Childhood adversity, accelerated GrimAge, and associated health consequences.

Childhood adversity Childhood trauma Epigenetic aging GrimAge Health outcomes

Journal

Journal of behavioral medicine
ISSN: 1573-3521
Titre abrégé: J Behav Med
Pays: United States
ID NLM: 7807105

Informations de publication

Date de publication:
18 May 2024
Historique:
received: 14 08 2023
accepted: 01 05 2024
medline: 19 5 2024
pubmed: 19 5 2024
entrez: 18 5 2024
Statut: aheadofprint

Résumé

Childhood adversity is linked to psychological, behavioral, and physical health problems, including obesity and cardiometabolic disease. Epigenetic alterations are one pathway through which the effects of early life stress and adversity might persist into adulthood. Epigenetic mechanisms have also been proposed to explain why cardiometabolic health can vary greatly between individuals with similar Body Mass Index (BMIs). We evaluated two independent cross-sectional cohorts of adults without known medical illness, one of which explicitly recruited individuals with early life stress (ELS) and control participants (n = 195), and the other a general community sample (n = 477). In these cohorts, we examine associations between childhood adversity, epigenetic aging, and metabolic health. Childhood adversity was associated with increased GrimAge Acceleration (GAA) in both cohorts, both utilizing a dichotomous yes/no classification (both p < 0.01) as well as a continuous measure using the Childhood Trauma Questionnaire (CTQ) (both p < 0.05). Further investigation demonstrated that CTQ subscales for physical and sexual abuse (both p < 0.05) were associated with increased GAA in both cohorts, whereas physical and emotional neglect were not. In both cohorts, higher CTQ was also associated with higher BMI and increased insulin resistance (both p < 0.05). Finally, we demonstrate a moderating effect of BMI on the relationship between GAA and insulin resistance where GAA correlated with insulin resistance specifically at higher BMIs. These results, which were largely replicated between two independent cohorts, suggest that interactions between epigenetics, obesity, and metabolic health may be important mechanisms through which childhood adversity contributes to long-term physical and metabolic health effects.

Identifiants

pubmed: 38762606
doi: 10.1007/s10865-024-00496-0
pii: 10.1007/s10865-024-00496-0
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : NIMH NIH HHS
ID : MH101107
Pays : United States
Organisme : NIMH NIH HHS
ID : T32MH019961
Pays : United States
Organisme : NIMH NIH HHS
ID : R25MH071584
Pays : United States
Organisme : NIMH NIH HHS
ID : MH101076
Pays : United States
Organisme : NIMH NIH HHS
ID : K23MH122587
Pays : United States
Organisme : NIDCR NIH HHS
ID : UL1-DE019586
Pays : United States
Organisme : NIDA NIH HHS
ID : PL1-DA024859
Pays : United States
Organisme : NIDA NIH HHS
ID : R01DA047063
Pays : United States
Organisme : NIDA NIH HHS
ID : R01DA054116
Pays : United States
Organisme : NIAAA NIH HHS
ID : R01-AA013892
Pays : United States
Organisme : NCATS NIH HHS
ID : UL1-TR001863
Pays : United States
Organisme : NIGMS NIH HHS
ID : P20GM139767
Pays : United States
Organisme : NIGMS NIH HHS
ID : P20GM139743
Pays : United States
Organisme : Eunice Kennedy Shriver National Institute of Child Health and Human Development
ID : R01HD086487
Organisme : Eunice Kennedy Shriver National Institute of Child Health and Human Development
ID : HD101392

