):241–58.
pubmed: 32003547 pmcid: 7015247 doi: 10.1002/jcsm.12530
Lv H, Lv G, Chen C, Zong Q, Jiang G, Ye D, et al. NAD(+) metabolism maintains inducible PD-L1 expression to drive tumor immune evasion. Cell Metab. 2021;33(1):110-27.e5.
pubmed: 33171124 doi: 10.1016/j.cmet.2020.10.021
Yao H, Liu M, Wang L, Zu Y, Wu C, Li C, et al. Discovery of small-molecule activators of nicotinamide phosphoribosyltransferase (NAMPT) and their preclinical neuroprotective activity. Cell Res. 2022;32(6):570–84.
pubmed: 35459935 pmcid: 9160276 doi: 10.1038/s41422-022-00651-9
Basse AL, Agerholm M, Farup J, Dalbram E, Nielsen J, Ørtenblad N, et al. Nampt controls skeletal muscle development by maintaining Ca(2+) homeostasis and mitochondrial integrity. Mol metab. 2021;53: 101271.
pubmed: 34119711 pmcid: 8259345 doi: 10.1016/j.molmet.2021.101271
Dollerup OL, Chubanava S, Agerholm M, Søndergård SD, Altıntaş A, Møller AB, et al. Nicotinamide riboside does not alter mitochondrial respiration, content or morphology in skeletal muscle from obese and insulin-resistant men. J Physiol. 2020;598(4):731–54.
pubmed: 31710095 doi: 10.1113/JP278752
Alamdari N, Aversa Z, Castillero E, Hasselgren PO. Acetylation and deacetylation–novel factors in muscle wasting. Metabolism. 2013;62(1):1–11.
pubmed: 22626763 doi: 10.1016/j.metabol.2012.03.019
Zhang N, Zhang Y, Wu B, Wu S, You S, Lu S, et al. Deacetylation-dependent regulation of PARP1 by SIRT2 dictates ubiquitination of PARP1 in oxidative stress-induced vascular injury. Redox Biol. 2021;47: 102141.
pubmed: 34555594 pmcid: 8461381 doi: 10.1016/j.redox.2021.102141
Caron C, Boyault C, Khochbin S. Regulatory cross-talk between lysine acetylation and ubiquitination: role in the control of protein stability. BioEssays. 2005;27(4):408–15.
pubmed: 15770681 doi: 10.1002/bies.20210
Bai B, Zhang Q, Wan C, Li D, Zhang T, Li H. CBP/p300 inhibitor C646 prevents high glucose exposure induced neuroepithelial cell proliferation. Birth Defect Res. 2018;110(14):1118–28.
doi: 10.1002/bdr2.1360
Moresi V, Marroncelli N, Coletti D, Adamo S. Regulation of skeletal muscle development and homeostasis by gene imprinting, histone acetylation and microRNA. Biochem Biophys Acta. 2015;1849(3):309–16.
pubmed: 25598319
Sincennes MC, Brun CE, Lin AYT, Rosembert T, Datzkiw D, Saber J, et al. Acetylation of PAX7 controls muscle stem cell self-renewal and differentiation potential in mice. Nat Commun. 2021;12(1):3253.
pubmed: 34059674 pmcid: 8167170 doi: 10.1038/s41467-021-23577-z
Milan G, Romanello V, Pescatore F, Armani A, Paik JH, Frasson L, et al. Regulation of autophagy and the ubiquitin-proteasome system by the FoxO transcriptional network during muscle atrophy. Nat Commun. 2015;6:6670.
pubmed: 25858807 doi: 10.1038/ncomms7670
Tao R, Wei D, Gao H, Liu Y, DePinho RA, Dong XC. Hepatic FoxOs regulate lipid metabolism via modulation of expression of the nicotinamide phosphoribosyltransferase gene. J Biol Chem. 2011;286(16):14681–90.
pubmed: 21388966 pmcid: 3077665 doi: 10.1074/jbc.M110.201061
Wang B, Hasan MK, Alvarado E, Yuan H, Wu H, Chen WY. NAMPT overexpression in prostate cancer and its contribution to tumor cell survival and stress response. Oncogene. 2011;30(8):907–21.
pubmed: 20956937 doi: 10.1038/onc.2010.468
Yao J, Wang J, Xu Y, Guo Q, Sun Y, Liu J, et al. CDK9 inhibition blocks the initiation of PINK1-PRKN-mediated mitophagy by regulating the SIRT1-FOXO3-BNIP3 axis and enhances the therapeutic effects involving mitochondrial dysfunction in hepatocellular carcinoma. Autophagy. 2022;18(8):1879–97.
pubmed: 34890308 doi: 10.1080/15548627.2021.2007027
Tang G, Du Y, Guan H, Jia J, Zhu N, Shi Y, et al. Butyrate ameliorates skeletal muscle atrophy in diabetic nephropathy by enhancing gut barrier function and FFA2-mediated PI3K/Akt/mTOR signals. Br J Pharmacol. 2022;179(1):159–78.
pubmed: 34638162 doi: 10.1111/bph.15693

