Salt tolerance in mungbean is associated with controlling Na and Cl transport across roots, regulating Na and Cl accumulation in chloroplasts and maintaining high K in root and leaf mesophyll cells.

cellular distribution chloride cryo‐SEM X‐ray microanalysis endodermis mungbean salinity tolerance sodium suberin lamellae

Journal

Plant, cell & environment
ISSN: 1365-3040
Titre abrégé: Plant Cell Environ
Pays: United States
ID NLM: 9309004

Informations de publication

Date de publication:
16 May 2024
Historique:
revised: 28 03 2024
received: 02 12 2023
accepted: 30 04 2024
medline: 17 5 2024
pubmed: 17 5 2024
entrez: 17 5 2024
Statut: aheadofprint

Résumé

Salinity tolerance requires coordinated responses encompassing salt exclusion in roots and tissue/cellular compartmentation of salt in leaves. We investigated the possible control points for salt ions transport in roots and tissue tolerance to Na

Identifiants

pubmed: 38757412
doi: 10.1111/pce.14943
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Australian Centre for International Agricultural Research (ACIAR) Project
ID : CIM-2014-076
Organisme : John Allwright Fellowship Award (ACIAR)

Informations de copyright

© 2024 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.

Références

Abbaspour, N., Kaiser, B. & Tyerman, S. (2014) Root apoplastic transport and water relations cannot account for differences in Cl− transport and Cl−/NO3− interactions of two grapevine rootstocks differing in salt tolerance. Acta Physiologiae Plantarum, 36, 687–698.
Alharby, H.F., Al‐Zahrani, H.S., Hakeem, K.R. & Iqbal, M. (2019) Identification of physiological and biochemical markers for salt (NaCl) stress in the seedlings of mungbean [Vigna radiata (L.) Wilczek] genotypes. Saudi Journal of Biological Sciences, 26, 1053–1060.
Anderson, C.A. & Van Steveninck, R.F.M. (1987) Accumulation and sub‐cellular distribution of Na+, Cl− and K+ ions in lucerne populations differing in salt tolerance. Australian Salinity Newsletter, 15, 74–75.
Barberon, M. & Geldner, N. (2014) Radial transport of nutrients: the plant root as a polarized epithelium. Plant Physiology, 166, 528–537.
Barberon, M., Vermeer, J.E.M., De Bellis, D., Wang, P., Naseer, S., Andersen, T.G. et al. (2016) Adaptation of root function by nutrient‐induced plasticity of endodermal differentiation. Cell, 164, 447–459.
Bose, J., Munns, R., Shabala, S., Gilliham, M., Pogson, B. & Tyerman, S.D. (2017) Chloroplast function and ion regulation in plants growing on saline soils: lessons from halophytes. Journal of Experimental Botany, 68, 3129–3143.
Bramley, H., Turner, N.C., Turner, D.W. & Tyerman, S.D. (2009) Roles of morphology, anatomy, and aquaporins in determining contrasting hydraulic behavior of roots. Plant Physiology, 150, 348–364.
Breria, C.M., Hsieh, C.H., Yen, T.B., Yen, J.Y., Noble, T.J. & Schafleitner, R. (2020) A SNP‐based genome‐wide association study to mine genetic loci associated to salinity tolerance in mungbean (Vigna radiata L.). Genes, 11, 759.
Brundrett, M.C., Kendrick, B. & Peterson, C.A. (1991) Efficient lipid staining in plant material with sudan red 7B or fluorol [correction of fluoral] yellow 088 in polyethylene glycol‐glycerol. Biotechnic & Histochemistry: Official Publication of the Biological Stain Commission, 66, 111–116.
Chauhan, Y. & Williams, R. (2018) Physiological and agronomic strategies to increase mungbean yield in climatically variable environments of northern Australia. Agronomy, 8, 83.
Chaves, M.M., Flexas, J. & Pinheiro, C. (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany, 103, 551–560.
Clarkson, D.T. (1993) Roots and the delivery of solutes to the xylem. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 341, 5–17.
Cui, B., Liu, R., Flowers, T.J. & Song, J. (2021) Casparian bands and suberin lamellae: key targets for breeding salt tolerant crops? Environmental and Experimental Botany, 191, 104600.
Enstone, D.E., Peterson, C.A. & Ma, F. (2002) Root endodermis and exodermis: structure, function, and responses to the environment. Journal of Plant Growth Regulation, 21, 335–351.
Flowers, T.J. & Colmer, T.D. (2015) Plant salt tolerance: adaptations in halophytes. Annals of Botany, 115, 327–331.