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Adam, T. C., & Epel, E. S. (2007). Stress, eating and the reward system. Physiology and Behavior, 91, 449–458.
pubmed: 17543357 doi: 10.1016/j.physbeh.2007.04.011
American Psychiatric, A.,& American Psychiatric, A., (2000) Task Force on D-I. Diagnostic and statistical manual of mental disorders : DSM-IV-TR. Washington, DC: American Psychiatric Association.
Andrade, S., Morais, T., Sandovici, I., Seabra, A. L., Constância, M., & Monteiro, M. P. (2021). Adipose tissue epigenetic profile in obesity-related dysglycemia - A systematic review. Front Endocrinol (lausanne), 12, 681649.
pubmed: 34290669 doi: 10.3389/fendo.2021.681649
Baker, M. (2016). 1,500 scientists lift the lid on reproducibility. Nature, 533, 452–454.
pubmed: 27225100 doi: 10.1038/533452a
Bell, C. G., Lowe, R., Adams, P. D., et al. (2019). DNA methylation aging clocks: Challenges and recommendations. Genome Biology, 20, 249.
pubmed: 31767039 pmcid: 6876109 doi: 10.1186/s13059-019-1824-y
Bellis, M. A., Hughes, K., Ford, K., Ramos Rodriguez, G., Sethi, D., & Passmore, J. (2019). Life course health consequences and associated annual costs of adverse childhood experiences across Europe and North America: A systematic review and meta-analysis. Lancet Public Health, 4, e517–e528.
pubmed: 31492648 pmcid: 7098477 doi: 10.1016/S2468-2667(19)30145-8
Bernstein, D. P., Stein, J. A., Newcomb, M. D., et al. (2003). Development and validation of a brief screening version of the childhood trauma questionnaire. Child Abuse and Neglect, 27, 169–190.
pubmed: 12615092 doi: 10.1016/S0145-2134(02)00541-0
Bifulco, A., Brown, G. W., & Harris, T. O. (1994). Childhood Experience of care and abuse (CECA): A retrospective interview measure. Journal of Child Psychology and Psychiatry., 35, 1419–1435.
pubmed: 7868637 doi: 10.1111/j.1469-7610.1994.tb01284.x
Bifulco, A., Brown, G. W., Lillie, A., & Jarvis, J. (1997). Memories of childhood neglect and abuse: Corroboration in a series of sisters. Journal of Child Psychology and Psychiatry., 38, 365–374.
pubmed: 9232482 doi: 10.1111/j.1469-7610.1997.tb01520.x
Block, J. P., He, Y., Zaslavsky, A. M., Ding, L., & Ayanian, J. Z. (2009). Psychosocial stress and change in weight among US adults. American Journal of Epidemiology, 170, 181–192.
pubmed: 19465744 pmcid: 2727271 doi: 10.1093/aje/kwp104
Boison, D. (2017). New insights into the mechanisms of the ketogenic diet. Current Opinion in Neurology, 30, 187–192.
pubmed: 28141738 pmcid: 5409832 doi: 10.1097/WCO.0000000000000432
Bray, G. A., Heisel, W. E., Afshin, A., et al. (2018). The science of obesity management: An endocrine society scientific statement. Endocrine Reviews, 39, 79–132.
pubmed: 29518206 pmcid: 5888222 doi: 10.1210/er.2017-00253
Bremne, J. D., & Vermetten, E. (2001). Stress and development: Behavioral and biological consequences. Development and Psychopathology, 13, 473–489.
pubmed: 11523844 doi: 10.1017/S0954579401003042
Camhi, S. M., Whitney Evans, E., Hayman, L. L., Lichtenstein, A. H., & Must, A. (2015). Healthy eating index and metabolically healthy obesity in U.S. adolescents and adults. Preventive Medicine, 77, 23–27.
pubmed: 25937589 doi: 10.1016/j.ypmed.2015.04.023
Cao-Lei, L., Dancause, K. N., Elgbeili, G., et al. (2015). DNA methylation mediates the impact of exposure to prenatal maternal stress on BMI and central adiposity in children at age 13½ years: Project Ice Storm. Epigenetics, 10, 749–761.
pubmed: 26098974 pmcid: 4623010 doi: 10.1080/15592294.2015.1063771
Chandraratne, N. K., Fernando, A. D., & Gunawardena, N. (2018). Physical, sexual and emotional abuse during childhood: Experiences of a sample of Sri Lankan young adults. Child Abuse and Neglect, 81, 214–224.
pubmed: 29753201 doi: 10.1016/j.chiabu.2018.05.004
Chao, A. M., Jastreboff, A. M., White, M. A., Grilo, C. M., & Sinha, R. (2017). Stress, cortisol, and other appetite-related hormones: Prospective prediction of 6-months changes in food cravings and weight. Obesity (silver Spring), 25, 713–720.
pubmed: 28349668 doi: 10.1002/oby.21790
Chen, M. A., LeRoy, A. S., Majd, M., et al. (2021). Immune and epigenetic pathways linking childhood adversity and health across the lifespan. Frontiers in Psychology, 12, 788351.
pubmed: 34899540 pmcid: 8662704 doi: 10.3389/fpsyg.2021.788351
