Comparison of clinical outcomes in hospitalized patients with COVID-19 or non-COVID-19 community-acquired pneumonia in a prospective observational cohort study.
COVID-19
Community-acquired pneumonia
Observational cohort study
SARS-CoV-2
Journal
Infection
ISSN: 1439-0973
Titre abrégé: Infection
Pays: Germany
ID NLM: 0365307
Informations de publication
Date de publication:
18 May 2024
18 May 2024
Historique:
received:
28
02
2024
accepted:
06
05
2024
medline:
18
5
2024
pubmed:
18
5
2024
entrez:
18
5
2024
Statut:
aheadofprint
Résumé
Coronavirus disease 2019 (COVID-19) and non-COVID-19 community-acquired pneumonia (NC-CAP) often result in hospitalization with considerable risks of mortality, ICU treatment, and long-term morbidity. A comparative analysis of clinical outcomes in COVID-19 CAP (C-CAP) and NC-CAP may improve clinical management. Using prospectively collected CAPNETZ study data (January 2017 to June 2021, 35 study centers), we conducted a comprehensive analysis of clinical outcomes including in-hospital death, ICU treatment, length of hospital stay (LOHS), 180-day survival, and post-discharge re-hospitalization rate. Logistic regression models were used to examine group differences between C-CAP and NC-CAP patients and associations with patient demography, recruitment period, comorbidity, and treatment. Among 1368 patients (C-CAP: n = 344; NC-CAP: n = 1024), C-CAP showed elevated adjusted probabilities for in-hospital death (aOR 4.48 [95% CI 2.38-8.53]) and ICU treatment (aOR 8.08 [95% CI 5.31-12.52]) compared to NC-CAP. C-CAP patients were at increased risk of LOHS over seven days (aOR 1.88 [95% CI 1.47-2.42]). Although ICU patients had similar in-hospital mortality risk, C-CAP was associated with length of ICU stay over seven days (aOR 3.59 [95% CI 1.65-8.38]). Recruitment period influenced outcomes in C-CAP but not in NC-CAP. During follow-up, C-CAP was linked to a reduced risk of re-hospitalization and mortality post-discharge (aOR 0.43 [95% CI 0.27-0.70]). Distinct clinical trajectories of C-CAP and NC-CAP underscore the need for adapted management to avoid acute and long-term morbidity and mortality amid the evolving landscape of CAP pathogens.
Identifiants
pubmed: 38761325
doi: 10.1007/s15010-024-02292-z
pii: 10.1007/s15010-024-02292-z
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Bundesministerium für Bildung und Forschung
ID : 01KI20160A
Organisme : Bundesministerium für Bildung und Forschung
ID : 01KI20160A
Organisme : Bundesministerium für Bildung und Forschung
ID : 01KI20160A
Organisme : Bundesministerium für Bildung und Forschung
ID : 01KI20160A
Organisme : Bundesministerium für Bildung und Forschung
ID : 01KI20160A
Organisme : Deutsches Zentrum für Lungenforschung
ID : 82DZL002B4
Organisme : Deutsches Zentrum für Lungenforschung
ID : 82DZL002B4
Organisme : Deutsches Zentrum für Lungenforschung
ID : 82DZL002B4
Organisme : Deutsches Zentrum für Lungenforschung
ID : 82DZL002B4
Organisme : Deutsches Zentrum für Lungenforschung
ID : 82DZL002B4
Investigateurs
A Fuchs
(A)
M Engelmann
(M)
D Stolz
(D)
W Bauer
(W)
H C Mücke
(HC)
S Schmager
(S)
B Schaaf
(B)
J Kremling
(J)
D Nickoleit-Bitzenberger
(D)
H Azzaui
(H)
M Hower
(M)
F Hempel
(F)
K Prebeg
(K)
K Popkirova
(K)
M Kolditz
(M)
C Bellinghausen
(C)
A Grünewaldt
(A)
M Panning
(M)
T Welte
(T)
T Fühner
(T)
M Van't Klooster
(M)
G Barten-Neiner
(G)
W Kröner
(W)
N Adaskina
(N)
F Eberherdt
(F)
C Julius
(C)
T Illig
(T)
N Klopp
(N)
B T Schleenvoigt
(BT)
C Forstner
(C)
A Moeser
(A)
J Ankert
(J)
D Drömann
(D)
P Parschke
(P)
K Franzen
(K)
N Käding
(N)
F Waldeck
(F)
C Spinner
(C)
J Erber
(J)
F Voit
(F)
J Schneider
(J)
D Heigener
(D)
I Hering
(I)
W Albrich
(W)
M Seneghini
(M)
F Rassouli
(F)
S Baldesberger
(S)
A Essig
(A)
S Stenger
(S)
M Wallner
(M)
H Burgmann
(H)
L Traby
(L)
L Schubert
(L)
R Chen
(R)
Informations de copyright
© 2024. The Author(s).
