Plant-derived exosome-like nanoparticles for microRNA delivery in cancer treatment.
Cancer treatment
Cross-kingdom regulation
Inflammation
Intestinal homeostasis
Plant-derived exosome-like nanoparticles
miRNA delivery systems
Journal
Drug delivery and translational research
ISSN: 2190-3948
Titre abrégé: Drug Deliv Transl Res
Pays: United States
ID NLM: 101540061
Informations de publication
Date de publication:
17 May 2024
17 May 2024
Historique:
accepted:
05
05
2024
medline:
17
5
2024
pubmed:
17
5
2024
entrez:
17
5
2024
Statut:
aheadofprint
Résumé
Plant-derived exosome-like nanoparticles (PELNs) are natural nanocarriers and effective delivery systems for plant microRNAs (miRNAs). These PELN-carrying plant miRNAs can regulate mammalian genes across species, thereby increasing the diversity of miRNAs in mammals and exerting multi-target effects that play a crucial role in diseases, particularly cancer. PELNs demonstrate exceptional stability, biocompatibility, and targeting capabilities that protect and facilitate the up-take and cross-kingdom communication of plant miRNAs in mammals. Primarily ingested and absorbed within the gastrointestinal tract of mammals, PELNs preferentially act on the intestine to regulate intestinal homeostasis through functional miRNA activity. The oncogenesis and progression of cancer are closely associated with disruptions in intestinal barriers, ecological imbalances, as well as secondary changes, such as abnormal inflammatory reactions caused by them. Therefore, it is imperative to investigate whether PELNs exert their anticancer effects by regulating mammalian intestinal homeostasis and inflammation. This review aims to elucidate the intrinsic crosstalk relationships and mechanisms of PELNs-mediated miRNAs in maintaining intestinal homeostasis, regulating inflammation and cancer treatment. Furthermore, serving as exceptional drug delivery systems for miRNAs molecules, PELNs offer broad prospects for future applications, including new drug research and development along with drug carrier selection within targeted drug delivery approaches for cancer therapy.
Identifiants
pubmed: 38758499
doi: 10.1007/s13346-024-01621-x
pii: 10.1007/s13346-024-01621-x
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : National Natural Science Foundation of China
ID : 82074450
Organisme : Key Scientific Research Project of Hunan Education Department
ID : 21A0243
Organisme : Key Project of Academician Workstation Guidance Project
ID : 22YS002
Organisme : Key Projects of First-class Discipline of Integrated Traditional Chinese and Western Medicine
ID : 2021ZXYJH11
Organisme : National Natural Science Foundation of Changsha City
ID : kq2202271
Informations de copyright
© 2024. Controlled Release Society.
Références
Carter JV, Galbraith NJ, Yang D, Burton JF, Walker SP, Galandiuk S. Blood-Based MicroRNAs as Biomarkers for the Diagnosis of Colorectal Cancer: A Systematic Review and Meta-Analysis. Br J Cancer. 2017;116(6):762–74.
pubmed: 28152545
pmcid: 5355921
doi: 10.1038/bjc.2017.12
Peng Y, Croce CM. The Role of Micrornas in Human Cancer. Signal Transduct Target Ther. 2016;1:15004.
pubmed: 29263891
pmcid: 5661652
doi: 10.1038/sigtrans.2015.4
Kalogianni DP, Kalligosfyri PM, Kyriakou IK, Christopoulos TK. Advances in MicroRNA Analysis. Anal Bioanal Chem. 2018;410(3):695–713.
pubmed: 29032457
doi: 10.1007/s00216-017-0632-z
Flynt AS, Lai EC. Biological Principles of Microrna-Mediated Regulation: Shared Themes Amid Diversity. Nat Rev Genet. 2008;9(11):831–42.
pubmed: 18852696
pmcid: 2729318
doi: 10.1038/nrg2455
Bartel DP. MicroRNAs: Target Recognition and Regulatory Functions. Cell. 2009;136(2):215–33.
pubmed: 19167326
pmcid: 3794896
doi: 10.1016/j.cell.2009.01.002
Zhang L, Hou D, Chen X, Li D, Zhu L, Zhang Y, et al. Exogenous Plant MIR168a Specifically Targets Mammalian LDLRAP1: Evidence of cRoss-Kingdom Regulation by MicroRNA. Cell Res. 2012;22(1):107–26.
pubmed: 21931358
doi: 10.1038/cr.2011.158
Dávalos A, Pinilla L, López de Las Hazas MC, Pinto-Hernández P, Barbé F, Iglesias-Gutiérrez E, et al. Dietary MicroRNAs and Cancer: A New Therapeutic Approach? Semin Cancer Biol. 2021;73:19–29.
pubmed: 33086083
doi: 10.1016/j.semcancer.2020.10.006
Del Pozo-Acebo L, López de Las Hazas MC, Margollés A, Dávalos A, García-Ruiz A. Eating MicroRNAs: Pharmacological Opportunities for Cross-Kingdom Regulation and Implications in Host Gene and Gut Microbiota Modulation. Br J Pharmacol. 2021;178(11):2218–45.
pubmed: 33644849
doi: 10.1111/bph.15421
Chin AR, Fong MY, Somlo G, Wu J, Swiderski P, Wu X, et al. Cross-kingdom Inhibition of Breast Cancer Growth by Plant MiR159. Cell Res. 2016;26(2):217–28.
pubmed: 26794868
pmcid: 4746606
doi: 10.1038/cr.2016.13
Kim J, Li S, Zhang S, Wang J. Plant-Derived Exosome-Like Nanoparticles and their Therapeutic Activities. Asian J Pharm Sci. 2022;17(1):53–69.
pubmed: 35261644
doi: 10.1016/j.ajps.2021.05.006
Anusha R, Priya S. Dietary Exosome-Like Nanoparticles: an Updated Review on their Pharmacological and Drug Delivery Applications. Mol Nutr Food Res. 2022;66(14):e2200142.
pubmed: 35593481
doi: 10.1002/mnfr.202200142
Urzì O, Gasparro R, Ganji NR, Alessandro R, Raimondo S. Plant-RNA in Extracellular Vesicles: The Secret of Cross-Kingdom Communication. Membr (Basel). 2022;12(4):352.
