Association of triglyceride glucose index and triglyceride glucose-body mass index with sudden cardiac arrest in the general population.
Cohort study
Insulin resistance
Sudden cardiac arrest
Triglyceride glucose
Triglyceride glucose-body mass index
Journal
Cardiovascular diabetology
ISSN: 1475-2840
Titre abrégé: Cardiovasc Diabetol
Pays: England
ID NLM: 101147637
Informations de publication
Date de publication:
18 May 2024
18 May 2024
Historique:
received:
14
03
2024
accepted:
09
05
2024
medline:
19
5
2024
pubmed:
19
5
2024
entrez:
18
5
2024
Statut:
epublish
Résumé
Insulin resistance (IR) significantly contributes to cardiovascular disease (CVD) development. Triglyceride glucose (TyG) index and triglyceride glucose-body mass index (TyG-BMI) are recognised as convenient proxies for IR. However, their relationship with sudden cardiac arrest (SCA) remains unclear. This prospective cohort analysis included 355,242 UK Biobank participants with available TyG index and TyG-BMI data and no history of CVD. Cox proportional risk models assessed the association between the TyG index, TyG-BMI and SCA risk. Additionally, Accelerated Failure Time (AFT) models were employed to investigate the timing of SCA onset. The impact of dynamic increases in TyG index and TyG-BMI levels on SCA risk was examined using restricted cubic spline. Over a median follow-up period of 165.4 months (interquartile range 156.5-174 months), 1,622 cases of SCA were recorded. Multivariate Cox regression analysis revealed a 9% increase in SCA risk per standard deviation increase in TyG index (adjusted hazard ratio (aHR) = 1.09, 95% confidence interval (CI) 1.04-1.15) and an 14% increase per standard deviation increase in TyG-BMI (aHR 1.14, 95% CI 1.09-1.2). AFT models indicated earlier median times to SCA occurrence with increasing quintiles of TyG index and TyG-BMI compared to the lowest quintile (P for trend < 0.05). SCA risk was linearly (P = 0.54) and non-linearly (P = 0.007) correlated with gradual increases in TyG index and TyG-BMI levels, respectively. Sex-stratified analyses showed stronger associations in women. Higher TyG index and TyG-BMI levels are associated with an increased SCA risk and earlier onset, particularly in women.
Sections du résumé
BACKGROUND
BACKGROUND
Insulin resistance (IR) significantly contributes to cardiovascular disease (CVD) development. Triglyceride glucose (TyG) index and triglyceride glucose-body mass index (TyG-BMI) are recognised as convenient proxies for IR. However, their relationship with sudden cardiac arrest (SCA) remains unclear.
METHODS
METHODS
This prospective cohort analysis included 355,242 UK Biobank participants with available TyG index and TyG-BMI data and no history of CVD. Cox proportional risk models assessed the association between the TyG index, TyG-BMI and SCA risk. Additionally, Accelerated Failure Time (AFT) models were employed to investigate the timing of SCA onset. The impact of dynamic increases in TyG index and TyG-BMI levels on SCA risk was examined using restricted cubic spline.
RESULTS
RESULTS
Over a median follow-up period of 165.4 months (interquartile range 156.5-174 months), 1,622 cases of SCA were recorded. Multivariate Cox regression analysis revealed a 9% increase in SCA risk per standard deviation increase in TyG index (adjusted hazard ratio (aHR) = 1.09, 95% confidence interval (CI) 1.04-1.15) and an 14% increase per standard deviation increase in TyG-BMI (aHR 1.14, 95% CI 1.09-1.2). AFT models indicated earlier median times to SCA occurrence with increasing quintiles of TyG index and TyG-BMI compared to the lowest quintile (P for trend < 0.05). SCA risk was linearly (P = 0.54) and non-linearly (P = 0.007) correlated with gradual increases in TyG index and TyG-BMI levels, respectively. Sex-stratified analyses showed stronger associations in women.
CONCLUSIONS
CONCLUSIONS
Higher TyG index and TyG-BMI levels are associated with an increased SCA risk and earlier onset, particularly in women.
Identifiants
pubmed: 38762473
doi: 10.1186/s12933-024-02275-2
pii: 10.1186/s12933-024-02275-2
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
173Subventions
Organisme : Natural Science Foundation of Zhejiang Province
ID : LY21H290006
Informations de copyright
© 2024. The Author(s).
Références
World Health Organization. (2021). Cardiovascular diseases (CVDs). Retrieved from https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds ).