Chen, X. Y., Lo, C. K. M., Chan, K. L., Leung, W. C., & Ip, P. (2022). Association between childhood exposure to family violence and telomere length: A meta-analysis. International Journal of Environmental Research and Public Health, 19, 12151.
pubmed: 36231453 pmcid: 9566190 doi: 10.3390/ijerph191912151
Colich, N. L., Rosen, M. L., Williams, E. S., & McLaughlin, K. A. (2020). Biological aging in childhood and adolescence following experiences of threat and deprivation: A systematic review and meta-analysis. Psychological Bulletin, 146, 721–764.
pubmed: 32744840 pmcid: 7484378 doi: 10.1037/bul0000270
Copeland, W. E., Shanahan, L., McGinnis, E. W., Aberg, K. A., & van den Oord, E. (2022). Early adversities accelerate epigenetic aging into adulthood: A 10-year, within-subject analysis. Journal of Child Psychology and Psychiatry, 63, 1308–1315.
pubmed: 35137412 doi: 10.1111/jcpp.13575
Cribb, L., Hodge, A. M., Yu, C., et al. (2022). Inflammation and epigenetic aging are largely independent markers of biological aging and mortality. Journals of Gerontology. Series a, Biological Sciences and Medical Sciences, 77, 2378–2386.
pubmed: 35926479 doi: 10.1093/gerona/glac147
Daigre, C., Rodríguez-Cintas, L., Tarifa, N., et al. (2015). History of sexual, emotional or physical abuse and psychiatric comorbidity in substance-dependent patients. Psychiatry Research, 229, 743–749.
pubmed: 26279128 doi: 10.1016/j.psychres.2015.08.008
Dallman, M. F., Pecoraro, N. C., & la Fleur, S. E. (2005). Chronic stress and comfort foods: Self-medication and abdominal obesity. Brain, Behavior, and Immunity, 19, 275–280.
pubmed: 15944067 doi: 10.1016/j.bbi.2004.11.004
Daniels, T. E., Mathis, K. J., Gobin, A. P., et al. (2023). Associations of early life stress with leptin and ghrelin in healthy young adults. Psychoneuroendocrinology, 149, 106007.
pubmed: 36577337 doi: 10.1016/j.psyneuen.2022.106007
Dayeh, T., Tuomi, T., Almgren, P., et al. (2016). DNA methylation of loci within ABCG1 and PHOSPHO1 in blood DNA is associated with future type 2 diabetes risk. Epigenetics, 11, 482–488.
pubmed: 27148772 pmcid: 4939923 doi: 10.1080/15592294.2016.1178418
Duffy, K. A., McLaughlin, K. A., & Green, P. A. (2018). Early life adversity and health-risk behaviors: Proposed psychological and neural mechanisms. Annals of the New York Academy of Sciences, 1428, 151–169.
pubmed: 30011075 pmcid: 6158062 doi: 10.1111/nyas.13928
Essex, M. J., Boyce, W. T., Hertzman, C., et al. (2013). Epigenetic vestiges of early developmental adversity: Childhood stress exposure and DNA methylation in adolescence. Child Development, 84, 58–75.
pubmed: 21883162 doi: 10.1111/j.1467-8624.2011.01641.x
Evans, G. W., Li, D., & Whipple, S. S. (2013). Cumulative risk and child development. Psychological Bulletin, 139, 1342–1396.
pubmed: 23566018 doi: 10.1037/a0031808
Fogelman, N., & Canli, T. (2019). Early life stress, physiology, and genetics: A review. Frontiers in Psychology, 10, 1668.
pubmed: 31428006 pmcid: 6688564 doi: 10.3389/fpsyg.2019.01668
Föhr, T., Waller, K., Viljanen, A., et al. (2021). Does the epigenetic clock GrimAge predict mortality independent of genetic influences: An 18 year follow-up study in older female twin pairs. Clinical Epigenetics, 13, 128.
pubmed: 34120642 doi: 10.1186/s13148-021-01112-7
Fumagalli, F., Molteni, R., Racagni, G., & Riva, M. A. (2007). Stress during development: Impact on neuroplasticity and relevance to psychopathology. Progress in Neurobiology, 81, 97–217.
doi: 10.1016/j.pneurobio.2007.01.002
Gayer-Anderson, C., Reininghaus, U., Paetzold, I., et al. (2020). A comparison between self-report and interviewer-rated retrospective reports of childhood abuse among individuals with first-episode psychosis and population-based controls. Journal of Psychiatric Research, 123, 145–150.
pubmed: 32065950 pmcid: 7054833 doi: 10.1016/j.jpsychires.2020.02.002
Gutiérrez-Repiso, C., Linares-Pineda, T. M., Gonzalez-Jimenez, A., et al. (2021). Epigenetic biomarkers of transition from metabolically healthy obesity to metabolically unhealthy obesity phenotype: A prospective study. International Journal of Molecular Sciences, 22, 10417.
pubmed: 34638758 pmcid: 8508854 doi: 10.3390/ijms221910417