Record M. Exosome-Like Nanoparticles from Food: Protective Nanoshuttles for Bioactive Cargo. Mol Ther. 2013;21(7):1294–6.
pubmed: 23812547
pmcid: 3702107
doi: 10.1038/mt.2013.130
Halperin W, Jensen WA. Ultrastructural Changes During Growth and Embryogenesis in Carrot Cell Cultures. J Ultrastruct Res. 1967;18(3):428–43.
pubmed: 6025110
doi: 10.1016/S0022-5320(67)80128-X
Ju S, Mu J, Dokland T, Zhuang X, Wang Q, Jiang H, et al. Grape Exosome-Like Nanoparticles Induce Intestinal Stem Cells and Protect Mice from DSS-Induced Colitis. Mol Ther. 2013;21(7):1345–57.
pubmed: 23752315
pmcid: 3702113
doi: 10.1038/mt.2013.64
Liu Y, Zhang Y, Dong P, An R, Xue C, Ge Y, et al. Digestion of Nucleic Acids Starts in the Stomach. Sci Rep. 2015;5:11936.
pubmed: 26168909
pmcid: 4500949
doi: 10.1038/srep11936
Qin X, Wang X, Xu K, Zhang Y, Ren X, Qi B, et al. Digestion of Plant Dietary miRNAs Starts in the Mouth Under the Protection of Coingested Food Components and Plant-Derived Exosome-like nanoparticles. J Agric Food Chem. 2022;70(14):4316–27.
pubmed: 35352925
doi: 10.1021/acs.jafc.1c07730
Wang B, Zhuang X, Deng ZB, Jiang H, Mu J, Wang Q, et al. Targeted Drug Delivery to Intestinal Macrophages by Bioactive Nanovesicles Released from Grapefruit. Mol Ther. 2014;22(3):522–34.
pubmed: 23939022
pmcid: 3944329
doi: 10.1038/mt.2013.190
Mu J, Zhuang X, Wang Q, Jiang H, Deng ZB, Wang B, et al. Interspecies Communication between Plant and Mouse Gut Host Cells Through Edible Plant Derived Exosome-Like Nanoparticles. Mol Nutr Food Res. 2014;58(7):1561–73.
pubmed: 24842810
pmcid: 4851829
doi: 10.1002/mnfr.201300729
Sundaram GM. Dietary Non-Coding RNAs from Plants: Fairy Tale or Treasure? Noncoding RNA Res. 2019;4(2):63–8.
pubmed: 31193509
pmcid: 6533053
doi: 10.1016/j.ncrna.2019.02.002
Link J, Thon C, Schanze D, Steponaitiene R, Kupcinskas J, Zenker M, et al. Food-Derived Xeno-MicroRNAs: Influence of Diet and Detectability in Gastrointestinal Tract-Proof-of-Principle Study. Mol Nutr Food Res. 2019;63(2):e1800076.
pubmed: 30378765
doi: 10.1002/mnfr.201800076
Zhou F, Paz HA, Sadri M, Cui J, Kachman SD, Fernando SC, et al. Dietary Bovine Milk Exosomes Elicit Changes in Bacterial Communities in C57BL/6 mice. Am J Physiol Gastrointest Liver Physiol. 2019;317(5):G618–24.
pubmed: 31509432
pmcid: 6879888
doi: 10.1152/ajpgi.00160.2019
Fujita D, Arai T, Komori H, Shirasaki Y, Wakayama T, Nakanishi T, et al. Apple-Derived Nanoparticles Modulate Expression of Organic-Anion-Transporting Polypeptide (OATP) 2B1 in Caco-2 Cells. Mol Pharm. 2018;15(12):5772–80.
pubmed: 30359033
doi: 10.1021/acs.molpharmaceut.8b00921
Komori H, Fujita D, Shirasaki Y, Zhu Q, Iwamoto Y, Nakanishi T, et al. MicroRNAs in Apple-Derived Nanoparticles Modulate Intestinal Expression of Organic Anion-transporting Peptide 2B1/SLCO2B1 in Caco-2 Cells. Drug Metab Dispos. 2021;49(9):803–9.
pubmed: 34162689
doi: 10.1124/dmd.121.000380
Zhang M, Xiao B, Wang H, Han MK, Zhang Z, Viennois E, et al. Edible Ginger-Derived Nano-Lipids Loaded with Doxorubicin as a Novel Drug-delivery Approach for Colon cancer Therapy. Mol Ther. 2016;24(10):1783–96.
pubmed: 27491931
pmcid: 5112046
doi: 10.1038/mt.2016.159
Wang X, Zhang M, Flores SRL, Woloshun RR, Yang C, Yin L, et al. Oral Gavage of Ginger Nanoparticle-Derived Lipid Vectors Carrying Dmt1 siRNA Blunts Iron Loading in Murine Hereditary Hemochromatosis. Mol Ther. 2019;27(3):493–506.
pubmed: 30713087
pmcid: 6401192
doi: 10.1016/j.ymthe.2019.01.003
Chassaing B, Gewirtz AT. Gut Microbiota, Low-Grade Inflammation, and Metabolic Syndrome. Toxicol Pathol. 2014;42(1):49–53.
pubmed: 24285672
doi: 10.1177/0192623313508481
Mei S, Deng Z, Chen Y, Ning D, Guo Y, Fan X, et al. Dysbiosis: The First Hit for Digestive System Cancer. Front Physiol. 2022;13:1040991.
pubmed: 36483296
pmcid: 9723259
doi: 10.3389/fphys.2022.1040991
Achiwa K, Ishigami M, Ishizu Y, Kuzuya T, Honda T, Hayashi K, et al. DSS Colitis Promotes Tumorigenesis and Fibrogenesis in a Choline-Deficient High-Fat Diet-Induced NASH Mouse Model. Biochem Biophys Res Commun. 2016;470(1):15–21.
pubmed: 26682925
doi: 10.1016/j.bbrc.2015.12.012
Gritzapis AD, Voutsas IF, Lekka E, Tsavaris N, Missitzis I, Sotiropoulou P, et al. Identification of a Novel Immunogenic HLA-A*0201-Binding Epitope of HER-2/neu with Potent Antitumor Properties. J Immunol. 2008;181(1):146–54.
pubmed: 18566379
doi: 10.4049/jimmunol.181.1.146
Cai J, Sun L, Gonzalez FJ. Gut Microbiota-Derived Bile Acids in Intestinal Immunity, Inflammation, and Tumorigenesis. Cell Host Microbe. 2022;30(3):289–300.
pubmed: 35271802
pmcid: 8923532
doi: 10.1016/j.chom.2022.02.004
Seksik P. [Gut microbiota and IBD]. Gastroenterol Clin Biol. 2010;34(Suppl 1):S44–51.
pubmed: 20889004
doi: 10.1016/S0399-8320(10)70020-8
Liu Z, Cao AT, Cong Y. Microbiota Regulation of Inflammatory Bowel Disease and Colorectal Cancer. Semin Cancer Biol. 2013; 23(6 Pt B):543– 52.