Choi S. The potential role of biomarkers associated with ASCVD risk: risk-enhancing biomarkers. J Lipid Atheroscler. 2019;8:173–82.
pubmed: 32821707
pmcid: 7379121
doi: 10.12997/jla.2019.8.2.173
Rosenblit PD. Extreme atherosclerotic cardiovascular disease (ASCVD) risk recognition. Curr Diab Rep. 2019;19:61.
pubmed: 31332544
doi: 10.1007/s11892-019-1178-6
Zimmerman DS, Tan HL. Epidemiology and risk factors of sudden cardiac arrest. Curr Opin Crit Care. 2021;27:613–6.
pubmed: 34629421
doi: 10.1097/MCC.0000000000000896
Schluep M, Gravesteijn BY, Stolker RJ, Endeman H, Hoeks SE. One-year survival after in-hospital cardiac arrest: a systematic review and meta-analysis. Resuscitation. 2018;132:90–100.
pubmed: 30213495
doi: 10.1016/j.resuscitation.2018.09.001
Yan S, Gan Y, Jiang N, Wang R, Chen Y, Luo Z, et al. The global survival rate among adult out-of-hospital cardiac arrest patients who received cardiopulmonary resuscitation: a systematic review and meta-analysis. Crit Care. 2020;24:61.
pubmed: 32087741
pmcid: 7036236
doi: 10.1186/s13054-020-2773-2
Tao L-C, Xu J-N, Wang T-T, Hua F, Li J-J. Triglyceride-glucose index as a marker in cardiovascular diseases: landscape and limitations. Cardiovasc Diabetol. 2022;21:68.
pubmed: 35524263
pmcid: 9078015
doi: 10.1186/s12933-022-01511-x
van Minh H, Tien HA, Sinh CT, Thang DC, Chen C-H, Tay JC, et al. Assessment of preferred methods to measure insulin resistance in Asian patients with hypertension. J Clin Hypertens (Greenwich). 2021;23:529–37.
pubmed: 33415834
doi: 10.1111/jch.14155
Qian T, Sheng X, Shen P, Fang Y, Deng Y, Zou G. Mets-IR as a predictor of cardiovascular events in the middle-aged and elderly population and mediator role of blood lipids. Front Endocrinol (Lausanne). 2023;14:1224967.
pubmed: 37534205
doi: 10.3389/fendo.2023.1224967
Cheng W, Kong F, Chen S. Comparison of the predictive value of four insulin resistance surrogates for the prevalence of hypertension: a population-based study. Diabetol Metab Syndr. 2022;14:137.
pubmed: 36163185
pmcid: 9511744
doi: 10.1186/s13098-022-00907-9
Qiao T, Luo T, Pei H, Yimingniyazi B, Aili D, Aimudula A, et al. Association between abdominal obesity indices and risk of cardiovascular events in Chinese populations with type 2 diabetes: a prospective cohort study. Cardiovasc Diabetol. 2022;21:225.
pubmed: 36320060
pmcid: 9628026
doi: 10.1186/s12933-022-01670-x
Zheng L, Sun A, Han S, Qi R, Wang R, Gong X, Xue M. Association between visceral obesity and 10-year risk of first atherosclerotic cardiovascular diseases events among American adults: national health and nutrition examination survey. Front Cardiovasc Med. 2023;10:1249401.
pubmed: 37674809
pmcid: 10479018
doi: 10.3389/fcvm.2023.1249401
Du T, Yuan G, Zhang M, Zhou X, Sun X, Yu X. Clinical usefulness of lipid ratios, visceral adiposity indicators, and the triglycerides and glucose index as risk markers of insulin resistance. Cardiovasc Diabetol. 2014;13:146.
pubmed: 25326814
pmcid: 4209231
doi: 10.1186/s12933-014-0146-3
Ahn N, Baumeister SE, Amann U, Rathmann W, Peters A, Huth C, et al. Visceral adiposity index (VAI), lipid accumulation product (LAP), and product of triglycerides and glucose (TyG) to discriminate prediabetes and diabetes. Sci Rep. 2019;9:9693.
pubmed: 31273286
pmcid: 6609728
doi: 10.1038/s41598-019-46187-8
Li X, Xue Y, Dang Y, Liu W, Wang Q, Zhao Y, Zhang Y. Association of non-insulin-based insulin resistance indices with risk of incident prediabetes and diabetes in a Chinese rural population: a 12-year prospective study. Diabetes Metab Syndr Obes. 2022;15:3809–19.
