Systematic in-silico evaluation of fibrosis effects on re-entrant wave dynamics in atrial tissue.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
19 May 2024
Historique:
received: 14 12 2023
accepted: 13 05 2024
medline: 20 5 2024
pubmed: 20 5 2024
entrez: 19 5 2024
Statut: epublish

Résumé

Despite the key role of fibrosis in atrial fibrillation (AF), the effects of different spatial distributions and textures of fibrosis on wave propagation mechanisms in AF are not fully understood. To clarify these aspects, we performed a systematic computational study to assess fibrosis effects on the characteristics and stability of re-entrant waves in electrically-remodelled atrial tissues. A stochastic algorithm, which generated fibrotic distributions with controlled overall amount, average size, and orientation of fibrosis elements, was implemented on a monolayer spheric atrial model. 245 simulations were run at changing fibrosis parameters. The emerging propagation patterns were quantified in terms of rate, regularity, and coupling by frequency-domain analysis of correspondent synthetic bipolar electrograms. At the increase of fibrosis amount, the rate of reentrant waves significantly decreased and higher levels of regularity and coupling were observed (p < 0.0001). Higher spatial variability and pattern stochasticity over repetitions was observed for larger amount of fibrosis, especially in the presence of patchy and compact fibrosis. Overall, propagation slowing and organization led to higher stability of re-entrant waves. These results strengthen the evidence that the amount and spatial distribution of fibrosis concur in dictating re-entry dynamics in remodeled tissue and represent key factors in AF maintenance.

Identifiants

pubmed: 38763959
doi: 10.1038/s41598-024-62002-5
pii: 10.1038/s41598-024-62002-5
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

11427

Informations de copyright

© 2024. The Author(s).