Buchta Rosean C, Bostic RR, Ferey JCM, Feng TY, Azar FN, Tung KS, et al. Preexisting Commensal Dysbiosis is a Host-Intrinsic Regulator of Tissue Inflammation and Tumor Cell Dissemination in Hormone Receptor-Positive Breast Cancer. Cancer Res. 2019;79(14):3662–75.
pubmed: 31064848
doi: 10.1158/0008-5472.CAN-18-3464
Li Q, Ma L, Shen S, Guo Y, Cao Q, Cai X, et al. Intestinal Dysbacteriosis-Induced IL-25 Promotes Development of HCC via Alternative Activation of Macrophages in Tumor Microenvironment. J Exp Clin Cancer Res. 2019;38(1):303.
pubmed: 31296243
pmcid: 6625119
doi: 10.1186/s13046-019-1271-3
Tian Y, Cai L, Tian Y, Tu Y, Qiu H, Xie G, et al. miR156a Mimic Represses the Epithelial-Mesenchymal transition of Human Nasopharyngeal Cancer Cells by Targeting Junctional Adhesion Molecule A. PLoS ONE. 2016;11(6):e0157686.
pubmed: 27341697
pmcid: 4920421
doi: 10.1371/journal.pone.0157686
Liu C, Xu M, Yan L, Wang Y, Zhou Z, Wang S, et al. Honeysuckle-derived MicroRNA2911 Inhibits Tumor Growth by Targeting TGF-β1. Chin Med. 2021;16(1):49.
pubmed: 34187513
pmcid: 8244210
doi: 10.1186/s13020-021-00453-y
Marzano F, Caratozzolo MF, Consiglio A, Licciulli F, Liuni S, Sbisà E, et al. Plant miRNAs Reduce Cancer Cell Proliferation by Targeting MALAT1 and NEAT1: a Beneficial Cross-kingdom Interaction. Front Genet. 2020;11:552490.
pubmed: 33193626
pmcid: 7531330
doi: 10.3389/fgene.2020.552490
Feng J, Xiu Q, Huang Y, Troyer Z, Li B, Zheng L. Plant-Derived Vesicle-Like Nanoparticles as Promising Biotherapeutic Tools: Present and Future. Adv Mater 2023:e2207826.
Zhang M, Viennois E, Xu C, Merlin D. Plant Derived Edible Nanoparticles as a New Therapeutic Approach Against Diseases. Tissue Barriers. 2016;4(2):e1134415.
pubmed: 27358751
pmcid: 4910829
doi: 10.1080/21688370.2015.1134415
Xu H, Yang Y. Nanoparticles Derived from Plant Proteins for Controlled Release and Targeted Delivery of Therapeutics. Nanomed (Lond). 2015;10(13):2001–4.
doi: 10.2217/nnm.15.84
Yu B, Yang Z, Li J, Minakhina S, Yang M, Padgett RW, et al. Methylation as a Crucial Step in Plant microRNA Biogenesis. Science. 2005;307(5711):932–5.
pubmed: 15705854
pmcid: 5137370
doi: 10.1126/science.1107130
Li J, Yang Z, Yu B, Liu J, Chen X. Methylation Protects miRNAs and siRNAs from a 3’-End Uridylation Activity in Arabidopsis. Curr Biol. 2005;15(16):1501–7.
pubmed: 16111943
pmcid: 5127709
doi: 10.1016/j.cub.2005.07.029
Liang H, Jiao Z, Rong W, Qu S, Liao Z, Sun X, et al. 3’-Terminal 2’-O-methylation of Lung Cancer mir-21-5p Enhances its Stability and Association with Argonaute 2. Nucleic Acids Res. 2020;48(13):7027–40.
pubmed: 32542340
pmcid: 7367198
Moran Y, Agron M, Praher D, Technau U. The Evolutionary Origin of Plant and Animal microRNAs. Nat Ecol Evol. 2017;1(3):27.
pubmed: 28529980
doi: 10.1038/s41559-016-0027
Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L, et al. Widespread Translational Inhibition by Plant miRNAs and siRNAs. Science. 2008;320(5880):1185–90.
pubmed: 18483398
doi: 10.1126/science.1159151
Iwakawa HO, Tomari Y. Molecular Insights into microRNA-Mediated Translational Repression in Plants. Mol Cell. 2013;52(4):591–601.
pubmed: 24267452
doi: 10.1016/j.molcel.2013.10.033
An Q, Hückelhoven R, Kogel KH, van Bel AJ. Multivesicular Bodies Participate in a Cell Wall-Associated Defence Response in Barley Leaves Attacked by the Pathogenic Powdery Mildew Fungus. Cell Microbiol. 2006;8(6):1009–19.
pubmed: 16681841
doi: 10.1111/j.1462-5822.2006.00683.x
Collins NC, Thordal-Christensen H, Lipka V, Bau S, Kombrink E, Qiu JL, et al. SNARE-Protein-Mediated Disease Resistance at the Plant Cell Wall. Nature. 2003;425(6961):973–7.
pubmed: 14586469
doi: 10.1038/nature02076
Meyer D, Pajonk S, Micali C, O’Connell R, Schulze-Lefert P. Extracellular Transport and Integration of Plant Secretory Proteins into Pathogen-Induced Cell Wall Compartments. Plant J. 2009;57(6):986–99.
pubmed: 19000165
doi: 10.1111/j.1365-313X.2008.03743.x
Regente M, Corti-Monzón G, Maldonado AM, Pinedo M, Jorrín J, de la Canal L. Vesicular Fractions of Sunflower Apoplastic Fluids are Associated with Potential Exosome Marker Proteins. FEBS Lett. 2009;583(20):3363–6.
pubmed: 19796642
doi: 10.1016/j.febslet.2009.09.041
Sundaram K, Miller DP, Kumar A, Teng Y, Sayed M, Mu J, et al. Plant-Derived Exosomal Nanoparticles Inhibit Pathogenicity of Porphyromonas Gingivalis. iScience. 2019;21:308–27.
pubmed: 31678913
pmcid: 6838522
doi: 10.1016/j.isci.2019.10.032
Dad HA, Gu TW, Zhu AQ, Huang LQ, Peng LH. Plant Exosome-Like Nanovesicles: Emerging Therapeutics and Drug Delivery Nanoplatforms. Mol Ther. 2021;29(1):13–31.
pubmed: 33278566
doi: 10.1016/j.ymthe.2020.11.030
Liu Y, Ren C, Zhan R, Cao Y, Ren Y, Zou L, et al. Exploring the Potential of Plant-Derived Exosome-Like Nanovesicle as Functional Food Components for Human Health: a review. Foods. 2024;13(5):712.
pubmed: 38472825
pmcid: 10930737
doi: 10.3390/foods13050712
Ou X, Wang H, Tie H, Liao J, Luo Y, Huang W, et al. Novel Plant-Derived Exosome-Like Nanovesicles from Catharanthus Roseus: Preparation, Characterization, and Immunostimulatory Effect Via TNF-α/NF-κB/PU.1 Axis. J Nanobiotechnol. 2023;21(1):160.