Hamlat, E. J., Prather, A. A., Horvath, S., Belsky, J., & Epel, E. S. (2021). Early life adversity, pubertal timing, and epigenetic age acceleration in adulthood. Developmental Psychobiology, 63, 890–902.
pubmed: 33423276 pmcid: 8271092 doi: 10.1002/dev.22085
Hamlat, E. J., Neilands, T. B., Laraia, B., et al. (2023). Early life adversity predicts an accelerated cellular aging phenotype through early timing of puberty. Psychological Medicine, 53, 7720–7728.
pubmed: 37325994 doi: 10.1017/S0033291723001629
Han, L. K. M., Aghajani, M., Clark, S. L., et al. (2018). Epigenetic aging in major depressive disorder. American Journal of Psychiatry, 175, 774–782.
pubmed: 29656664 doi: 10.1176/appi.ajp.2018.17060595
Harvanek, Z. M., Fogelman, N., Xu, K., & Sinha, R. (2021). Psychological and biological resilience modulates the effects of stress on epigenetic aging. Translational Psychiatry, 11, 601.
pubmed: 34839356 pmcid: 8627511 doi: 10.1038/s41398-021-01735-7
Harvanek, Z. M., Boks, M. P., Vinkers, C. H., & Higgins-Chen, A. T. (2023). The cutting edge of epigenetic clocks: in search of mechanisms linking aging and mental health. Biological Psychiatry, 94, 694–705.
pubmed: 36764569 doi: 10.1016/j.biopsych.2023.02.001
Heim, C., Newport, D. J., Heit, S., et al. (2000). Pituitary-adrenal and autonomic responses to stress in women after sexual and physical abuse in childhood. JAMA, 284, 592–597.
pubmed: 10918705 doi: 10.1001/jama.284.5.592
Higgins-Chen, A. T., Thrush, K. L., Wang, Y., et al. (2022). A computational solution for bolstering reliability of epigenetic clocks: Implications for clinical trials and longitudinal tracking. Nature Aging, 2, 644–661.
pubmed: 36277076 pmcid: 9586209 doi: 10.1038/s43587-022-00248-2
Horvath, S. (2013). DNA methylation age of human tissues and cell types. Genome Biology, 14, R115.
pubmed: 24138928 pmcid: 4015143 doi: 10.1186/gb-2013-14-10-r115
Horvath, S., & Raj, K. (2018). DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nature Reviews Genetics, 19, 371–384.
pubmed: 29643443 doi: 10.1038/s41576-018-0004-3
Hostinar, C. E., Nusslock, R., & Miller, G. E. (2018). Future directions in the study of early-life stress and physical and emotional health: Implications of the neuroimmune network hypothesis. Journal of Clinical Child and Adolescent Psychology, 47, 142–156.
pubmed: 28107039 doi: 10.1080/15374416.2016.1266647
Houseman, E. A., Accomando, W. P., Koestler, D. C., et al. (2012). DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics, 13, 86.
pubmed: 22568884 pmcid: 3532182 doi: 10.1186/1471-2105-13-86
Iacobini, C., Pugliese, G., Blasetti Fantauzzi, C., Federici, M., & Menini, S. (2019). Metabolically healthy versus metabolically unhealthy obesity. Metabolism, 92, 51–60.
pubmed: 30458177 doi: 10.1016/j.metabol.2018.11.009
Ikeda, Y., Suehiro, T., Nakamura, T., Kumon, Y., & Hashimoto, K. (2001). Clinical significance of the insulin resistance index as assessed by homeostasis model assessment. Endocrine Journal, 48, 81–86.
pubmed: 11403106 doi: 10.1507/endocrj.48.81
Joshi, D., Gonzalez, A., Lin, D., & Raina, P. (2023). The association between adverse childhood experiences and epigenetic age acceleration in the Canadian longitudinal study on aging (CLSA). Aging Cell, 22, e13779.
pubmed: 36650913 pmcid: 9924940 doi: 10.1111/acel.13779
Jung, J., McCartney, D. L., Wagner, J., et al. (2023). Additive effects of stress and alcohol exposure on accelerated epigenetic aging in alcohol use disorder. Biological Psychiatry, 93, 331–341.
pubmed: 36182531 doi: 10.1016/j.biopsych.2022.06.036
Jylhävä, J., Pedersen, N. L., & Hägg, S. (2017). Biological Age Predictors. eBioMedicine, 21, 29–36.
pubmed: 28396265 pmcid: 5514388 doi: 10.1016/j.ebiom.2017.03.046
Kalinowski, J., Huang, Y., Rivas, M. A., et al. (2022). Stress overload and dna methylation in african american women in the intergenerational impact of genetic and psychological factors on blood pressure study. Epigenet Insights., 15, 25168657221126310.
pubmed: 36246163 pmcid: 9554129 doi: 10.1177/25168657221126314
Kho, M., Wang, Y. Z., Chaar, D., et al. (2021). Accelerated DNA methylation age and medication use among African Americans. Aging (albany NY)., 13, 14604–14629.
pubmed: 34083497 pmcid: 8221348 doi: 10.18632/aging.203115
Kim, K., Joyce, B. T., Zheng, Y., et al. (2021). DNA methylation GrimAge and incident diabetes: the coronary artery risk development in young adults (CARDIA) study. Diabetes, 70, 1404–1413.