Franco‐Navarro, J.D., Brumós, J., Rosales, M.A., Cubero‐Font, P., Talón, M. & Colmenero‐Flores, J.M. (2016) Chloride regulates leaf cell size and water relations in tobacco plants. Journal of Experimental Botany, 67, 873–891.
Fricke, W., Leigh, R.A. & Tomos, A.D. (1996) The intercellular distribution of vacuolar solutes in the epidermis and mesophyll of barley leaves changes in response to NaCl. Journal of Experimental Botany, 47, 1413–1426.
Geilfus, C.M. (2018) Chloride: from nutrient to toxicant. Plant and Cell Physiology, 59, 877–886.
Geldner, N. (2013) The endodermis. Annual review of plant biology, 64, 531–558.
Hall, D., Evans, A.R., Newbury, H.J. & Pritchard, J. (2006) Functional analysis of CHX21: a putative sodium transporter in Arabidopsis. Journal of Experimental Botany, 57, 1201–1210.
Hartung, W., Leport, L., Ratcliffe, R.G., Sauter, A., Duda, R. & Turner, N.C. (2002) Abscisic acid concentration, root pH and anatomy do not explain growth differences of chickpea (Cicer arietinum L.) and lupin (Lupinus angustifolius L.) on acid and alkaline soils. Plant and Soil, 240, 191–199.
Hayes, P.E., Clode, P.L., Guilherme Pereira, C. & Lambers, H. (2019) Calcium modulates leaf cell‐specific phosphorus allocation in Proteaceae from south‐western Australia. Journal of Experimental Botany, 70, 3995–4009.
Hayes, P.E., Clode, P.L., Oliveira, R.S. & Lambers, H. (2018) Proteaceae from phosphorus‐impoverished habitats preferentially allocate phosphorus to photosynthetic cells: an adaptation improving phosphorus‐use efficiency. Plant, Cell & Environment, 41, 605–619.
Hou, D., Yousaf, L., Xue, Y., Hu, J., Wu, J., Hu, X. et al. (2019) Mungbean (Vigna radiata L.): bioactive polyphenols, polysaccharides, peptides, and health benefits. Nutrients, 11, 1238.
Hunter, K., Kimura, S., Rokka, A., Tran, H.C., Toyota, M., Kukkonen, J.P. et al. (2019) CRK2 enhances salt tolerance by regulating callose deposition in connection with PLD α 1. Plant Physiology, 180, 2004–2021.
James, R.A., Munns, R., Von Caemmerer, S., Trejo, C., Miller, C. & Condon, T.A. (2006) Photosynthetic capacity is related to the cellular and subcellular partitioning of Na+, K+ and Cl‐ in salt‐affected barley and durum wheat. Plant, Cell & Environment, 29, 2185–2197.
Kotula, L., Clode, P.L., Jimenez, J.D.L.C. & Colmer, T.D. (2019) Salinity tolerance in chickpea is associated with the ability to ‘exclude’ Na from leaf mesophyll cells. Journal of Experimental Botany, 70, 4991–5002.
Kotula, L., Clode, P.L., Ranathunge, K. & Lambers, H. (2021) Role of roots in adaptation of soil‐indifferent Proteaceae to calcareous soils in south‐western Australia. Journal of Experimental Botany, 72, 1490–1505.
Kotula, L., Clode, P.L., Striker, G.G., Pedersen, O., Läuchli, A., Shabala, S. et al. (2015a) Oxygen deficiency and salinity affect cell‐specific ion concentrations in adventitious roots of barley (Hordeum vulgare). New Phytologist, 208, 1114–1125.
Kotula, L., Khan, H.A., Quealy, J., Turner, N.C., Vadez, V., Siddique, K.H. et al. (2015b) Salt sensitivity in chickpea (Cicer arietinum L.): ions in reproductive tissues and yield components in contrasting genotypes. Plant, Cell & Environment, 38, 1565–1577.
Krishnamurthy, P., Ranathunge, K., Franke, R., Prakash, H.S., Schreiber, L. & Mathew, M.K. (2009) The role of root apoplastic transport barriers in salt tolerance of rice (Oryza sativa L.). Planta, 230, 119–134.
Kronzucker, H.J. & Britto, D.T. (2011) Sodium transport in plants: a critical review. New Phytologist, 189, 54–81.
Läuchli, A., James, R.A., Huang, C.X., McCULLY, M. & Munns, R. (2008) Cell‐specific localization of Na+ in roots of durum wheat and possible control points for salt exclusion. Plant, Cell & Environment, 31, 1565–1574.
Le, L.T.T., Kotula, L., Colmer, T.D. & Siddique, K.H.M. (2023) Superior salt tolerance in wild soybean (G. soja) is associated with better ion ‘exclusion’ ability from leaves and mesophyll cells than cultivated soybean genotypes (G. max). Environmental and Experimental Botany, 211, 105348.
Le, L.T.T., Kotula, L., Siddique, K.H.M. & Colmer, T.D. (2021) ) Na+ and/or Cl− toxicities determine salt sensitivity in soybean (Glycine max (L.) Merr.), mungbean (Vigna radiata (L.) R. Wilczek), cowpea (Vigna unguiculata (L.) Walp.), and common bean (Phaseolus vulgaris L.). International Journal of Molecular Sciences, 22, 1909.