pubmed: 36530590
pmcid: 9756794
doi: 10.2147/DMSO.S385906
Vasques ACJ, Novaes FS, de Oliveira M, da Saúde SJRM, Yamanaka A, Pareja JC, et al. TyG index performs better than HOMA in a Brazilian population: a hyperglycemic clamp validated study. Diabetes Res Clin Pract. 2011;93:e98–100.
pubmed: 21665314
doi: 10.1016/j.diabres.2011.05.030
Er L-K, Wu S, Chou H-H, Hsu L-A, Teng M-S, Sun Y-C, Ko Y-L. Triglyceride glucose-body mass index is a simple and clinically useful surrogate marker for insulin resistance in nondiabetic individuals. PLoS ONE. 2016;11: e0149731.
pubmed: 26930652
pmcid: 4773118
doi: 10.1371/journal.pone.0149731
Lim J, Kim J, Koo SH, Kwon GC. Comparison of triglyceride glucose index, and related parameters to predict insulin resistance in Korean adults: an analysis of the 2007–2010 Korean national health and nutrition examination survey. PLoS ONE. 2019;14: e0212963.
pubmed: 30845237
pmcid: 6405083
doi: 10.1371/journal.pone.0212963
Huo R-R, Zhai L, Liao Q, You X-M. Changes in the triglyceride glucose-body mass index estimate the risk of stroke in middle-aged and older Chinese adults: a nationwide prospective cohort study. Cardiovasc Diabetol. 2023;22:254.
pubmed: 37716947
pmcid: 10505325
doi: 10.1186/s12933-023-01983-5
Cheng Y, Fang Z, Zhang X, Wen Y, Lu J, He S, Xu B. Association between triglyceride glucose-body mass index and cardiovascular outcomes in patients undergoing percutaneous coronary intervention: a retrospective study. Cardiovasc Diabetol. 2023;22:75.
pubmed: 36997935
pmcid: 10064664
doi: 10.1186/s12933-023-01794-8
Yang S, Shi X, Liu W, Wang Z, Li R, Xu X, et al. Association between triglyceride glucose-body mass index and heart failure in subjects with diabetes mellitus or prediabetes mellitus: a cross-sectional study. Front Endocrinol (Lausanne). 2023;14:1294909.
pubmed: 38027163
doi: 10.3389/fendo.2023.1294909
Dang K, Wang X, Hu J, Zhang Y, Cheng L, Qi X, et al. The association between triglyceride-glucose index and its combination with obesity indicators and cardiovascular disease: NHANES 2003–2018. Cardiovasc Diabetol. 2024;23:8.
pubmed: 38184598
pmcid: 10771672
doi: 10.1186/s12933-023-02115-9
Yang X, Li K, Wen J, Yang C, Li Y, Xu G, Ma Y. Association of the triglyceride glucose-body mass index with the extent of coronary artery disease in patients with acute coronary syndromes. Cardiovasc Diabetol. 2024;23:24.
pubmed: 38218893
pmcid: 10790264
doi: 10.1186/s12933-024-02124-2
Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015;12: e1001779.
pubmed: 25826379
pmcid: 4380465
doi: 10.1371/journal.pmed.1001779
Elliott P, Peakman TC. The UK Biobank sample handling and storage protocol for the collection, processing and archiving of human blood and urine. Int J Epidemiol. 2008;37:234–44.
pubmed: 18381398
doi: 10.1093/ije/dym276
Yousaf S, Bonsall A. UK Townsend deprivation scores from 2011 census data. Colchester: UK Data Service; 2017.
Petermann-Rocha F, Ho FK, Foster H, Boopor J, Parra-Soto S, Gray SR, et al. Nonlinear associations between cumulative dietary risk factors and cardiovascular diseases, cancer, and all-cause mortality: a prospective cohort study from UK Biobank. Mayo Clin Proc. 2021;96:2418–31.
pubmed: 34366141
doi: 10.1016/j.mayocp.2021.01.036
Craig CL, Marshall AL, Sjöström M, Bauman AE, Booth ML, Ainsworth BE, et al. International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc. 2003;35:1381–95.
pubmed: 12900694
doi: 10.1249/01.MSS.0000078924.61453.FB
Tu SJ, Gallagher C, Elliott AD, Linz D, Pitman BM, Hendriks JML, et al. Alcohol consumption and risk of ventricular arrhythmias and sudden cardiac death: an observational study of 408,712 individuals. Heart Rhythm. 2022;19:177–84.
