Exploring toroidal anvil profiles for larger sample volumes above 4 Mbar.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
18 May 2024
18 May 2024
Historique:
received:
01
11
2023
accepted:
10
05
2024
medline:
19
5
2024
pubmed:
19
5
2024
entrez:
18
5
2024
Statut:
epublish
Résumé
With the advent of toroidal and double-stage diamond anvil cells (DACs), pressures between 4 and 10 Mbar can be achieved under static compression, however, the ability to explore diverse sample assemblies is limited on these micron-scale anvils. Adapting the toroidal DAC to support larger sample volumes offers expanded capabilities in physics, chemistry, and planetary science: including, characterizing materials in soft pressure media to multi-megabar pressures, synthesizing novel phases, and probing planetary assemblages at the interior pressures and temperatures of super-Earths and sub-Neptunes. Here we have continued the exploration of larger toroidal DAC profiles by iteratively testing various torus and shoulder depths with central culet diameters in the 30-50 µm range. We present a 30 µm culet profile that reached a maximum pressure of 414(1) GPa based on a Pt scale. The 300 K equations of state fit to our P-V data collected on gold and rhenium are compatible with extrapolated hydrostatic equations of state within 1% up to 4 Mbar. This work validates the performance of these large-culet toroidal anvils to > 4 Mbar and provides a promising foundation to develop toroidal DACs for diverse sample loading and laser heating.
Identifiants
pubmed: 38762593
doi: 10.1038/s41598-024-61861-2
pii: 10.1038/s41598-024-61861-2
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
11412Subventions
Organisme : U.S. Department of Energy
ID : DE-AC52-07NA27344
Organisme : U.S. Department of Energy
ID : AC02-06CH11357
Organisme : National Science Foundation
ID : EAR-1619868
Organisme : National Science Foundation
ID : EAR - 1634415
Informations de copyright
© 2024. The Author(s).
Références
Howe, A. R., Burrows, A. & Verne, W. Mass-radius relations and core-envelope decompositions of super-Earths and sub-Neptunes. Astrophys. J. 787, 173 (2014).
doi: 10.1088/0004-637X/787/2/173
Van Hoolst, T., Noack, L. & Rivoldini, A. Exoplanet interiors and habitability. Adv. Phys: X 4, 1630316 (2019).
Zeng, L. et al. Growth model interpretation of planet size distribution. Proc. Nat. Acad. Sci. U.S.A. 116, 9723–9728 (2019).
doi: 10.1073/pnas.1812905116
Sotin, C., Grasset, O. & Mocquet, A. Mass–radius curve for extrasolar Earth-like planets and ocean planets. Icarus 191, 337–351 (2007).
doi: 10.1016/j.icarus.2007.04.006
Nettelmann, N., Helled, R., Fortney, J. J. & Redmer, R. New indication for a dichotomy in the interior structure of Uranus and Neptune from the application of modified shape and rotation data. Planet. Space Sci. 77, 143–151 (2013).
doi: 10.1016/j.pss.2012.06.019
Li, Y. et al. Metallic icosahedron phase of sodium at terapascal pressures. Phys. Rev. Lett. 114, 125501 (2015).
doi: 10.1103/PhysRevLett.114.125501
pubmed: 25860756
Loubeyre, P., Occelli, F. & Dumas, P. Synchrotron infrared spectroscopic evidence of the probable transition to metal hydrogen. Nature 577, 631–635 (2020).
doi: 10.1038/s41586-019-1927-3
pubmed: 31996819
Millot, M. et al. Experimental evidence for superionic water ice using shock compression. Nat. Phys. 14, 297–302 (2018).
doi: 10.1038/s41567-017-0017-4
Gao, G. et al. Superconducting binary hydrides: Theoretical predictions and experimental progresses. Mater. Today Phys. 21, 100546 (2021).
doi: 10.1016/j.mtphys.2021.100546
Ma, Y. et al. Transparent dense sodium. Nature 458, 182–185 (2009).
doi: 10.1038/nature07786
pubmed: 19279632
Miao, M. S. & Hoffmann, R. High pressure electrides: A predictive chemical and physical theory. Acc. Chem. Res. 47, 1311–1317 (2014).
doi: 10.1021/ar4002922
pubmed: 24702165
Grochala, W., Hoffmann, R., Feng, J. & Ashcroft, N. W. The chemical imagination at work in very tight places. Angew. Chem., Int. Ed. 46, 3620–3642 (2007).