Références
Quan TP, Fawcett NJ, Wrightson JM, Finney J, Wyllie D, Jeffery K, et al. Increasing burden of community-acquired pneumonia leading to hospitalization, 1998–2014. Thorax. 2016;71:535–42. https://doi.org/10.1136/thoraxjnl-2015-207688 .
doi: 10.1136/thoraxjnl-2015-207688
pubmed: 26888780
Troeger C, Forouzanfar M, Rao PC, Khalil I, Brown A, Swartz S, Fullman N, Mosser J, Thompson RL, Reiner RC, Abajobir A. Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory tract infections in 195 countries: a systematic analysis for the Global Burden of Disease Study 2015. The Lancet Infect Dis. 2017;17:1133–61. https://doi.org/10.1016/S1473-3099(17)30396-1 .
doi: 10.1016/S1473-3099(17)30396-1
Montag K, Kampf G. Acute lower respiratory tract infections accounted for 56.2% of hospitalized COVID-19 cases in Germany during the first three waves. Int J Epidemiol. 2022;51:1032–3. https://doi.org/10.1093/ije/dyac059 .
doi: 10.1093/ije/dyac059
pubmed: 35357420
Dähne T, Bauer W, Essig A, Schaaf B, Spinner CD, Pletz MW, et al. The impact of the SARS-CoV-2 pandemic on the prevalence of respiratory tract pathogens in patients with community-acquired pneumonia in Germany. Emerg Microbes Infect. 2021;10:1515–8. https://doi.org/10.1080/22221751.2021.1957402 .
doi: 10.1080/22221751.2021.1957402
pubmed: 34269641
pmcid: 8330739
Schuurman AR, Reijnders TD, van Engelen TS, Léopold V, de Brabander J, van Linge C, Schinkel M, Pereverzeva L, Haak BW, Brands X, Kanglie MM. The host response in different aetiologies of community-acquired pneumonia. EBioMedicine. 2022;81:104082. https://doi.org/10.1016/j.ebiom.2022.104082 .
doi: 10.1016/j.ebiom.2022.104082
pubmed: 35660785
pmcid: 9155985
Cangemi R, Calvieri C, Falcone M, Cipollone F, Ceccarelli G, Pignatelli P, et al. Comparison of thrombotic events and mortality in patients with community-acquired pneumonia and COVID-19: a multicenter observational study. Thromb Haemost. 2022;122:257–66. https://doi.org/10.1055/a-1692-9939 .
doi: 10.1055/a-1692-9939
pubmed: 34758488
Wendisch D, Dietrich O, Mari T, von Stillfried S, Ibarra IL, Mittermaier M, et al. SARS-CoV-2 infection triggers profibrotic macrophage responses and lung fibrosis. Cell. 2021;184:6243-61.e27. https://doi.org/10.1016/j.cell.2021.11.033 .
doi: 10.1016/j.cell.2021.11.033
pubmed: 34914922
pmcid: 8626230
Aliberti S, Brambilla AM, Chalmers JD, Cilloniz C, Ramirez J, Bignamini A, et al. Phenotyping community-acquired pneumonia according to the presence of acute respiratory failure and severe sepsis. Respir Res. 2014;15:27. https://doi.org/10.1186/1465-9921-15-27 .