doi: 10.1186/s12951-023-01919-x
Sasaki D, Suzuki H, Kusamori K, Itakura S, Todo H, Nishikawa M. Development of Rice Bran-Derived Nanoparticles with Excellent Anti-Cancer Activity and their Application for Peritoneal Dissemination. J Nanobiotechnol. 2024;22(1):114.
doi: 10.1186/s12951-024-02381-z
Madhan S, Dhar R, Devi A. Plant-Derived Exosomes: A Green Approach for Cancer Drug Delivery. J Mater Chem B. 2024;12(9):2236–52.
pubmed: 38351750
doi: 10.1039/D3TB02752J
Xiao J, Feng S, Wang X, Long K, Luo Y, Wang Y, et al. Identification of Exosome-Like Nanoparticle-Derived microRNAs from 11 Edible Fruits and Vegetables. PeerJ. 2018;6:e5186.
pubmed: 30083436
pmcid: 6074755
doi: 10.7717/peerj.5186
Teng Y, Ren Y, Sayed M, Hu X, Lei C, Kumar A, et al. Plant-Derived Exosomal Micrornas Shape the Gut Microbiota. Cell Host Microbe. 2018;24(5):637–e528.
pubmed: 30449315
pmcid: 6746408
doi: 10.1016/j.chom.2018.10.001
Colling M, Wolfram G. [Effect of cooking on the purine content of foods]. Z Ernahrungswiss. 1987;26(4):214–8.
pubmed: 2449775
doi: 10.1007/BF02023809
Liang H, Zhang S, Fu Z, Wang Y, Wang N, Liu Y, et al. Effective Detection and Quantification of Dietetically Absorbed Plant Micrornas in Human Plasma. J Nutr Biochem. 2015;26(5):505–12.
pubmed: 25704478
doi: 10.1016/j.jnutbio.2014.12.002
Philip A, Ferro VA, Tate RJ. Determination of the Potential Bioavailability of Plant Micrornas Using a Simulated Human Digestion Process. Mol Nutr Food Res. 2015;59(10):1962–72.
pubmed: 26147655
doi: 10.1002/mnfr.201500137
Luo Y, Wang P, Wang X, Wang Y, Mu Z, Li Q, et al. Detection of Dietetically Absorbed Maize-Derived Micrornas in Pigs. Sci Rep. 2017;7(1):645.
pubmed: 28381865
pmcid: 5428504
doi: 10.1038/s41598-017-00488-y
Liang G, Zhu Y, Sun B, Shao Y, Jing A, Wang J, et al. Assessing the Survival of Exogenous Plant microRNA in Mice. Food Sci Nutr. 2014;2(4):380–8.
pubmed: 25473495
pmcid: 4221836
doi: 10.1002/fsn3.113
Zhou Z, Li X, Liu J, Dong L, Chen Q, Liu J, et al. Honeysuckle-Encoded Atypical microRNA2911 Directly Targets Influenza a Viruses. Cell Res. 2015;25(1):39–49.
pubmed: 25287280
doi: 10.1038/cr.2014.130
Xie W, Melzig MF. The Stability of Medicinal Plant microRNAs in the Herb Preparation Process. Molecules. 2018;23(4):919.
pubmed: 29659501
pmcid: 6016954
doi: 10.3390/molecules23040919
Li X, Liang Z, Du J, Wang Z, Mei S, Li Z, et al. Herbal Decoctosome is a Novel form of Medicine. Sci China Life Sci. 2019;62(3):333–48.
pubmed: 30900166
doi: 10.1007/s11427-018-9508-0
Chen X, Zhou Y, Yu J. Exosome-Like Nanoparticles from Ginger rhizomes Inhibited NLRP3 Inflammasome Activation. Mol Pharm. 2019;16(6):2690–9.
pubmed: 31038962
doi: 10.1021/acs.molpharmaceut.9b00246
Ito Y, Taniguchi K, Kuranaga Y, Eid N, Inomata Y, Lee SW, et al. Uptake of MicroRNAs from Exosome-Like Nanovesicles of Edible Plant Juice by Rat Enterocytes. Int J Mol Sci. 2021;22(7):3749.
pubmed: 33916868
pmcid: 8038500
doi: 10.3390/ijms22073749
Yin L, Yan L, Yu Q, Wang J, Liu C, Wang L, et al. Characterization of the MicroRNA Profile of Ginger Exosome-like Nanoparticles and their anti-inflammatory effects in Intestinal Caco-2 cells. J Agric Food Chem. 2022;70(15):4725–34.
pubmed: 35261246
doi: 10.1021/acs.jafc.1c07306
Sonnenburg ED, Smits SA, Tikhonov M, Higginbottom SK, Wingreen NS, Sonnenburg JL. Diet-induced Extinctions in the Gut Microbiota Compound Over Generations. Nature. 2016;529(7585):212–5.
pubmed: 26762459
pmcid: 4850918
doi: 10.1038/nature16504
Díez-Sainz E, Lorente-Cebrián S, Aranaz P, Riezu-Boj JI, Martínez JA, Milagro FI. Potential Mechanisms Linking Food-Derived MicroRNAs, Gut Microbiota and Intestinal Barrier functions in the Context of Nutrition and Human Health. Front Nutr. 2021;8:586564.
pubmed: 33768107
pmcid: 7985180
doi: 10.3389/fnut.2021.586564
Goga A, Yagabasan B, Herrmanns K, Godbersen S, Silva PN, Denzler R, et al. miR-802 Regulates Paneth Cell Function and Enterocyte Differentiation in the Mouse Small Intestine. Nat Commun. 2021;12(1):3339.
pubmed: 34099655
pmcid: 8184787
doi: 10.1038/s41467-021-23298-3
Zhu J, Fan Y, Yang S, Qin M, Chen X, Luo J, et al. Oral Delivery of miR-146a-5p Overexpression Plasmid-Loaded Pickering Double Emulsion Modulates Intestinal Inflammation and the Gut Microbe. Int J Biol Macromol. 2024;261(Pt 2):129733.
pubmed: 38307433
doi: 10.1016/j.ijbiomac.2024.129733
Xu Q, Qin X, Zhang Y, Xu K, Li Y, Li Y, et al. Plant miRNA bol-miR159 Regulates Gut Microbiota Composition in Mice: In Vivo Evidence of the Crosstalk Between Plant miRNAs and Intestinal Microbes. J Agric Food Chem. 2023;71(43):16160–73.
pubmed: 37862127
doi: 10.1021/acs.jafc.3c06104
Xu Q, Wang J, Zhang Y, Li Y, Qin X, Xin Y, et al. Atypical plant miRNA Cal-miR2911: Robust Stability against Food Digestion and specific promoting effect on Bifidobacterium in mice. J Agric Food Chem. 2024;72(9):4801–13.