Dubrovinsky, L., Dubrovinskaia, N., Prakapenka, V. B. & Abakumov, A. M. Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6 Mbar. Nat. Comm. 3, 1163 (2012).
doi: 10.1038/ncomms2160
Dubrovinsky, L., Khandarkhaeva, S., Fedotenko, T., Laniel, D., Bykov, M., Giacobbe, C., Lawrence Bright, E., Sedmak, P., Chariton, S., Prakapenka, V. & Ponomareva, A.V. Materials synthesis at terapascal static pressures. Nature 605, 274–278 (2022).
Sakai, T., Yagi, T., Ohfuji, H., Irifune, T., Ohishi, Y., Hirao, N., Suzuki, Y., Kuroda, Y., Asakawa, T. & Kanemura, T. High-pressure generation using double stage micro-paired diamond anvils shaped by focused ion beam. Rev. Sci. Inst. 86, (2015).
Sakai, T. et al. High pressure generation using double-stage diamond anvil technique: Problems and equations of state of rhenium. High Press. Res. 38, 107–119 (2018).
doi: 10.1080/08957959.2018.1448082
Sakai, T., Yagi, T., Takeda, R., Hamatani, T., Nakamoto, Y., Kadobayashi, H., Mimori, H., I. Kawaguchi, S., Hirao, N., Kuramochi, K. & Ishimatsu, N. Conical support for double-stage diamond anvil apparatus. High Press. Res., 40, 12–21 (2020).
Dubrovinskaia, N. et al. Terapascal static pressure generation with ultrahigh yield strength nanodiamond. Sci. Adv. 2, e160034 (2016).
doi: 10.1126/sciadv.1600341
Dewaele, A., Loubeyre, P., Occelli, F., Marie, O. & Mezouar, M. Toroidal diamond anvil cell for detailed measurements under extreme static pressures. Nat. Comm. 9, 2913 (2018).
doi: 10.1038/s41467-018-05294-2
Jenei, Z. et al. Single crystal toroidal diamond anvils for high pressure experiments beyond 5 megabar. Nat. Comm. 9, 3563 (2018).
doi: 10.1038/s41467-018-06071-x
Khandarkhaeva, S., Fedotenko, T., Krupp, A., Glazyrin, K., Dong, W., Liermann, H. P., Bykov, M., Kurnosov, A., Dubrovinskaia, N. & Dubrovinsky, L. Testing the performance of secondary anvils shaped with focused ion beam from the single-crystal diamond for use in double-stage diamond anvil cells. Rev. Sci. Inst. 93, (2022).
Eremets, M. I., Minkov, V. S., Kong, P. P., Drozdov, A. P., Chariton, S. & Prakapenka, V. B. Universal diamond edge Raman scale to 0.5 terapascal and implications for the metallization of hydrogen. Nat. Commun. 14, 907 (2023).
O’Bannon, E. F., Lipp, M. J., Smith, J. S., Meng, Y., Söderlind, P., Young, D. & Jenei, Z. The ultrahigh pressure stability of silver: An experimental and theoretical study. J. Appl. Phys. 129, (2021).
Fratanduono, D. E. et al. Establishing gold and platinum standards to 1 terapascal using shockless compression. Science 372, 1063–1068 (2021).
doi: 10.1126/science.abh0364
pubmed: 34083483
Anzellini, S., Dewaele, A., Occelli, F., Loubeyre, P. & Mezouar, M. Equation of state of rhenium and application for ultra high pressure calibration. J. Appl. Phys. 115, 043511 (2014).
doi: 10.1063/1.4863300
Takemura, K. & Dewaele, A. Isothermal equation of state for gold with a He-pressure medium. Phys. Rev. B. 78, 104119 (2008).
doi: 10.1103/PhysRevB.78.104119
Singh, A. K. The lattice strains in a specimen (cubic system) compressed nonhydrostatically in an opposed anvil device. J. Appl. Phys. 73, 4278–4286 (1993).
doi: 10.1063/1.352809
Dewaele, A., Loubeyre, P. & Mezouar, M. Equations of state of six metals above 94 GPa. Phys. Rev. B 70, 094112 (2004).
doi: 10.1103/PhysRevB.70.094112
Sata, N., Hirose, K., Shen, G., Nakajima, Y., Ohishi, Y., & Hirao, N. Compression of FeSi, Fe
Dorfman, S. M., Prakapenka, V. B., Meng, Y. & Duffy, T. S. Intercomparison of pressure standards (Au, Pt, Mo, MgO, NaCl and Ne) to 2.5 Mbar. J. Geophys. Res: Solid Earth 117, B08210 (2012).