pubmed: 33820761 pmcid: 8275890 doi: 10.2337/db20-1167
Klopack, E. T., Crimmins, E. M., Cole, S. W., Seeman, T. E., & Carroll, J. E. (2022). Accelerated epigenetic aging mediates link between adverse childhood experiences and depressive symptoms in older adults: Results from the health and retirement study. SSM Popul Health., 17, 101071.
pubmed: 35313610 pmcid: 8933834 doi: 10.1016/j.ssmph.2022.101071
Leachman, J. R., Rea, M. D., Cohn, D. M., Xu, X., Fondufe-Mittendorf, Y. N., & Loria, A. S. (2020). Exacerbated obesogenic response in female mice exposed to early life stress is linked to fat depot-specific upregulation of leptin protein expression. American Journal of Physiology Endocrinology and Metabolism, 319, E852–E862.
pubmed: 32830551 pmcid: 7790118 doi: 10.1152/ajpendo.00243.2020
Li, Z., He, Y., Wang, D., Tang, J., & Chen, X. (2017). Association between childhood trauma and accelerated telomere erosion in adulthood: A meta-analytic study. Journal of Psychiatric Research, 93, 64–71.
pubmed: 28601667 doi: 10.1016/j.jpsychires.2017.06.002
Li, M., Bao, L., Zhu, P., & Wang, S. (2022). Effect of metformin on the epigenetic age of peripheral blood in patients with diabetes mellitus. Frontiers in Genetics, 13, 955835.
pubmed: 36226195 pmcid: 9548538 doi: 10.3389/fgene.2022.955835
Liang, X., Sinha, R., Justice, A. C., Cohen, M. H., Aouizerat, B. E., & Xu, K. (2022). A new monocyte epigenetic clock reveals nonlinear effects of alcohol consumption on biological aging in three independent cohorts (N = 2242). Alcoholism, Clinical and Experimental Research, 46, 736–748.
pubmed: 35257385 pmcid: 9117474 doi: 10.1111/acer.14803
Ling, C., & Rönn, T. (2019). Epigenetics in human obesity and type 2 diabetes. Cell Metabolism, 29, 1028–1044.
pubmed: 30982733 pmcid: 6509280 doi: 10.1016/j.cmet.2019.03.009
Lu, A. T., Quach, A., Wilson, J. G., et al. (2019). DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging (albany NY), 11, 303–327.
pubmed: 30669119 doi: 10.18632/aging.101684
Luo, A., Jung, J., Longley, M., et al. (2020). Epigenetic aging is accelerated in alcohol use disorder and regulated by genetic variation in APOL2. Neuropsychopharmacology, 45, 327–336.
pubmed: 31466081 doi: 10.1038/s41386-019-0500-y
MacDonald, K., Thomas, M. L., Sciolla, A. F., et al. (2016). Minimization of childhood maltreatment is common and consequential: results from a large, multinational sample using the childhood trauma questionnaire. PLoS ONE, 11, e0146058.
pubmed: 26815788 pmcid: 4729672 doi: 10.1371/journal.pone.0146058
Marini, S., Davis, K. A., Soare, T. W., et al. (2020). Adversity exposure during sensitive periods predicts accelerated epigenetic aging in children. Psychoneuroendocrinology, 113, 104484.
pubmed: 31918390 doi: 10.1016/j.psyneuen.2019.104484
Marquez, F. D., Risica, P. M., Mathis, K. J., Sullivan, A., Gobin, A. P., & Tyrka, A. R. (2021). Do measures of healthy eating differ in survivors of early adversity? Appetite, 162, 105180.
pubmed: 33684530 pmcid: 8058294 doi: 10.1016/j.appet.2021.105180
Matthews, D. R., Hosker, J. P., Rudenski, A. S., Naylor, B. A., Treacher, D. F., & Turner, R. C. (1985). Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia, 28, 412–419.
pubmed: 3899825 doi: 10.1007/BF00280883
McCrory, C., Fiorito, G., Hernandez, B., et al. (2021). GrimAge outperforms other epigenetic clocks in the prediction of age-related clinical phenotypes and all-cause mortality. Journals of Gerontology. Series a, Biological Sciences and Medical Sciences, 76, 741–749.
pubmed: 33211845 doi: 10.1093/gerona/glaa286
McCrory, C., Fiorito, G., O’Halloran, A. M., Polidoro, S., Vineis, P., & Kenny, R. A. (2022). Early life adversity and age acceleration at mid-life and older ages indexed using the next-generation GrimAge and pace of aging epigenetic clocks. Psychoneuroendocrinology, 137, 105643.
pubmed: 34999481 doi: 10.1016/j.psyneuen.2021.105643
McGee, S. L., & Hargreaves, M. (2020). Exercise adaptations: Molecular mechanisms and potential targets for therapeutic benefit. Nature Reviews. Endocrinology, 16, 495–505.
pubmed: 32632275 doi: 10.1038/s41574-020-0377-1
Merz, M. P., & Turner, J. D. (2021). Is early life adversity a trigger towards inflammageing? Experimental Gerontology., 150, 111377.