pubmed: 38393993
doi: 10.1021/acs.jafc.3c09511
Zhang M, Viennois E, Prasad M, Zhang Y, Wang L, Zhang Z, et al. Edible Ginger-Derived Nanoparticles: A Novel Therapeutic Approach for the Prevention and Treatment of Inflammatory Bowel Disease and Colitis-Associated Cancer. Biomaterials. 2016;101:321–40.
pubmed: 27318094
pmcid: 4921206
doi: 10.1016/j.biomaterials.2016.06.018
Li M, Chen T, Wang R, Luo JY, He JJ, Ye RS, et al. Plant MIR156 Regulates Intestinal Growth in Mammals by Targeting the Wnt/β-catenin Pathway. Am J Physiol Cell Physiol. 2019;317(3):C434–48.
pubmed: 31166713
doi: 10.1152/ajpcell.00030.2019
Li M, Chen T, He JJ, Wu JH, Luo JY, Ye RS, et al. Plant MIR167e-5p inhibits Enterocyte Proliferation by Targeting β-Catenin. Cells. 2019;8(11):1385.
pubmed: 31689969
pmcid: 6912825
doi: 10.3390/cells8111385
Yu S, Zhao Z, Xu X, Li M, Li P. Characterization of Three Different Types of Extracellular Vesicles and their Impact on Bacterial Growth. Food Chem. 2019;272:372–8.
pubmed: 30309557
doi: 10.1016/j.foodchem.2018.08.059
Liu Y, Tan ML, Zhu WJ, Cao YN, Peng LX, Yan ZY, et al. In Vitro Effects of Tartary Buckwheat-Derived nanovesicles on Gut Microbiota. J Agric Food Chem. 2022;70(8):2616–29.
pubmed: 35167751
doi: 10.1021/acs.jafc.1c07658
Qiu FS, Wang JF, Guo MY, Li XJ, Shi CY, Wu F, et al. Rgl-exomiR-7972, A Novel Plant Exosomal Microrna Derived From Fresh Rehmanniae Radix, Ameliorated Lipopolysaccharide-Induced Acute Lung Injury and Gut Dysbiosis. Biomed Pharmacother. 2023;165:115007.
pubmed: 37327587
doi: 10.1016/j.biopha.2023.115007
Teng Y, Xu F, Zhang X, Mu J, Sayed M, Hu X, et al. Plant-derived Exosomal microRNAs Inhibit Lung Inflammation Induced by Exosomes SARS-CoV-2 Nsp12. Mol Ther. 2021;29(8):2424–40.
pubmed: 33984520
pmcid: 8110335
doi: 10.1016/j.ymthe.2021.05.005
Ishida T, Kawada K, Jobu K, Morisawa S, Kawazoe T, Nishimura S, et al. Exosome-like Nanoparticles Derived from Allium Tuberosum Prevent Neuroinflammation in Microglia-Like Cells. J Pharm Pharmacol. 2023;75(10):1322–31.
pubmed: 37390476
doi: 10.1093/jpp/rgad062
Yu WY, Cai W, Ying HZ, Zhang WY, Zhang HH, Yu CH. Exogenous Plant Gma-miR-159a, Identified by miRNA Library Functional Screening, Ameliorated Hepatic Stellate Cell Activation and Inflammation via inhibiting GSK-3β-Mediated pathways. J Inflamm Res. 2021;14:2157–72.
pubmed: 34079325
pmcid: 8163999
doi: 10.2147/JIR.S304828
De Robertis M, Sarra A, D’Oria V, Mura F, Bordi F, Postorino P, et al. Blueberry-Derived Exosome-Like Nanoparticles Counter the response to TNF-α-Induced Change on Gene expression in EA.hy926 cells. Biomolecules. 2020;10(5):742.
pubmed: 32397678
pmcid: 7277966
doi: 10.3390/biom10050742
Aquilano K, Ceci V, Gismondi A, De Stefano S, Iacovelli F, Faraonio R, et al. Adipocyte metabolism is improved by TNF receptor-targeting small RNAs Identified from Dried Nuts. Commun Biol. 2019;2:317.
pubmed: 31453381
pmcid: 6704100
doi: 10.1038/s42003-019-0563-7
Ma C, Liu K, Wang F, Fei X, Niu C, Li T, et al. Neutrophil Membrane-Engineered Panax Ginseng Root-Derived Exosomes Loaded miRNA 182-5p Targets NOX4/Drp-1/NLRP3 Signal Pathway to Alleviate Acute Lung Injury in sepsis: Experimental Studies. Int J Surg. 2024;110(1):72–86.
pubmed: 37737899
doi: 10.1097/JS9.0000000000000789
Wang X, Liu Y, Dong X, Duan T, Wang C, Wang L, et al. Peu-MIR2916-p3-Enriched Garlic Exosomes Ameliorate Murine Colitis by Reshaping Gut Microbiota, Especially by Boosting The Anti-Colitic Bacteroides Thetaiotaomicron. Pharmacol Res. 2024;200:107071.
pubmed: 38218354
doi: 10.1016/j.phrs.2024.107071
Kantarcıoğlu M, Yıldırım G, Akpınar Oktar P, Yanbakan S, Özer ZB, Yurtsever Sarıca D, et al. Coffee-Derived Exosome-Like nanoparticles: are they the Secret heroes? Turk J Gastroenterol. 2023;34(2):161–9.
pubmed: 36262101
pmcid: 10081033
doi: 10.5152/tjg.2022.21895
Zhuang X, Teng Y, Samykutty A, Mu J, Deng Z, Zhang L, et al. Grapefruit-derived Nanovectors Delivering Therapeutic miR17 through an Intranasal Route Inhibit Brain Tumor Progression. Mol Ther. 2016;24(1):96–105.
pubmed: 26444082
doi: 10.1038/mt.2015.188
Teng Y, Mu J, Hu X, Samykutty A, Zhuang X, Deng Z, et al. Grapefruit-Derived Nanovectors Deliver miR-18a for Treatment of Liver Metastasis of Colon Cancer by Induction of M1 Macrophages. Oncotarget. 2016;7(18):25683–97.
pubmed: 27028860
pmcid: 5041936
doi: 10.18632/oncotarget.8361
Kim J, Zhu Y, Chen S, Wang D, Zhang S, Xia J, et al. Anti-Glioma Effect of Ginseng-Derived Exosomes-Like Nanoparticles by Active Blood-Brain-Barrier Penetration and Tumor Microenvironment Modulation. J Nanobiotechnol. 2023;21(1):253.
doi: 10.1186/s12951-023-02006-x
Zhao Z, Yu S, Li M, Gui X, Li P. Isolation of Exosome-Like Nanoparticles and Analysis of MicroRNAs derived from Coconut Water based on small RNA high-throughput sequencing. J Agric Food Chem. 2018;66(11):2749–57.
