Enhancing Temozolomide (TMZ) chemosensitivity using CRISPR-dCas9-mediated downregulation of O
CRISPR-dCas9
Glioblastoma
MGMT
TMZ
Journal
Journal of neuro-oncology
ISSN: 1573-7373
Titre abrégé: J Neurooncol
Pays: United States
ID NLM: 8309335
Informations de publication
Date de publication:
19 May 2024
19 May 2024
Historique:
received:
29
03
2024
accepted:
02
05
2024
medline:
19
5
2024
pubmed:
19
5
2024
entrez:
19
5
2024
Statut:
aheadofprint
Résumé
Glioblastoma (GBM) stands out as the most prevalent and aggressive intracranial tumor, notorious for its poor prognosis. The current standard-of-care for GBM patients involves surgical resection followed by radiotherapy, combined with concurrent and adjuvant chemotherapy using Temozolomide (TMZ). The effectiveness of TMZ primarily relies on the activity of O In this study, we employed fusions of catalytically-inactive Cas9 (dCas9) to DNA methyltransferases (dCas9-DNMT3A) to selectively downregulation MGMT transcription by inducing methylation at MGMT promoter and K-M enhancer. Our findings demonstrate a significant reduction in MGMT expression, leading to intensified TMZ sensitivity in the HEK293T cell line. This study serves as a proof of concept for the utilization of CRISPR-based gene suppression to overcome TMZ resistance and enhance the lethal effect of TMZ in glioblastoma tumor cells.
Identifiants
pubmed: 38762829
doi: 10.1007/s11060-024-04708-0
pii: 10.1007/s11060-024-04708-0
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Hess KR, Broglio KR, Bondy ML (2004) Adult glioma incidence trends in the United States, 1977–2000. Cancer: Interdisciplinary Int J Am Cancer Soc 101(10):2293–2299
doi: 10.1002/cncr.20621
Ostrom QT et al (2014) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neurooncology 16(suppl4):iv1–iv63
Soeda A et al (2015) The evidence of glioblastoma heterogeneity. Sci Rep 5(1):7979
doi: 10.1038/srep07979
pubmed: 25623281
pmcid: 4306917
Becker AP et al (2021) Tumor heterogeneity in glioblastomas: from light microscopy to molecular pathology. Cancers 13(4):761
doi: 10.3390/cancers13040761
pubmed: 33673104
pmcid: 7918815
Kondo T (2022) Glioblastoma-initiating cell heterogeneity generated by the cell-of-origin, genetic/epigenetic mutation and microenvironment. Seminars in Cancer Biology. Elsevier
Rabah N, Ait Mohand F-E, Kravchenko-Balasha N (2023) Understanding Glioblastoma Signaling, Heterogeneity, Invasiveness, and Drug Delivery barriers. Int J Mol Sci 24(18):14256
doi: 10.3390/ijms241814256
pubmed: 37762559
pmcid: 10532387
Meyer MA (2008) Malignant gliomas in adults. N Engl J Med 359(17):1850
doi: 10.1056/NEJMc086380
pubmed: 18946076
Stupp R et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996
doi: 10.1056/NEJMoa043330
pubmed: 15758009
Jovčevska I (2019) Genetic secrets of long-term glioblastoma survivors. Bosnian J Basic Med Sci 19(2):116
Kanzawa T et al (2003) Inhibition of DNA repair for sensitizing resistant glioma cells to temozolomide. J Neurosurg 99(6):1047–1052
doi: 10.3171/jns.2003.99.6.1047
pubmed: 14705733
Nakada M et al (2012) The strategy for enhancing temozolomide against malignant glioma. Front Oncol 2:98
doi: 10.3389/fonc.2012.00098
pubmed: 22912934
pmcid: 3418701
Yan Y et al (2016) Targeting autophagy to sensitive glioma to temozolomide treatment. J Experimental Clin cancer Res 35(1):23
doi: 10.1186/s13046-016-0303-5
Nagel ZD et al (2017) DNA repair capacity in multiple pathways predicts chemoresistance in glioblastoma multiforme. Cancer Res 77(1):198–206
doi: 10.1158/0008-5472.CAN-16-1151
pubmed: 27793847
Hombach-Klonisch S et al (2018) Glioblastoma and chemoresistance to alkylating agents: involvement of apoptosis, autophagy, and unfolded protein response. Pharmacol Ther 184:13–41
doi: 10.1016/j.pharmthera.2017.10.017
pubmed: 29080702
Everhard S et al (2009) Identification of regions correlating MGMT promoter methylation and gene expression in glioblastomas. Neurooncology 11(4):348–356
Brandes AA et al (2017) Role of MGMT methylation status at time of diagnosis and recurrence for patients with glioblastoma: clinical implications. Oncologist 22(4):432–437
doi: 10.1634/theoncologist.2016-0254
pubmed: 28275120
pmcid: 5388380
Binabaj MM et al (2018) The prognostic value of MGMT promoter methylation in glioblastoma: a meta-analysis of clinical trials. J Cell Physiol 233(1):378–386
doi: 10.1002/jcp.25896
pubmed: 28266716
Dolan ME et al (1991) Effect of O6-benzylguanine analogues on sensitivity of human tumor cells to the cytotoxic effects of alkylating agents. Cancer Res 51(13):3367–3372