Liu, J., Xue, C., Lin, Y., Yan, Q., Chen, J., Wu, R. et al. (2022) Genetic analysis and identification of VrFRO8, a salt tolerance‐related gene in mungbean. Gene, 836, 146658.
Lundgren, M.R. & Fleming, A.J. (2020) Cellular perspectives for improving mesophyll conductance. The Plant Journal, 101, 845–857.
Maathuis, F.J.M., Ahmad, I. & Patishtan, J. (2014) Regulation of Na+ fluxes in plants. Frontiers in Plant Science, 5, 467.
Manasa, R.R., Bindumadhava, H., Nair, R.M., Prasad, T.G. & Shankar, A.G. (2017) Screening mungbean (Vigna radiata L.) lines for salinity tolerance using salinity induction response technique at seedling and physiological growth assay at whole plant level. International Journal of Plant, Animal and Environmental Sciences, 7, 1–12.
Mantovani, A. (1999) Leaf morpho‐physiology and distribution of epiphytic aroids along a vertical gradient in a Brazilian rain forest. Selbyana, 20, 241–249.
Marshall, A.T. (2017) Quantitative X‐ray microanalysis of model biological samples in the SEM using remote standards and the XPP analytical model. Journal of Microscopy, 266, 231–238.
Mulet, J.M., Campos, F. & Yenush, L. (2020) Editorial: ion homeostasis in plant stress and development. Frontiers in Plant Science, 11(14), 1264817.
Müller, M., Kunz, H.H., Schroeder, J.I., Kemp, G., Young, H.S. & Neuhaus, H.E. (2014) Decreased capacity for sodium export out of Arabidopsis chloroplasts impairs salt tolerance, photosynthesis and plant performance. The Plant Journal, 78(4), 646–658.
Munns, R., James, R.A., Gilliham, M., Flowers, T.J. & Colmer, T.D. (2016) Tissue tolerance: an essential but elusive trait for salt‐tolerant crops. Functional Plant Biology, 43, 1103–1113.
Munns, R., James, R.A., Xu, B., Athman, A., Conn, S.J., Jordans, C. et al. (2012) Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nature Biotechnology, 30(4), 360–364.
Munns, R. & Tester, M. (2008) Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651–681.
Munns, R., Wallace, P.A., Teakle, N.L. & Colmer, T.D. (2010) Measuring soluble ion concentrations (Na+, K+, Cl−) in salt‐treated plants, Plant Stress Tolerance: Methods and Protocols. Springer. pp. 371–382
Møller, I.S., Gilliham, M., Jha, D., Mayo, G.M., Roy, S.J., Coates, J.C. et al. (2009) Shoot Na+ exclusion and increased salinity tolerance engineered by cell type‐specific alteration of Na+ transport in Arabidopsis. The Plant Cell, 21, 2163–2178.
Oi, T., Clode, P.L., Taniguchi, M., Colmer, T.D. & Kotula, L. (2022) Salt tolerance in relation to elemental concentrations in leaf cell vacuoles and chloroplasts of a C4 monocotyledonous halophyte. Plant, Cell & Environment, 45, 1490–1506.
Panta, S., Flowers, T., Lane, P., Doyle, R., Haros, G. & Shabala, S. (2014) Halophyte agriculture: success stories. Environmental and Experimental Botany, 107, 71–83.
Pataczek, L., Zahir, Z.A., Ahmad, M., Rani, S., Nair, R., Schafleitner, R. et al. (2018) Beans with benefits—the role of mungbean (Vigna radiata) in a changing environment. American Journal of Plant Sciences, 9, 1577–1600.
Perumalla, C.J., Peterson, C.A. & Enstone, D.E. (1990) A survey of angiosperm species to detect hypodermal Casparian bands. I. Roots with a uniseriate hypodermis and epidermis. Botanical Journal of the Linnean Society, 103, 93–112.
Pinheiro, J. & Bates, D. (2006) Mixed‐effects models in S and S‐PLUS. Springer Science & Business Media.
Pitman, M.G. (1982) Transport across plant roots. Quarterly Reviews of Biophysics, 15, 481–554.
Ranathunge, K. & Schreiber, L. (2011) Water and solute permeabilities of Arabidopsis roots in relation to the amount and composition of aliphatic suberin. Journal of Experimental Botany, 62, 1961–1974.
Ranathunge, K., Thomas, R.H., Fang, X., Peterson, C.A., Gijzen, M. & Bernards, M.A. (2008) Soybean root suberin and partial resistance to root rot caused by Phytophthora sojae. Phytopathology®, 98, 1179–1189.
Ren, Z.H., Gao, J.‐P., Li, L.G., Cai, X.L., Huang, W., Chao, D.Y. et al. (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nature Genetics, 37, 1141–1146.