pubmed: 29478310
doi: 10.1021/acs.jafc.7b05614
Yang M, Luo Q, Chen X, Chen F. Bitter Melon Derived Extracellular Vesicles Enhance The Therapeutic Effects and Reduce the Drug Resistance of 5-fluorouracil on Oral Squamous Cell Carcinoma. J Nanobiotechnol. 2021;19(1):259.
doi: 10.1186/s12951-021-00995-1
Yan G, Xiao Q, Zhao J, Chen H, Xu Y, Tan M, et al. Brucea Javanica Derived Exosome-Like Nanovesicles Deliver Mirnas For Cancer Therapy. J Control Release. 2024;367:425–40.
pubmed: 38295998
doi: 10.1016/j.jconrel.2024.01.060
Yi Q, Xu Z, Thakur A, Zhang K, Liang Q, Liu Y, et al. Current understanding of Plant-Derived Exosome-Like Nanoparticles in Regulating the Inflammatory Response and Immune System Microenvironment. Pharmacol Res. 2023;190:106733.
pubmed: 36931541
doi: 10.1016/j.phrs.2023.106733
Trentini M, Zanotti F, Tiengo E, Camponogara F, Degasperi M, Licastro D, et al. An Apple a Day keeps the doctor away: potential role of miRNA 146 on Macrophages Treated with Exosomes Derived from apples. Biomedicines. 2022;10(2):415.
pubmed: 35203624
pmcid: 8962404
doi: 10.3390/biomedicines10020415
Li DF, Tang Q, Yang MF, Xu HM, Zhu MZ, Zhang Y, et al. Plant-Derived Exosomal Nanoparticles: Potential Therapeutic For Inflammatory Bowel Disease. Nanoscale Adv. 2023;5(14):3575–88.
pubmed: 37441251
pmcid: 10334410
doi: 10.1039/D3NA00093A
Chen X, Liu B, Li X, An TT, Zhou Y, Li G, et al. Identification of Anti-Inflammatory Vesicle-Like Nanoparticles in Honey. J Extracell Vesicles. 2021;10(4):e12069.
pubmed: 33613874
pmcid: 7879699
doi: 10.1002/jev2.12069
Kim J, Zhang S, Zhu Y, Wang R, Wang J. Amelioration of Colitis Progression by Ginseng-Derived Exosome-Like Nanoparticles Through Suppression of Inflammatory Cytokines. J Ginseng Res. 2023;47(5):627–37.
pubmed: 37720571
pmcid: 10499592
doi: 10.1016/j.jgr.2023.01.004
Zhu MZ, Xu HM, Liang YJ, Xu J, Yue NN, Zhang Y, et al. Edible Exosome-Like Nanoparticles from Portulaca Oleracea L Mitigate DSS-induced Colitis Via Facilitating Double-Positive CD4(+)CD8(+)T Cells Expansion. J Nanobiotechnol. 2023;21(1):309.
doi: 10.1186/s12951-023-02065-0
Sriwastva MK, Deng ZB, Wang B, Teng Y, Kumar A, Sundaram K, et al. Exosome-like nanoparticles from Mulberry bark prevent DSS-induced colitis via the AhR/COPS8 pathway. EMBO Rep. 2022;23(3):e53365.
pubmed: 34994476
pmcid: 8892346
doi: 10.15252/embr.202153365
Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A. Cancer-related inflammation, the Seventh Hallmark Of Cancer: Links to Genetic Instability. Carcinogenesis. 2009;30(7):1073–81.
pubmed: 19468060
doi: 10.1093/carcin/bgp127
Moses C, Garcia-Bloj B, Harvey AR, Blancafort P. Hallmarks of cancer: the CRISPR generation. Eur J Cancer. 2018;93:10–8.
pubmed: 29433054
doi: 10.1016/j.ejca.2018.01.002
Francescone R, Hou V, Grivennikov SI. Microbiome, Inflammation, and Cancer. Cancer J. 2014;20(3):181–9.
pubmed: 24855005
pmcid: 4112188
doi: 10.1097/PPO.0000000000000048
Singh N, Baby D, Rajguru JP, Patil PB, Thakkannavar SS, Pujari VB. Inflammation and cancer. Ann Afr Med. 2019;18(3):121–6.
pubmed: 31417011
pmcid: 6704802
doi: 10.4103/aam.aam_56_18
Takagi K, Takayama T, Nagase H, Moriguchi M, Wang X, Hirayanagi K, et al. High TSC22D3 and low GBP1 Expression in the Liver is a Risk Factor For Early Recurrence Of Hepatocellular Carcinoma. Exp Ther Med. 2011;2(3):425–31.
pubmed: 22977521
pmcid: 3440698
doi: 10.3892/etm.2011.236
Zu M, Xie D, Canup BSB, Chen N, Wang Y, Sun R, et al. Green’ Nanotherapeutics from Tea Leaves for Orally Targeted Prevention and Alleviation Of Colon Diseases. Biomaterials. 2021;279:121178.
pubmed: 34656857
doi: 10.1016/j.biomaterials.2021.121178
Chen Q, Li Q, Liang Y, Zu M, Chen N, Canup BSB, et al. Natural Exosome-Like Nanovesicles from Edible Tea Flowers Suppress Metastatic Breast Cancer Via Ros Generation And Microbiota Modulation. Acta Pharm Sin B. 2022;12(2):907–23.
pubmed: 35256954
doi: 10.1016/j.apsb.2021.08.016
Chen Q, Zu M, Gong H, Ma Y, Sun J, Ran S, et al. Tea Leaf-Derived Exosome-Like Nanotherapeutics Retard Breast Tumor Growth by Pro-Apoptosis and Microbiota Modulation. J Nanobiotechnol. 2023;21(1):6.
doi: 10.1186/s12951-022-01755-5
Gao C, Zhou Y, Chen Z, Li H, Xiao Y, Hao W, et al. Turmeric-derived Nanovesicles As Novel Nanobiologics For Targeted Therapy Of Ulcerative Colitis. Theranostics. 2022;12(12):5596–614.
pubmed: 35910802
pmcid: 9330521
doi: 10.7150/thno.73650
Wu M, Ouyang Y, Wang Z, Zhang R, Huang PH, Chen C, et al. Isolation of Exosomes from Whole Blood by Integrating Acoustics and Microfluidics. Proc Natl Acad Sci U S A. 2017;114(40):10584–9.
pubmed: 28923936
pmcid: 5635903
doi: 10.1073/pnas.1709210114
Hock SC, Ying YM, Wah CL. A Review of the Current Scientific and Regulatory Status of Nanomedicines and the Challenges Ahead. PDA J Pharm Sci Technol. 2011;65(2):177–95.