pubmed: 33905877 doi: 10.1016/j.exger.2021.111377
Moore, L. D., Le, T., & Fan, G. (2013). DNA methylation and its basic function. Neuropsychopharmacology, 38, 23–38.
pubmed: 22781841 doi: 10.1038/npp.2012.112
Moser, S., Martins, J., Czamara, D., Lange, J., Müller-Myhsok, B., & Erhardt, A. (2022). DNA-methylation dynamics across short-term, exposure-containing CBT in patients with panic disorder. Translational Psychiatry, 12, 46.
pubmed: 35105872 pmcid: 8807826 doi: 10.1038/s41398-022-01802-7
Murlasits, Z., Kupai, K., & Kneffel, Z. (2022). Role of physical activity and cardiorespiratory fitness in metabolically healthy obesity: A narrative review. BMJ Open Sport and Exercise Medicine, 8, e001458.
pubmed: 36484059 pmcid: 9723844 doi: 10.1136/bmjsem-2022-001458
Nilsson, P. M., Korduner, J., & Magnusson, M. (2020). Metabolically healthy obesity (MHO)-new research directions for personalised medicine in cardiovascular prevention. Current Hypertension Reports, 22, 18.
pubmed: 32067105 pmcid: 7026231 doi: 10.1007/s11906-020-1027-7
Oblak, L., van der Zaag, J., Higgins-Chen, A. T., Levine, M. E., & Boks, M. P. (2021). A systematic review of biological, social and environmental factors associated with epigenetic clock acceleration. Ageing Research Reviews, 69, 101348.
pubmed: 33930583 doi: 10.1016/j.arr.2021.101348
Pedroso, J. A. B., Ramos-Lobo, A. M., & Donato, J., Jr. (2019). SOCS3 as a future target to treat metabolic disorders. Hormones (athens, Greece), 18, 127–136.
pubmed: 30414080 doi: 10.1007/s42000-018-0078-5
Pidsley, R., Zotenko, E., Peters, T. J., et al. (2016). Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling. Genome Biology, 17, 208.
pubmed: 27717381 pmcid: 5055731 doi: 10.1186/s13059-016-1066-1
Puterman, E., Lin, J., Blackburn, E., O’Donovan, A., Adler, N., & Epel, E. (2010). The power of exercise: Buffering the effect of chronic stress on telomere length. PLoS ONE, 5, e10837.
pubmed: 20520771 pmcid: 2877102 doi: 10.1371/journal.pone.0010837
Quach, A., Levine, M. E., Tanaka, T., et al. (2017). Epigenetic clock analysis of diet, exercise, education, and lifestyle factors. Aging (albany NY), 9, 419–446.
pubmed: 28198702 doi: 10.18632/aging.101168
R (2020): A Language and Environment for Statistical Computing [computer program]. R Foundation for Statistical Computing.
Rampersaud, R., Protsenko, E., Yang, R., et al. (2022). Dimensions of childhood adversity differentially affect biological aging in major depression. Translational Psychiatry, 12, 431.
pubmed: 36195591 pmcid: 9532396 doi: 10.1038/s41398-022-02198-0
Ridout, K. K., Levandowski, M., Ridout, S. J., et al. (2018). Early life adversity and telomere length: A meta-analysis. Molecular Psychiatry, 23, 858–871.
pubmed: 28322278 doi: 10.1038/mp.2017.26
Rohde, K., Keller, M., la Cour, P. L., Blüher, M., Kovacs, P., & Böttcher, Y. (2019). Genetics and epigenetics in obesity. Metabolism, 92, 37–50.
pubmed: 30399374 doi: 10.1016/j.metabol.2018.10.007
Samblas, M., Milagro, F. I., & Martínez, A. (2019). DNA methylation markers in obesity, metabolic syndrome, and weight loss. Epigenetics, 14, 421–444.
pubmed: 30915894 pmcid: 6557553 doi: 10.1080/15592294.2019.1595297
Schmitz, L. L., Duffie, E., Zhao, W., et al. (2023). Associations of early-life adversity with later-life epigenetic aging profiles in the multi-ethnic study of atherosclerosis. American Journal of Epidemiology, 192, 1991–2005.
pubmed: 37579321 doi: 10.1093/aje/kwad172
Sheehan, D. V., Lecrubier, Y., Sheehan, K. H., et al. (1998). The Mini-International Neuropsychiatric Interview (MINI): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. Journal of Clinical Psychiatry., 59, 22–33.
pubmed: 9881538
Shenk, C. E., Felt, J. M., Ram, N., et al. (2022). Cortisol trajectories measured prospectively across thirty years of female development following exposure to childhood sexual abuse: Moderation by epigenetic age acceleration at midlife. Psychoneuroendocrinology, 136, 105606.
pubmed: 34896740 doi: 10.1016/j.psyneuen.2021.105606
Sinha, R., & Jastreboff, A. M. (2013). Stress as a common risk factor for obesity and addiction. Biological Psychiatry, 73, 827–835.
pubmed: 23541000 pmcid: 3658316 doi: 10.1016/j.biopsych.2013.01.032
Stefan, N., Häring, H. U., Hu, F. B., & Schulze, M. B. (2013). Metabolically healthy obesity: Epidemiology, mechanisms, and clinical implications. The Lancet Diabetes and Endocrinology, 1, 152–162.