pubmed: 1647266
Quinn JA et al (2009) Phase II trial of temozolomide plus o6-benzylguanine in adults with recurrent, temozolomide-resistant malignant glioma. J Clin Oncol 27(8):1262
doi: 10.1200/JCO.2008.18.8417
pubmed: 19204199
pmcid: 2667825
Aasland D et al (2018) Repair gene O6-methylguanine‐DNA methyltransferase is controlled by SP1 and up‐regulated by glucocorticoids, but not by temozolomide and radiation. J Neurochem 144(2):139–151
doi: 10.1111/jnc.14262
pubmed: 29164620
Happold C et al (2018) Transcriptional control of O6-methylguanine DNA methyltransferase expression and temozolomide resistance in glioblastoma. J Neurochem 144(6):780–790
doi: 10.1111/jnc.14326
pubmed: 29480969
Wang K et al (2017) Hedgehog/Gli1 signaling pathway regulates MGMT expression and chemoresistance to temozolomide in human glioblastoma. Cancer Cell Int 17(1):117
doi: 10.1186/s12935-017-0491-x
pubmed: 29225516
pmcid: 5715541
Hegi ME et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352(10):997–1003
doi: 10.1056/NEJMoa043331
pubmed: 15758010
Mansouri A et al (2018) MGMT promoter methylation status testing to guide therapy for glioblastoma: refining the approach based on emerging evidence and current challenges. Neurooncology 21(2):167–178
Malley DS et al (2011) A distinct region of the MGMT CpG island critical for transcriptional regulation is preferentially methylated in glioblastoma cells and xenografts. Acta Neuropathol 121(5):651–661
doi: 10.1007/s00401-011-0803-5
pubmed: 21287394
Kitange GJ et al (2012) Inhibition of histone deacetylation potentiates the evolution of acquired temozolomide resistance linked to MGMT upregulation in glioblastoma xenografts. Clin Cancer Res 18(15):4070–4079
doi: 10.1158/1078-0432.CCR-12-0560
pubmed: 22675172
pmcid: 3716364
Chen X et al (2018) A novel enhancer regulates MGMT expression and promotes temozolomide resistance in glioblastoma. Nat Commun 9(1):2949
doi: 10.1038/s41467-018-05373-4
pubmed: 30054476
pmcid: 6063898
Harris LC, Remack JS, Brent TP (1994) Identification of a 59 bp enhancer located at the first exon/intron boundary of the human O 6-methylguanine DNA methyltransferease gene. Nucleic Acids Res 22(22):4614–4619
doi: 10.1093/nar/22.22.4614
pubmed: 7984409
pmcid: 308508
Yang J et al (2015) Clinical significance of epigenetic silencing and re–expression of O6–methylguanine–DNA methyltransferase using epigenetic agents in laryngeal carcinoma. Oncol Lett 9(1):35–42
doi: 10.3892/ol.2014.2662
pubmed: 25452816
Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16(1):6–21
doi: 10.1101/gad.947102
pubmed: 11782440
Malley DS et al (2011) A distinct region of the MGMT CpG island critical for transcriptional regulation is preferentially methylated in glioblastoma cells and xenografts. Acta Neuropathol 121:651–661
doi: 10.1007/s00401-011-0803-5
pubmed: 21287394
Dahlrot RH et al (2018) Prognostic value of O-6‐methylguanine–DNA methyltransferase (MGMT) protein expression in glioblastoma excluding nontumour cells from the analysis. Neuropathology and applied neurobiology, 44(2): 172–184
Brandner S et al (2021) MGMT promoter methylation testing to predict overall survival in people with glioblastoma treated with temozolomide: a comprehensive meta-analysis based on a Cochrane Systematic Review. Neurooncology 23(9):1457–1469
Quillien V et al (2014) Outcome-based determination of optimal pyrosequencing assay for MGMT methylation detection in glioblastoma patients. J Neurooncol 116:487–496
doi: 10.1007/s11060-013-1332-y
pubmed: 24420923
pmcid: 3905192
Håvik AB et al (2012) MGMT promoter methylation in gliomas-assessment by pyrosequencing and quantitative methylation-specific PCR. J Translational Med 10(1):1–13
doi: 10.1186/1479-5876-10-36
Kreth S et al (2011) O6-methylguanine-DNA methyltransferase (MGMT) mRNA expression predicts outcome in malignant glioma independent of MGMT promoter methylation. PLoS ONE 6(2):e17156
doi: 10.1371/journal.pone.0017156
pubmed: 21365007
pmcid: 3041820
Mazor G et al (2019) The lncRNA TP73-AS1 is linked to aggressiveness in glioblastoma and promotes temozolomide resistance in glioblastoma cancer stem cells. Cell Death Dis 10(3):246
doi: 10.1038/s41419-019-1477-5
pubmed: 30867410
pmcid: 6416247
Yuan Y et al (2022) The E3 ubiquitin ligase HUWE1 acts through the N-Myc-DLL1-NOTCH1 signaling axis to suppress glioblastoma progression. Cancer Commun (Lond) 42(9):868–886
doi: 10.1002/cac2.12334
pubmed: 35848447