pubmed: 21502077
Juliano R. Nanomedicine: Is the Wave Cresting? Nat Rev Drug Discov. 2013;12(3):171–2.
pubmed: 23449291
pmcid: 3689268
doi: 10.1038/nrd3958
Poonia N, Lather V, Pandita D. Mesoporous Silica Nanoparticles: A Smart Nanosystem For Management Of Breast Cancer. Drug Discov Today. 2018;23(2):315–32.
pubmed: 29128658
doi: 10.1016/j.drudis.2017.10.022
Panagi M, Voutouri C, Mpekris F, Papageorgis P, Martin MR, Martin JD, et al. TGF-β Inhibition Combined With Cytotoxic Nanomedicine Normalizes Triple Negative Breast Cancer Microenvironment Towards Anti-Tumor Immunity. Theranostics. 2020;10(4):1910–22.
pubmed: 32042344
pmcid: 6993226
doi: 10.7150/thno.36936
Di Gioia S, Hossain MN, Conese M. Biological Properties and Therapeutic effects of Plant-Derived Nanovesicles. Open Med (Wars). 2020;15(1):1096–122.
pubmed: 33336066
doi: 10.1515/med-2020-0160
Zhu H, He W. Ginger: A Representative Material of Herb-Derived Exosome-Like Nanoparticles. Front Nutr. 2023;10:1223349.
pubmed: 37521414
pmcid: 10374224
doi: 10.3389/fnut.2023.1223349
Lian MQ, Chng WH, Liang J, Yeo HQ, Lee CK, Belaid M, et al. Plant-Derived Extracellular Vesicles: Recent Advancements and Current Challenges on their use for Biomedical Applications. J Extracell Vesicles. 2022;11(12):e12283.
pubmed: 36519808
doi: 10.1002/jev2.12283
Xie X, Wu H, Li M, Chen X, Xu X, Ni W, et al. Progress in the Application of Exosomes As Therapeutic Vectors in Tumor-Targeted Therapy. Cytotherapy. 2019;21(5):509–24.
pubmed: 30686589
doi: 10.1016/j.jcyt.2019.01.001
Wang Y, Wei Y, Liao H, Fu H, Yang X, Xiang Q, et al. Plant exosome-like nanoparticles as Biological shuttles for Transdermal Drug Delivery. Bioeng (Basel). 2023;10(1):104.
Jain N, Pandey M, Sharma P, Gupta G, Gorain B, Dua K. Recent Developments in Plant-Derived Edible Nanoparticles As Therapeutic Nanomedicines. J Food Biochem. 2022;46(12):e14479.
pubmed: 36268842
doi: 10.1111/jfbc.14479
Barzin M, Bagheri AM, Ohadi M, Abhaji AM, Salarpour S, Dehghannoudeh G. Application of Plant-Derived Exosome-Like Nanoparticles In Drug Delivery. Pharm Dev Technol. 2023;28(5):383–402.
pubmed: 37086283
doi: 10.1080/10837450.2023.2202242
Yang C, Zhang M, Merlin D. Advances in Plant-Derived Edible Nanoparticle-Based Lipid Nano-Drug Delivery Systems As Therapeutic Nanomedicines. J Mater Chem B. 2018;6(9):1312–21.
pubmed: 30034807
pmcid: 6053076
doi: 10.1039/C7TB03207B
Lu X, Han Q, Chen J, Wu T, Cheng Y, Li F, et al. Celery (Apium graveolens L.) Exosome-like nanovesicles as a New-Generation Chemotherapy Drug Delivery platform against Tumor Proliferation. J Agric Food Chem. 2023;71(22):8413–24.
pubmed: 37222554
doi: 10.1021/acs.jafc.2c07760
Li Z, Wang H, Yin H, Bennett C, Zhang HG, Guo P. Arrowtail RNA for Ligand Display on Ginger Exosome-like nanovesicles to systemic deliver siRNA for Cancer suppression. Sci Rep. 2018;8(1):14644.
pubmed: 30279553
pmcid: 6168523
doi: 10.1038/s41598-018-32953-7
Raimondo S, Naselli F, Fontana S, Monteleone F, Lo Dico A, Saieva L, et al. Citrus limon-derived nanovesicles inhibit cancer cell proliferation and suppress CML xenograft growth by inducing TRAIL-mediated cell death. Oncotarget. 2015;6(23):19514–27.
pubmed: 26098775
pmcid: 4637302
doi: 10.18632/oncotarget.4004
Smyth T, Kullberg M, Malik N, Smith-Jones P, Graner MW, Anchordoquy TJ. Biodistribution and Delivery Efficiency of Unmodified Tumor-Derived Exosomes. J Control Release. 2015;199:145–55.
pubmed: 25523519
doi: 10.1016/j.jconrel.2014.12.013
Kooijmans SA, Vader P, van Dommelen SM, van Solinge WW, Schiffelers RM. Exosome Mimetics: A Novel Class of Drug Delivery Systems. Int J Nanomed. 2012;7:1525–41.
Yang LY, Li CQ, Zhang YL, Ma MW, Cheng W, Zhang GJ. Emerging drug delivery vectors: Engineering of Plant-Derived Nanovesicles And Their Applications in Biomedicine. Int J Nanomed. 2024;19:2591–610.
doi: 10.2147/IJN.S454794
Wang Q, Zhuang X, Mu J, Deng ZB, Jiang H, Zhang L, et al. Delivery of Therapeutic Agents By Nanoparticles Made of Grapefruit-Derived Lipids. Nat Commun. 2013;4:1867.
pubmed: 23695661
doi: 10.1038/ncomms2886
Wang Q, Ren Y, Mu J, Egilmez NK, Zhuang X, Deng Z, et al. Grapefruit-Derived Nanovectors use an Activated Leukocyte Trafficking Pathway to Deliver Therapeutic Agents to Inflammatory Tumor Sites. Cancer Res. 2015;75(12):2520–9.
pubmed: 25883092
pmcid: 4470740
doi: 10.1158/0008-5472.CAN-14-3095
Zhang L, He F, Gao L, Cong M, Sun J, Xu J, et al. Engineering Exosome-Like Nanovesicles Derived from Asparagus cochinchinensis can inhibit the proliferation of Hepatocellular Carcinoma Cells with Better Safety Profile. Int J Nanomed. 2021;16:1575–86.
doi: 10.2147/IJN.S293067
Xiao Q, Zhao W, Wu C, Wang X, Chen J, Shi X, et al. Lemon-Derived Extracellular vesicles Nanodrugs Enable to Efficiently Overcome Cancer Multidrug Resistance By Endocytosis-Triggered Energy Dissipation And Energy Production Reduction. Adv Sci (Weinh). 2022;9(20):e2105274.
