The balancing act between high electronic and low ionic transport influenced by perovskite grain boundaries.


Journal

Journal of materials chemistry. A
ISSN: 2050-7488
Titre abrégé: J Mater Chem A Mater
Pays: England
ID NLM: 101596773

Informations de publication

Date de publication:
14 May 2024
Historique:
received: 27 07 2023
accepted: 16 03 2024
medline: 16 5 2024
pubmed: 16 5 2024
entrez: 16 5 2024
Statut: epublish

Résumé

A better understanding of the materials' fundamental physical processes is necessary to push hybrid perovskite photovoltaic devices towards their theoretical limits. The role of the perovskite grain boundaries is essential to optimise the system thoroughly. The influence of the perovskite grain size and crystal orientation on physical properties and their resulting photovoltaic performance is examined. We develop a novel, straightforward synthesis approach that yields crystals of a similar size but allows the tuning of their orientation to either the (200) or (002) facet alignment parallel to the substrate by manipulating dimethyl sulfoxide (DMSO) and tetrahydrothiophene-1-oxide (THTO) ratios. This decouples crystal orientation from grain size, allowing the study of charge carrier mobility, found to be improved with larger grain sizes, highlighting the importance of minimising crystal disorder to achieve efficient devices. However, devices incorporating crystals with the (200) facet exhibit an s-shape in the current density-voltage curve when standard scan rates are used, which typically signals an energetic interfacial barrier. Using the drift-diffusion simulations, we attribute this to slower-moving ions (mobility of 0.37 × 10

Identifiants

pubmed: 38751728
doi: 10.1039/d3ta04458k
pii: d3ta04458k
pmc: PMC11093097
doi:

Types de publication

Journal Article

Langues

eng

Pagination

11635-11643

Informations de copyright

This journal is © The Royal Society of Chemistry.

Déclaration de conflit d'intérêts

There are no conflicts to declare.

Auteurs

Nadja Glück (N)

Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU) Butenandtstr. 5-13 81377 München Germany.
Department of Chemical Engineering, Monash University Clayton Victoria 3800 Australia.

Nathan S Hill (NS)

School of Mathematics, Statistics and Physics, Newcastle University Herschel Building Newcastle upon Tyne NE1 7RU UK.

Marcin Giza (M)

School of Chemistry, University of Glasgow, University Pl Glasgow G12 8QQ UK Pablo.docampo@glasgow.ac.uk.

Eline Hutter (E)

Optoelectronic Materials Section, Department of Chemical Engineering, Delft University of Technology Julianalaan 136 2628 BL Delft The Netherlands.

Irene Grill (I)

Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU) Butenandtstr. 5-13 81377 München Germany.

Johannes Schlipf (J)

Lehrstuhl für Funktionelle Materialien, Physik-Department, Technische Universität München James-Franck-Str. 1 85748 Garching Germany.

Udo Bach (U)

Department of Chemical Engineering, Monash University Clayton Victoria 3800 Australia.

Peter Müller-Buschbaum (P)

Lehrstuhl für Funktionelle Materialien, Physik-Department, Technische Universität München James-Franck-Str. 1 85748 Garching Germany.
Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München Lichtenbergstr. 1 85748 Garching Germany.

Achim Hartschuh (A)

Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU) Butenandtstr. 5-13 81377 München Germany.

Thomas Bein (T)

Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU) Butenandtstr. 5-13 81377 München Germany.

Tom Savenije (T)

Optoelectronic Materials Section, Department of Chemical Engineering, Delft University of Technology Julianalaan 136 2628 BL Delft The Netherlands.

Pablo Docampo (P)

School of Chemistry, University of Glasgow, University Pl Glasgow G12 8QQ UK Pablo.docampo@glasgow.ac.uk.

Classifications MeSH