pubmed: 35101186
doi: 10.1016/j.hrthm.2021.09.040
Qiu S, Xing Z. Association between accelerometer-derived physical activity and incident cardiac arrest. Europace. 2023. https://doi.org/10.1093/europace/euad353 .
doi: 10.1093/europace/euad353
pubmed: 38016070
pmcid: 10751851
Tello-Flores VA, Beltrán-Anaya FO, Ramírez-Vargas MA, Esteban-Casales BE, Navarro-Tito N, Del Alarcón-Romero LC, et al. Role of long non-coding RNAs and the molecular mechanisms involved in insulin resistance. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22147256 .
doi: 10.3390/ijms22147256
pubmed: 34298896
pmcid: 8306787
Hill MA, Yang Y, Zhang L, Sun Z, Jia G, Parrish AR, Sowers JR. Insulin resistance, cardiovascular stiffening and cardiovascular disease. Metabolism. 2021;119: 154766.
pubmed: 33766485
doi: 10.1016/j.metabol.2021.154766
Zheng R, Mao Y. Triglyceride and glucose (TyG) index as a predictor of incident hypertension: a 9-year longitudinal population-based study. Lipids Health Dis. 2017;16:175.
pubmed: 28903774
pmcid: 5598027
doi: 10.1186/s12944-017-0562-y
Won K-B, Park EJ, Han D, Lee JH, Choi S-Y, Chun EJ, et al. Triglyceride glucose index is an independent predictor for the progression of coronary artery calcification in the absence of heavy coronary artery calcification at baseline. Cardiovasc Diabetol. 2020;19:34.
pubmed: 32178666
pmcid: 7074986
doi: 10.1186/s12933-020-01008-5
Wang X, Xu W, Song Q, Zhao Z, Meng X, Xia C, et al. Association between the triglyceride-glucose index and severity of coronary artery disease. Cardiovasc Diabetol. 2022;21:168.
pubmed: 36050734
pmcid: 9438180
doi: 10.1186/s12933-022-01606-5
Xu L, Wu M, Chen S, Yang Y, Wang Y, Wu S, Tian Y. Triglyceride-glucose index associates with incident heart failure: a cohort study. Diabetes Metab. 2022;48: 101365.
pubmed: 35660526
doi: 10.1016/j.diabet.2022.101365
Tian X, Zuo Y, Chen S, Liu Q, Tao B, Wu S, Wang A. Triglyceride-glucose index is associated with the risk of myocardial infarction: an 11-year prospective study in the Kailuan cohort. Cardiovasc Diabetol. 2021;20:19.
pubmed: 33435964
pmcid: 7802156
doi: 10.1186/s12933-020-01210-5
Liu X, Abudukeremu A, Jiang Y, Cao Z, Wu M, Ma J, et al. U-shaped association between the triglyceride-glucose index and atrial fibrillation incidence in a general population without known cardiovascular disease. Cardiovasc Diabetol. 2023;22:118.
pubmed: 37208737
pmcid: 10197258
doi: 10.1186/s12933-023-01777-9
Wang Y, Yang W, Jiang X. Association between triglyceride-glucose index and hypertension: a meta-analysis. Front Cardiovasc Med. 2021;8: 644035.
pubmed: 34136539
pmcid: 8200397
doi: 10.3389/fcvm.2021.644035
Liu X, Tan Z, Huang Y, Zhao H, Liu M, Yu P, et al. Relationship between the triglyceride-glucose index and risk of cardiovascular diseases and mortality in the general population: a systematic review and meta-analysis. Cardiovasc Diabetol. 2022;21:124.
pubmed: 35778731
pmcid: 9250255
doi: 10.1186/s12933-022-01546-0
Gu Q, Hu X, Meng J, Ge J, Wang SJ, Liu XZ. Associations of triglyceride-glucose index and its derivatives with hyperuricemia risk: a cohort study in Chinese general population. Int J Endocrinol. 2020;2020:3214716.
pubmed: 33014043
pmcid: 7519459
doi: 10.1155/2020/3214716
Zhan C, Peng Y, Ye H, Diao X, Yi C, Guo Q, et al. Triglyceride glucose-body mass index and cardiovascular mortality in patients undergoing peritoneal dialysis: a retrospective cohort study. Lipids Health Dis. 2023;22:143.