Auteurs

Penglin Li (P)

State Key Laboratory of Swine and Poultry Breeding Industry, Tianhe District, 483 Wushan Road, Guangzhou, 510642, Guangdong, China.

Xiaohua Feng (X)

State Key Laboratory of Swine and Poultry Breeding Industry, Tianhe District, 483 Wushan Road, Guangzhou, 510642, Guangdong, China.

Zewei Ma (Z)

State Key Laboratory of Swine and Poultry Breeding Industry, Tianhe District, 483 Wushan Road, Guangzhou, 510642, Guangdong, China.

Yexian Yuan (Y)

State Key Laboratory of Swine and Poultry Breeding Industry, Tianhe District, 483 Wushan Road, Guangzhou, 510642, Guangdong, China.

Hongfeng Jiang (H)

State Key Laboratory of Swine and Poultry Breeding Industry, Tianhe District, 483 Wushan Road, Guangzhou, 510642, Guangdong, China.

Guli Xu (G)

State Key Laboratory of Swine and Poultry Breeding Industry, Tianhe District, 483 Wushan Road, Guangzhou, 510642, Guangdong, China.

Yunlong Zhu (Y)

State Key Laboratory of Swine and Poultry Breeding Industry, Tianhe District, 483 Wushan Road, Guangzhou, 510642, Guangdong, China.

Xue Yang (X)

State Key Laboratory of Swine and Poultry Breeding Industry, Tianhe District, 483 Wushan Road, Guangzhou, 510642, Guangdong, China.

Yujun Wang (Y)

State Key Laboratory of Swine and Poultry Breeding Industry, Tianhe District, 483 Wushan Road, Guangzhou, 510642, Guangdong, China.

Canjun Zhu (C)

State Key Laboratory of Swine and Poultry Breeding Industry, Tianhe District, 483 Wushan Road, Guangzhou, 510642, Guangdong, China.

Songbo Wang (S)

State Key Laboratory of Swine and Poultry Breeding Industry, Tianhe District, 483 Wushan Road, Guangzhou, 510642, Guangdong, China.

Ping Gao (P)

State Key Laboratory of Swine and Poultry Breeding Industry, Tianhe District, 483 Wushan Road, Guangzhou, 510642, Guangdong, China.

Qingyan Jiang (Q)

State Key Laboratory of Swine and Poultry Breeding Industry, Tianhe District, 483 Wushan Road, Guangzhou, 510642, Guangdong, China. qyjiang@scau.edu.cn.
National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Tianhe District, 483 Wushan Road, Guangzhou, 510642, Guangdong, China. qyjiang@scau.edu.cn.
Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Tianhe District, 483 Wushan Road, Guangzhou, 510642, Guangdong, China. qyjiang@scau.edu.cn.

Gang Shu (G)

State Key Laboratory of Swine and Poultry Breeding Industry, Tianhe District, 483 Wushan Road, Guangzhou, 510642, Guangdong, China. shugang@scau.edu.cn.
Guangdong Laboratory for Lingnan Modern Agricultural and Guangdong Province, Tianhe District, 483 Wushan Road, Guangzhou, 510642, Guangdong, China. shugang@scau.edu.cn.
Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Tianhe District, 483 Wushan Road, Guangzhou, 510642, Guangdong, China. shugang@scau.edu.cn.

Classifications MeSH