Robinson, S.P. & Downton, W.J.S. (1984) Potassium, sodium, and chloride content of isolated intact chloroplasts in relation to ionic compartmentation in leaves. Archives of Biochemistry and Biophysics, 228, 197–206.
Romero‐Aranda, R., Moya, J.L., Tadeo, F.R., Legaz, F., Primo‐Millo, E. & Talón, M. (1998) Physiological and anatomical disturbances induced by chloride salts in sensitive and tolerant citrus: beneficial and detrimental effects of cations. Plant, Cell & Environment, 21, 1243–1253.
Rouphael, Y., De Micco, V., Arena, C., Raimondi, G., Colla, G. & De Pascale, S. (2017) Effect of Ecklonia maxima seaweed extract on yield, mineral composition, gas exchange, and leaf anatomy of zucchini squash grown under saline conditions. Journal of Applied Phycology, 29, 459–470.
Seemann, J.R. & Critchley, C. (1985) Effects of salt stress on the growth, ion content, stomatal behaviour and photosynthetic capacity of a salt‐sensitive species, Phaseolus vulgaris L. Planta, 164, 151–162.
Shabala, S. & Cuin, T.A. (2008) Potassium transport and plant salt tolerance. Physiologia Plantarum, 133(4), 651–669.
Shabala, S. & Pottosin, I. (2014) Regulation of potassium transport in plants under hostile conditions: implications for abiotic and biotic stress tolerance. Physiologia Plantarum, 151, 257–279.
Steudle, E. (2000) Water uptake by roots: effects of water deficit. Journal of Experimental Botany, 51, 1531–1542.
Storey, R., Schachtman, D.P. & Thomas, M.R. (2003) Root structure and cellular chloride, sodium and potassium distribution in salinized grapevines. Plant, Cell & Environment, 26, 789–800.
Sunarpi, Horie, T., Motoda, J., Kubo, M., Yang, H. & Yoda, K. et al. (2005) Enhanced salt tolerance mediated by AtHKT1 transporter‐induced Na+ unloading from xylem vessels to xylem parenchyma cells. The Plant Journal, 44, 928–938.
Tavakkoli, E., Rengasamy, P. & McDonald, G.K. (2010) High concentrations of Na+ and Cl– ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress. Journal of Experimental Botany, 61, 4449–4459.
Teakle, N.L. & Tyerman, S.D. (2010) Mechanisms of Cl‐ transport contributing to salt tolerance. Plant, Cell & Environment, 33, 566–589.
Tester, M. (2003) Na+ tolerance and Na+ transport in higher plants. Annals of Botany, 91, 503–527.
Wu, H., Shabala, L., Azzarello, E., Huang, Y., Pandolfi, C., Su, N. et al. (2018) Na+ extrusion from the cytosol and tissue‐specific Na+ sequestration in roots confer differential salt stress tolerance between durum and bread wheat. Journal of Experimental Botany, 69, 3987–4001.
Wu, H., Zhang, X., Giraldo, J.P. & Shabala, S. (2018) It is not all about sodium: revealing tissue specificity and signalling roles of potassium in plant responses to salt stress. Plant and Soil, 431, 1–17.
Zhang, S., Quartararo, A., Betz, O.K., Madahhosseini, S., Heringer, A.S., Le, T. et al. (2021) Root vacuolar sequestration and suberization are prominent responses of Pistacia spp. rootstocks during salinity stress. Plant Direct, 5, e00315.
Zhao, C., Zhang, H., Song, C., Zhu, J.K. & Shabala, S. (2020) Mechanisms of plant responses and adaptation to soil salinity. The Innovation, 1, 100017.

Auteurs

Md Shahin Iqbal (MS)

Center for Plant Genetics and Breeding, The UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia, Australia.
The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia.
Pulses Research Center, Bangladesh Agricultural Research Institute, Ishurdi, Bangladesh.

Peta L Clode (PL)

Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, Western Australia, Australia.
School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia.

Al Imran Malik (AI)

Center for Plant Genetics and Breeding, The UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia, Australia.
The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia.
International Center for Tropical Agriculture (CIAT-Asia), Lao People's Democratic Republic Office, Vientiane, Laos.

William Erskine (W)

Center for Plant Genetics and Breeding, The UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia, Australia.
The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia.

Lukasz Kotula (L)

The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia.

Classifications MeSH