pubmed: 35187842
doi: 10.1002/advs.202105274
Chen J, Pan J, Liu S, Zhang Y, Sha S, Guo H, et al. Fruit-Derived Extracellular-Vesicle-Engineered Structural Droplet drugs for enhanced Glioblastoma Chemotherapy. Adv Mater. 2023;35(45):e2304187.
pubmed: 37589312
doi: 10.1002/adma.202304187
Cao M, Yan H, Han X, Weng L, Wei Q, Sun X, et al. Ginseng-Derived Nanoparticles Alter Macrophage Polarization to Inhibit Melanoma Growth. J Immunother Cancer. 2019;7(1):326.
pubmed: 31775862
pmcid: 6882204
doi: 10.1186/s40425-019-0817-4
Yepes-Molina L, Martínez-Ballesta MC, Carvajal M. Plant Plasma Membrane Vesicles Interaction With Keratinocytes Reveals Their Potential as Carriers. J Adv Res. 2020;23:101–11.
pubmed: 32089878
pmcid: 7025959
doi: 10.1016/j.jare.2020.02.004
Abraham AM, Wiemann S, Ambreen G, Zhou J, Engelhardt K, Brüßler J, et al. Cucumber-Derived Exosome-like vesicles and PlantCrystals for improved dermal drug delivery. Pharmaceutics. 2022;14(3):476.
pubmed: 35335851
pmcid: 8955785
doi: 10.3390/pharmaceutics14030476
Umezu T, Takanashi M, Murakami Y, Ohno SI, Kanekura K, Sudo K, et al. Acerola Exosome-Like Nanovesicles to Systemically Deliver Nucleic Acid Medicine Via Oral Administration. Mol Ther Methods Clin Dev. 2021;21:199–208.
pubmed: 33850951
pmcid: 8010214
doi: 10.1016/j.omtm.2021.03.006
Xu XH, Yuan TJ, Dad HA, Shi MY, Huang YY, Jiang ZH, et al. Plant Exosomes as Novel Nanoplatforms for MicroRNA Transfer Stimulate Neural Differentiation of Stem Cells in Vitro and in vivo. Nano Lett. 2021;21(19):8151–9.
pubmed: 34586821
doi: 10.1021/acs.nanolett.1c02530
You JY, Kang SJ, Rhee WJ. Isolation of cabbage exosome-like nanovesicles and investigation of their biological activities in human cells. Bioact Mater. 2021;6(12):4321–32.
pubmed: 33997509
pmcid: 8105599
Zhang M, Wang X, Han MK, Collins JF, Merlin D. Oral administration of ginger-derived nanolipids loaded with siRNA as a novel approach for efficient siRNA drug delivery to treat ulcerative colitis. Nanomed (Lond). 2017;12(16):1927–43.
doi: 10.2217/nnm-2017-0196
Perut F, Roncuzzi L, Avnet S, Massa A, Zini N, Sabbadini S, et al. Strawberry-Derived Exosome-Like Nanoparticles Prevent Oxidative Stress In Human Mesenchymal Stromal Cells. Biomolecules. 2021;11(1):87.
pubmed: 33445656
pmcid: 7828105
doi: 10.3390/biom11010087
Chen T, Ma B, Lu S, Zeng L, Wang H, Shi W, et al. Cucumber-Derived nanovesicles Containing Cucurbitacin B for Non-small Cell Lung Cancer Therapy. Int J Nanomed. 2022;17:3583–99.
doi: 10.2147/IJN.S362244
Hwang JH, Park YS, Kim HS, Kim DH, Lee SH, Lee CH, et al. Yam-derived Exosome-Like Nanovesicles Stimulate Osteoblast Formation And Prevent Osteoporosis In Mice. J Control Release. 2023;355:184–98.
pubmed: 36736431
doi: 10.1016/j.jconrel.2023.01.071
Wolfram J, Zhu M, Yang Y, Shen J, Gentile E, Paolino D, et al. Safety of Nanoparticles In Medicine. Curr Drug Targets. 2015;16(14):1671–81.
pubmed: 26601723
pmcid: 4964712
doi: 10.2174/1389450115666140804124808
Nelemans LC, Gurevich L. Drug Delivery With Polymeric Nanocarriers-Cellular Uptake Mechanisms. Mater (Basel). 2020;13(2):366.
doi: 10.3390/ma13020366
Zhou M, Huang H, Wang D, Lu H, Chen J, Chai Z, et al. Light-triggered PEGylation/dePEGylation of the Nanocarriers For Enhanced Tumor Penetration. Nano Lett. 2019;19(6):3671–5.
pubmed: 31062980
doi: 10.1021/acs.nanolett.9b00737
Gallego-Jara J, Lozano-Terol G, Sola-Martínez RA, de Cánovas-Díaz M. Diego Puente T. A Compressive Review about Taxol(®): history and Future challenges. Molecules. 2020;25(24):5986.
pubmed: 33348838
pmcid: 7767101
doi: 10.3390/molecules25245986
Kim DK, Rhee WJ. Antioxidative effects of Carrot-Derived Nanovesicles in Cardiomyoblast and Neuroblastoma cells. Pharmaceutics. 2021;13(8):1203.
pubmed: 34452164
pmcid: 8400689
doi: 10.3390/pharmaceutics13081203
Gai C, Pomatto MAC, Deregibus MC, Dieci M, Piga A, Camussi G. Edible plant-derived extracellular vesicles for oral mRNA vaccine delivery. Vaccines (Basel). 2024;12(2):200.
pubmed: 38400183
doi: 10.3390/vaccines12020200
Witwer KW. Alternative miRNAs? Human Sequences Misidentified As Plant miRNAs in Plant Studies and in Human Plasma. F1000Res. 2018;7:244.
pubmed: 29744036
pmcid: 5904727
doi: 10.12688/f1000research.14060.1
Kang W, Bang-Berthelsen CH, Holm A, Houben AJ, Müller AH, Thymann T, et al. Survey of 800 + Data Sets from human Tissue and Body Fluid Reveals Xenomirs Are Likely Artifacts. RNA. 2017;23(4):433–45.
pubmed: 28062594
pmcid: 5340907
doi: 10.1261/rna.059725.116
Chen X, Zen K, Zhang CY. Reply to lack of Detectable Oral Bioavailability Of Plant Micrornas After Feeding in Mice. Nat Biotechnol. 2013;31(11):967–9.
pubmed: 24213764
doi: 10.1038/nbt.2741
Zhao Q, Liu Y, Zhang N, Hu M, Zhang H, Joshi T, et al. Evidence for Plant-Derived Xenomirs Based on a Large-Scale Analysis of Public Small Rna Sequencing Data from Human Samples. PLoS ONE. 2018;13(6):e0187519.
pubmed: 29949574
pmcid: 6021041
doi: 10.1371/journal.pone.0187519