doi: 10.1186/1465-9921-15-27
pubmed: 24593040
pmcid: 4015148
COVID-ICU Group on behalf of the REVA Network and the COVID-ICU Investigators. Clinical characteristics and day-90 outcomes of 4244 critically ill adults with COVID-19: a prospective cohort study. Intensive Care Med. 2021;47:60–73. https://doi.org/10.1007/s00134-020-06294-x .
doi: 10.1007/s00134-020-06294-x
de Roquetaillade C, Bredin S, Lascarrou J-B, Soumagne T, Cojocaru M, Chouserman BG, et al. Timing and causes of death in severe COVID-19 patients. Crit Care. 2021;25:224. https://doi.org/10.1186/s13054-021-03639-w .
doi: 10.1186/s13054-021-03639-w
pubmed: 34193220
pmcid: 8243043
Xie Y, Xu E, Bowe B, Al-Aly Z. Long-term cardiovascular outcomes of COVID-19. Nat Med. 2022;28:583–90. https://doi.org/10.1038/s41591-022-01689-3 .
doi: 10.1038/s41591-022-01689-3
pubmed: 35132265
pmcid: 8938267
Corrales-Medina VF, Alvarez KN, Weissfeld LA, Angus DC, Chirinos JA, Chang C-CH, et al. Association between hospitalization for pneumonia and subsequent risk of cardiovascular disease. JAMA. 2015;313:264–74. https://doi.org/10.1001/jama.2014.18229 .
doi: 10.1001/jama.2014.18229
pubmed: 25602997
pmcid: 4687729
Leclerc QJ, Fuller NM, Keogh RH, Diaz-Ordaz K, Sekula R, Semple MG, et al. Importance of patient bed pathways and length of stay differences in predicting COVID-19 hospital bed occupancy in England. BMC Health Serv Res. 2021;21:566. https://doi.org/10.1186/s12913-021-06509-x .
doi: 10.1186/s12913-021-06509-x
pubmed: 34107928
pmcid: 8188158
Welte T, Suttorp N, Marre R. CAPNETZ-community-acquired pneumonia competence network. Infection. 2004;32:234–8. https://doi.org/10.1007/s15010-004-3107-z .
doi: 10.1007/s15010-004-3107-z
pubmed: 15293080
Tolksdorf K, Loenenbach A, Buda S. Dritte Aktualisierung der ‘Retrospektiven Phaseneinteilung der COVID-19-Pandemie in Deutschland.’ Epid Bull. 2022;38:3–6. https://doi.org/10.25646/10598 .
doi: 10.25646/10598
Therneau TM, Lumley T, Elizabeth A, Cynthia C. survival: survival analysis. 2023; published online Jan 9. https://CRAN.R-project.org/package/survival . Accessed 27 Feb 2024.
Kassambara A, Kosinski M, Biecek P, Fabian S. survminer: drawing survival curves using ‘ggplot2’. 2021; published online March 9. https://CRAN.R-project.org/package=survminer . Accessed 27 Feb 2024.
von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP, et al. Strengthening the reporting of observational studies in epidemiology (STROBE) stagement: guidelines for reporting observational studies. BMJ. 2007;335:806–8. https://doi.org/10.1136/bmj.39335.541782.AD .
doi: 10.1136/bmj.39335.541782.AD
Zeleke AJ, Moscato S, Miglio R, Chiari L. Length of stay analysis of COVID-19 hospitalizations using a count regression model and quantile regression: a study in Bologna, Italy. Int J Environ Res Public Health. 2022;19:2224. https://doi.org/10.3390/ijerph19042224 .
doi: 10.3390/ijerph19042224
pubmed: 35206411
pmcid: 8871974
Lampl BMJ, Edenharter B, Leitzmann MF, Salzberger B. COVID-19-related deaths: a 2-year inter-wave comparison of mortality data from Germany. Infection. 2023;51:1147–52. https://doi.org/10.1007/s15010-023-01982-4 .
doi: 10.1007/s15010-023-01982-4
pubmed: 36690889
Lin D-Y, Gu Y, Wheeler B, Young H, Holloway S, Sunny SK, et al. Effectiveness of Covid-19 vaccines over a 9-month period in North Carolina. N Engl J Med. 2022;386:933–41. https://doi.org/10.1056/NEJMoa2117128 .