pubmed: 37670344
pmcid: 10478298
doi: 10.1186/s12944-023-01892-2
Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, et al. Heart disease and stroke statistics-2019 update: a report from the American heart association. Circulation. 2019;139:e56–528.
pubmed: 30700139
doi: 10.1161/CIR.0000000000000659
Adabag AS, Luepker RV, Roger VL, Gersh BJ. Sudden cardiac death: epidemiology and risk factors. Nat Rev Cardiol. 2010;7:216–25.
pubmed: 20142817
pmcid: 5014372
doi: 10.1038/nrcardio.2010.3
Koplan BA, Stevenson WG. Ventricular tachycardia and sudden cardiac death. Mayo Clin Proc. 2009;84:289–97.
pubmed: 19252119
pmcid: 2664600
doi: 10.4065/84.3.289
Dobiásová M. Atherogenic index of plasma log (triglycerides/HDL-cholesterol): theoretical and practical implications. Clin Chem. 2004;50:1113–5.
pubmed: 15229146
doi: 10.1373/clinchem.2004.033175
Bjornstad P, Eckel RH. Pathogenesis of lipid disorders in insulin resistance: a brief review. Curr Diab Rep. 2018;18:127.
pubmed: 30328521
pmcid: 6428207
doi: 10.1007/s11892-018-1101-6
Fazio S, Mercurio V, Affuso F, Bellavite P. The Negative Impact of Insulin Resistance/Hyperinsulinemia on Chronic Heart Failure and the Potential Benefits of Its Screening and Treatment. Biomedicines. 2023. https://doi.org/10.3390/biomedicines11112928 .
doi: 10.3390/biomedicines11112928
pubmed: 38001929
pmcid: 10669553
Li A, Zheng N, Ding X. Mitochondrial abnormalities: a hub in metabolic syndrome-related cardiac dysfunction caused by oxidative stress. Heart Fail Rev. 2022;27:1387–94.
pubmed: 33950478
doi: 10.1007/s10741-021-10109-6
Khan SH, Sobia F, Niazi NK, Manzoor SM, Fazal N, Ahmad F. Metabolic clustering of risk factors: evaluation of Triglyceride-glucose index (TyG index) for evaluation of insulin resistance. Diabetol Metab Syndr. 2018;10:74.
pubmed: 30323862
pmcid: 6173832
doi: 10.1186/s13098-018-0376-8
Schultz JG, Andersen S, Andersen A, Nielsen-Kudsk JE, Nielsen JM. Evaluation of cardiac electrophysiological properties in an experimental model of right ventricular hypertrophy and failure. Cardiol Young. 2016;26:451–8.
pubmed: 25872028
doi: 10.1017/S1047951115000402
González-González JG, Violante-Cumpa JR, Zambrano-Lucio M, Burciaga-Jimenez E, Castillo-Morales PL, Garcia-Campa M, et al. HOMA-IR as a predictor of health outcomes in patients with metabolic risk factors: a systematic review and meta-analysis. High Blood Press Cardiovasc Prev. 2022;29:547–64.
pubmed: 36181637
doi: 10.1007/s40292-022-00542-5
Iorga A, Cunningham CM, Moazeni S, Ruffenach G, Umar S, Eghbali M. The protective role of estrogen and estrogen receptors in cardiovascular disease and the controversial use of estrogen therapy. Biol Sex Differ. 2017;8:33.
pubmed: 29065927
pmcid: 5655818
doi: 10.1186/s13293-017-0152-8
Wada H, Miyauchi K, Daida H. Gender differences in the clinical features and outcomes of patients with coronary artery disease. Expert Rev Cardiovasc Ther. 2019;17:127–33.
pubmed: 30569774
doi: 10.1080/14779072.2019.1561277
Ju SH, Yi H-S. Implication of sex differences in visceral fat for the assessment of incidence risk of type 2 diabetes mellitus. Diabetes Metab J. 2022;46:414–6.
pubmed: 35656564
pmcid: 9171154
doi: 10.4093/dmj.2022.0089
Allegra A, Caserta S, Genovese S, Pioggia G, Gangemi S. Gender differences in oxidative stress in relation to cancer susceptibility and survival. Antioxidants (Basel). 2023;12:1255.
pubmed: 37371985
doi: 10.3390/antiox12061255
Kautzky-Willer A, Leutner M, Harreiter J. Sex differences in type 2 diabetes. Diabetologia. 2023;66:986–1002.
pubmed: 36897358
pmcid: 10163139
doi: 10.1007/s00125-023-05891-x