pubmed: 24622321 doi: 10.1016/S2213-8587(13)70062-7
Stevens, A. J., Rucklidge, J. J., & Kennedy, M. A. (2018). Epigenetics, nutrition and mental health. Is there a relationship? Nutritional Neuroscience, 21(9), 602–613.
pubmed: 28553986 doi: 10.1080/1028415X.2017.1331524
Suderman, M., Borghol, N., Pappas, J. J., et al. (2014). Childhood abuse is associated with methylation of multiple loci in adult DNA. BMC Medical Genomics, 7, 13.
pubmed: 24618023 pmcid: 4007631 doi: 10.1186/1755-8794-7-13
Torres, S. J., & Nowson, C. A. (2007). Relationship between stress, eating behavior, and obesity. Nutrition, 23, 887–894.
pubmed: 17869482 doi: 10.1016/j.nut.2007.08.008
Tracy, E. L., Tracy, C. T., Kim, J. J., Yang, R., & Kim, E. (2020). Cascading effects of childhood abuse on physical health issues in later adulthood through trait anxiety and poor daily sleep quality. Journal of Health Psychology, 26, 2342–2348.
pubmed: 32114830 doi: 10.1177/1359105320909876
Tsatsoulis, A., & Paschou, S. A. (2020). Metabolically healthy obesity: criteria, epidemiology, controversies, and consequences. Current Obesity Reports, 9, 109–120.
pubmed: 32301039 doi: 10.1007/s13679-020-00375-0
Turner, R. J., Wheaton, B., & Lloyd, D. A. (1995). The epidemiology of social stress. American Sociological Review, 60(1), 104–125.
doi: 10.2307/2096348
Tyrka, A. R., Ridout, K. K., & Parade, S. H. (2016). Childhood adversity and epigenetic regulation of glucocorticoid signaling genes: Associations in children and adults. Development and Psychopathology, 28, 1319–1331.
pubmed: 27691985 pmcid: 5330387 doi: 10.1017/S0954579416000870
van Dijk, S. J., Tellam, R. L., Morrison, J. L., Muhlhausler, B. S., & Molloy, P. L. (2015). Recent developments on the role of epigenetics in obesity and metabolic disease. Clinical Epigenetics, 7, 66.
pubmed: 27408648 pmcid: 4940755 doi: 10.1186/s13148-015-0101-5
Viola, T. W., Salum, G. A., Kluwe-Schiavon, B., Sanvicente-Vieira, B., Levandowski, M. L., & Grassi-Oliveira, R. (2016). The influence of geographical and economic factors in estimates of childhood abuse and neglect using the childhood trauma questionnaire: A worldwide meta-regression analysis. Child Abuse and Neglect, 51, 1–11.
pubmed: 26704298 doi: 10.1016/j.chiabu.2015.11.019
Walaszczyk, E., Luijten, M., Spijkerman, A. M. W., et al. (2018). DNA methylation markers associated with type 2 diabetes, fasting glucose and HbA(1c) levels: A systematic review and replication in a case-control sample of the Lifelines study. Diabetologia, 61, 354–368.
pubmed: 29164275 doi: 10.1007/s00125-017-4497-7
Wang, S. H., Chung, P. S., Lin, Y. P., et al. (2021). Metabolically healthy obesity and physical fitness in military males in the CHIEF study. Science and Reports, 11, 9088.
doi: 10.1038/s41598-021-88728-0
Wegman, H. L., & Stetler, C. (2009). A meta-analytic review of the effects of childhood abuse on medical outcomes in adulthood. Psychosomatic Medicine, 71, 805–812.
pubmed: 19779142 doi: 10.1097/PSY.0b013e3181bb2b46
Wiss, D. A., & Brewerton, T. D. (2020). Adverse childhood experiences and adult obesity: A systematic review of plausible mechanisms and meta-analysis of cross-sectional studies. Physiology and Behavior, 223, 112964.
pubmed: 32479804 doi: 10.1016/j.physbeh.2020.112964
Wolfe, D. A., & McGee, R. (1994). Dimensions of child maltreatment and their relationship to adolescent adjustment. Development and Psychopathology, 6, 165–181.
doi: 10.1017/S0954579400005939
Womersley, J. S., Nothling, J., Toikumo, S., et al. (2022). Childhood trauma, the stress response and metabolic syndrome: A focus on DNA methylation. European Journal of Neuroscience, 55, 2253–2296.
pubmed: 34169602 doi: 10.1111/ejn.15370
Xu, K., Zhang, X., Wang, Z., Hu, Y., & Sinha, R. (2018). Epigenome-wide association analysis revealed that SOCS3 methylation influences the effect of cumulative stress on obesity. Biological Psychology, 131, 63–71.
pubmed: 27826092 doi: 10.1016/j.biopsycho.2016.11.001
Zannas, A. S., Arloth, J., Carrillo-Roa, T., et al. (2015). Lifetime stress accelerates epigenetic aging in an urban, African American cohort: Relevance of glucocorticoid signaling. Genome Biology, 16, 266.
pubmed: 26673150 pmcid: 4699359 doi: 10.1186/s13059-015-0828-5