Donohue, J. Structures of the Elements. United States: N. p. (1974).
Biswas, S.N., Van't Klooster, P. & Trappeniers, N.J. Effect of pressure on the elastic constants of noble metals from − 196 to + 25° C and up to 2500 bar: II. Silver and gold. Physica, B+ C. 103, 235–246 (1981).
Yokoo, M. et al. Ultrahigh-pressure scales for gold and platinum at pressures up to 550 GPa. Phys. Rev. B 80, 104114 (2009).
doi: 10.1103/PhysRevB.80.104114
Fei, Y. et al. Toward an internally consistent pressure scale. Proc. Natl. Acad. Sci. USA 104, 9182–9186 (2007).
doi: 10.1073/pnas.0609013104
pubmed: 17483460
pmcid: 1890468
Golding, B., Moss, S. C. & Averbach, B. L. Composition and pressure dependence of the elastic constants of gold-nickel alloys. Phys. Rev. 158, 637 (1967).
doi: 10.1103/PhysRev.158.637
Manghnani, M. H., Katahara, K. & Fisher, E. S. Ultrasonic equation of state of rhenium. Phys. Rev. B. 9, 1421 (1974).
doi: 10.1103/PhysRevB.9.1421
Liu, L. G., Takahashi, T. & Bassett, W. A. Effect of pressure and temperature on the lattice parameters of rhenium. Phys. Chem. Solids 31, 1345–1351 (1970).
doi: 10.1016/0022-3697(70)90138-1
Vohra, Y. K., Duclos, S. J., & Ruoff, A. L. High-pressure X-ray diffraction studies on rhenium up to 216 GPa (2.16 Mbar). Phys. Rev. B, 36 9790 (1987).
Sikka, S. K. & Vijayakumar, V. Theoretical isothermal equation of state of rhenium. Phys. Rev. B 38, 10926 (1988).
doi: 10.1103/PhysRevB.38.10926
Jeanloz, R., Godwal, B. K. & Meade, C. Static strength and equation of state of rhenium at ultra-high pressures. Nature 349, 687 (1991).
doi: 10.1038/349687a0
Lv, M. B., Cheng, Y., Qi, Y. Y., Ji, G. F. & Piao, C. G. Elastic properties and phonon dispersions of rhenium in hexagonal-close-packed structure under pressure from first principles. Phys. B Condens. Matter 407, 778–783 (2012).
doi: 10.1016/j.physb.2011.12.024
Dorogokupets, P. I. & Oganov, A. R. Ruby, metals, and MgO as alternative pressure scales: A semiempirical description of shock-wave, ultrasonic, x-ray, and thermochemical data at high temperatures and pressures. Phys. Rev. B. 75, 024115 (2007).
doi: 10.1103/PhysRevB.75.024115
Loubeyre, P. et al. Equation of state and phase diagram of solid He 4 from single-crystal x-ray diffraction over a large P-T domain. Phys. Rev. Lett. 71, 2272 (1993).
doi: 10.1103/PhysRevLett.71.2272
pubmed: 10054631
Li, B. et al. Diamond anvil cell behavior up to 4 Mbar. Proc. Natl. Acad. Sci. USA 115, 1713–1717 (2018).
doi: 10.1073/pnas.1721425115
pubmed: 29432145
pmcid: 5828636
O’Bannon, E. F., Jenei, Z., Cynn, H., Lipp, M. J. & Jeffries, J. R. Contributed Review: Culet diameter and the achievable pressure of a diamond anvil cell: Implications for the upper pressure limit of a diamond anvil cell. Rev. Sci. Inst. 89, 1 (2018).
doi: 10.1063/1.5049720
Prescher, C. & Prakapenka, V. B. DIOPTAS: A program for reduction of two-dimensional X-ray diffraction data and data exploration. High Press. Res. 35, 223–230 (2015).
doi: 10.1080/08957959.2015.1059835
Prakapenka, V. B. et al. Advanced flat top laser heating system for high pressure research at GSECARS: Application to the melting behavior of germanium. High Press. Res. 28, 225–235 (2008).
doi: 10.1080/08957950802050718
Heinz, D.L. & Jeanloz, R., 1987. Temperature measurements in the laser‐heated diamond cell. In High‐pressure research in mineral physics: A volume in honor of Syun‐iti Akimoto (ed. Manghnani, H, Syono, Y.), 113–127 (American Geophysical Union, 1987).