doi: 10.1056/NEJMoa2117128
pubmed: 35020982
Sievers C, Zacher B, Ullrich A, Huska M, Fuchs S, Buda S, et al. SARS-CoV-2 Omicron variants BA.1 and BA.2 both show similarly reduced disease severity of COVID-19 compared to Delta, Germany, 2021 to 2022. Eurosurveillance. 2022;27:2200396. https://doi.org/10.2807/1560-7917.ES.2022.27.22.2200396 .
doi: 10.2807/1560-7917.ES.2022.27.22.2200396
pubmed: 35656831
pmcid: 9164675
Lansbury L, Lim B, Baskaran V, Lim WS. Co-infections in people with COVID-19: a systematic review and meta-analysis. J Infect. 2020;81:266–75. https://doi.org/10.1016/j.jinf.2020.05.046 .
doi: 10.1016/j.jinf.2020.05.046
pubmed: 32473235
pmcid: 7255350
Abate BB, Kassie AM, Kassaw MW, Aragie TG, Masresha SA. Sex difference in coronavirus disease (COVID-19): a systematic review and meta-analysis. BMJ Open. 2020;10:e040129. https://doi.org/10.1136/bmjopen-2020-040129 .
doi: 10.1136/bmjopen-2020-040129
pubmed: 33028563
pmcid: 7539579
Takahashi T, Ellingson MK, Wong P, Israelow B, Lucas C, Klein J, et al. Sex differences in immune responses that underlie COVID-19 disease outcomes. Nature. 2020;588:315–20. https://doi.org/10.1038/s41586-020-2700-3 .
doi: 10.1038/s41586-020-2700-3
pubmed: 32846427
pmcid: 7725931
Corica B, Tartaglia F, D’Amico T, Romiti GF, Cangemi R. Sex and gender differences in community-acquired pneumonia. Intern Emerg Med. 2022;17:1575–88. https://doi.org/10.1007/s11739-022-02999-7 .
doi: 10.1007/s11739-022-02999-7
pubmed: 35852675
pmcid: 9294783
Kodde C, Bonsignore M, Schöndube D, Bauer T, Hohenstein S, Bollmann A, et al. Mortality in cancer patients with SARS-CoV-2 or seasonal influenza: an observational cohort study from a German-wide hospital network. Infection. 2023;51:119–27. https://doi.org/10.1007/s15010-022-01852-5 .
doi: 10.1007/s15010-022-01852-5
pubmed: 35657531
Serrano Fernández L, Ruiz Iturriaga LA, España Yandiola PP, Méndez Ocaña R, Pérez Fernández S, Tabernero Huget E, et al. Bacteraemic pneumococcal pneumonia and SARS-CoV-2 pneumonia: differences and similarities. Int J Infect Dis. 2022;115:39–47. https://doi.org/10.1016/j.ijid.2021.11.023 .
doi: 10.1016/j.ijid.2021.11.023
pubmed: 34800689
Novelli L, Raimondi F, Carioli G, Carobbio A, Pappacena S, Biza R, et al. One-year mortality in COVID-19 is associated with patients’ comorbidities rather than pneumonia severity. Respir Med Res. 2023;83:100976. https://doi.org/10.1016/j.resmer.2022.100976 .
doi: 10.1016/j.resmer.2022.100976
pubmed: 36473331
Nalbandian A, Sehgal K, Gupta A, Madhavan MV, McGroder C, Stevens JS, et al. Post-acute COVID-19 syndrome. Nat Med. 2021;27:601–15. https://doi.org/10.1038/s41591-021-01283-z .
doi: 10.1038/s41591-021-01283-z
pubmed: 33753937
pmcid: 8893149
Schons M, Pilgram L, Reese J-P, Stecher M, Anton G, Appel KS, et al. The German National Pandemic Cohort Network (NAPKON): rationale, study design and baseline characteristics. Eur J Epidemiol. 2022;37:849–70. https://doi.org/10.1007/s10654-022-00896-z .
doi: 10.1007/s10654-022-00896-z
pubmed: 35904671
pmcid: 9336157