Auteurs

Zachary M Harvanek (ZM)

Department of Psychiatry, Yale University, New Haven, CT, USA. Zachary.Harvanek@Yale.edu.
Yale Stress Center, Yale University, New Haven, CT, USA. Zachary.Harvanek@Yale.edu.

Anastacia Y Kudinova (AY)

Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA.
Bradley Hospital, Providence, RI, USA.

Samantha A Wong (SA)

New York University Grossman School of Medicine, New York, USA.

Ke Xu (K)

Department of Psychiatry, Yale University, New Haven, CT, USA.
Department of Psychiatry, Connecticut Veteran Healthcare System, West Haven, CT, USA.

Leslie Brick (L)

Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA.

Teresa E Daniels (TE)

Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA.
Bradley Hospital, Providence, RI, USA.
Initiative for Stress, Trauma, and Resilience, Alpert Medical School of Brown University, Providence, RI, USA.
Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, RI, USA.

Carmen Marsit (C)

Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.

Amber Burt (A)

Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.

Rajita Sinha (R)

Department of Psychiatry, Yale University, New Haven, CT, USA.
Yale Stress Center, Yale University, New Haven, CT, USA.
Department of Neuroscience, Yale University, New Haven, CT, USA.
Child Study Center, Yale University, New Haven, CT, USA.

Audrey R Tyrka (AR)

Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA.
Initiative for Stress, Trauma, and Resilience, Alpert Medical School of Brown University, Providence, RI, USA.
Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, RI, USA.

Classifications MeSH