Références

Hindricks, G. et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur. Heart J. 42, 373–498 (2021).
pubmed: 32860505 doi: 10.1093/eurheartj/ehaa612
Jones, N. R., Hobbs, F. R. & Taylor, C. J. Atrial fibrillation and stroke prevention: Where we are and where we should be. Br. J. Gen. Pract. 68, 260–261 (2018).
pubmed: 29853572 pmcid: 6001982 doi: 10.3399/bjgp18X696257
Schotten, U., Verheule, S., Kirchhof, P. & Goette, A. Pathophysiological mechanisms of atrial fibrillation: A translational appraisal. Physiol. Rev. 91, 265–325 (2011).
pubmed: 21248168 doi: 10.1152/physrev.00031.2009
Lau, D. H. et al. Pathophysiology of paroxysmal and persistent atrial fibrillation: Rotors, foci and fibrosis. Heart Lung Circ. 26, 887–893 (2017).
pubmed: 28610723 doi: 10.1016/j.hlc.2017.05.119
Masè, M., Marini, M., Disertori, M. & Ravelli, F. Dynamics of AV coupling during human atrial fibrillation: Role of atrial rate. Am. J. Physiol. Heart Circ. Physiol. 309, H198-205 (2015).
pubmed: 25910809 doi: 10.1152/ajpheart.00726.2014
Nattel, S. Molecular and cellular mechanisms of atrial fibrosis in atrial fibrillation. JACC Clin. Electrophysiol. 3, 425–435 (2017).
pubmed: 29759598 doi: 10.1016/j.jacep.2017.03.002
Jalife, J. & Kaur, K. Atrial remodeling, fibrosis, and atrial fibrillation. Trends Cardiovasc. Med. 25, 475–484 (2015).
pubmed: 25661032 doi: 10.1016/j.tcm.2014.12.015
Disertori, M., Masè, M. & Ravelli, F. Myocardial fibrosis predicts ventricular tachyarrhythmias. Trends Cardiovasc. Med. 27, 363–372 (2017).
pubmed: 28262437 doi: 10.1016/j.tcm.2017.01.011
Kottkamp, H. Human atrial fibrillation substrate: towards a specific fibrotic atrial cardiomyopathy. Eur. Heart J. 34, 2731–2738 (2013).
pubmed: 23761394 doi: 10.1093/eurheartj/eht194
Disertori, M. et al. Electroanatomic mapping and late gadolinium enhancement MRI in a genetic model of arrhythmogenic atrial cardiomyopathy. J. Cardiovasc. Electrophysiol. 25, 964–970 (2014).
pubmed: 24758425 doi: 10.1111/jce.12440
McGann, C. et al. Atrial fibrillation ablation outcome is predicted by left atrial remodeling on MRI. Circ. Arrhythm. Electrophysiol. 7, 23–30 (2014).
pubmed: 24363354 doi: 10.1161/CIRCEP.113.000689
Zhao, J. et al. Three-dimensional integrated functional, structural, and computational mapping to define the structural ‘fingerprints’ of heart-specific atrial fibrillation drivers in human heart ex vivo. J. Am. Heart Assoc. 6, e005922 (2017).
pubmed: 28862969 pmcid: 5586436 doi: 10.1161/JAHA.117.005922
Ravelli, F. et al. Quantitative assessment of transmural fibrosis profile in the human atrium: Evidence for a three-dimensional arrhythmic substrate by slice-to-slice histology. Europace 25, 739–747 (2023).
pubmed: 36349600 doi: 10.1093/europace/euac187
Verheule, S. & Schotten, U. Electrophysiological consequences of cardiac fibrosis. Cells 10, 3220 (2021).
pubmed: 34831442 pmcid: 8625398 doi: 10.3390/cells10113220
Masè, M. Application of computer models on atrial fibrillation research. Miner. Cardioangiol. 65, 398–419 (2017).
Boyle, P. M., Zahid, S. & Trayanova, N. A. Towards personalized computational modelling of the fibrotic substrate for atrial arrhythmia. Europace 18, iv136–iv145 (2016).
pubmed: 28011841 pmcid: 5841887 doi: 10.1093/europace/euw358
Aronis, K. N., Ali, R. & Trayanova, N. A. The role of personalized atrial modeling in understanding atrial fibrillation mechanisms and improving treatment. Int. J. Cardiol. 287, 139–147 (2019).
pubmed: 30755334 pmcid: 6513696 doi: 10.1016/j.ijcard.2019.01.096
Bifulco, S. F., Akoum, N. & Boyle, P. M. Translational applications of computational modelling for patients with cardiac arrhythmias. Heart https://doi.org/10.1136/heartjnl-2020-316854 (2020).
doi: 10.1136/heartjnl-2020-316854 pubmed: 33303478
Roney, C. H. et al. Modelling methodology of atrial fibrosis affects rotor dynamics and electrograms. Europace 18, iv146–iv155 (2016).
pubmed: 28011842 pmcid: 6279153 doi: 10.1093/europace/euw365
Palacio, L. C., Ugarte, J. P., Saiz, J. & Tobón, C. The effects of fibrotic cell type and its density on atrial fibrillation dynamics: An in silico study. Cells 10, 2769 (2021).
pubmed: 34685750 pmcid: 8534881 doi: 10.3390/cells10102769
Jacquemet, V. & Henriquez, C. S. Loading effect of fibroblast-myocyte coupling on resting potential, impulse propagation, and repolarization: Insights from a microstructure model. Am. J. Physiol. Heart Circ. Physiol. 294, H2040-2052 (2008).
pubmed: 18310514 doi: 10.1152/ajpheart.01298.2007
Bifulco, S. F. & Boyle, P. M. Computational modeling and simulation of the fibrotic human atria. Methods Mol. Biol. 2735, 105–115 (2024).
pubmed: 38038845 doi: 10.1007/978-1-0716-3527-8_6
Morgan, R., Colman, M. A., Chubb, H., Seemann, G. & Aslanidi, O. V. Slow conduction in the border zones of patchy fibrosis stabilizes the drivers for atrial fibrillation: Insights from multi-scale human atrial modeling. Front. Physiol. 7, 474 (2016).
pubmed: 27826248 pmcid: 5079097 doi: 10.3389/fphys.2016.00474
Corrado, C. et al. Quantifying the impact of shape uncertainty on predicted arrhythmias. Comput. Biol. Med. 153, 106528 (2023).
pubmed: 36634600 doi: 10.1016/j.compbiomed.2022.106528
Gharaviri, A. et al. Epicardial fibrosis explains increased endo-epicardial dissociation and epicardial breakthroughs in human atrial fibrillation. Front. Physiol. 11, 68 (2020).
pubmed: 32153419 pmcid: 7047215 doi: 10.3389/fphys.2020.00068
McDowell, K. S. et al. Virtual electrophysiological study of atrial fibrillation in fibrotic remodeling. PLoS ONE 10, e0117110 (2015).
pubmed: 25692857 pmcid: 4333565 doi: 10.1371/journal.pone.0117110
Solís-Lemus, J. A. et al. Evaluation of an open-source pipeline to create patient-specific left atrial models: A reproducibility study. Comput. Biol. Med. 162, 107009 (2023).
pubmed: 37301099 pmcid: 10790305 doi: 10.1016/j.compbiomed.2023.107009
Azzolin, L. et al. AugmentA: Patient-specific augmented atrial model generation tool. Comput. Med. Imaging Graph 108, 102265 (2023).
pubmed: 37392493 doi: 10.1016/j.compmedimag.2023.102265
He, J., Pertsov, A., Bullinga, J. & Mangharam, R. Individualization of atrial tachycardia models for clinical applications: performance of fiber-independent model. IEEE Trans. Biomed. Eng. 71, 258–269 (2024).
pubmed: 37486836 doi: 10.1109/TBME.2023.3298003
Roy, A. et al. Identifying locations of re-entrant drivers from patient-specific distribution of fibrosis in the left atrium. PLoS Comput. Biol. 16, e1008086 (2020).
pubmed: 32966275 pmcid: 7535127 doi: 10.1371/journal.pcbi.1008086
Gonzales, M. J., Vincent, K. P., Rappel, W.-J., Narayan, S. M. & McCulloch, A. D. Structural contributions to fibrillatory rotors in a patient-derived computational model of the atria. Europace 16 Suppl 4, iv3–iv10 (2014).
pubmed: 25362167 doi: 10.1093/europace/euu251
Roy, A., Varela, M. & Aslanidi, O. Image-based computational evaluation of the effects of atrial wall thickness and fibrosis on re-entrant drivers for atrial fibrillation. Front. Physiol. 9, 1352 (2018).
pubmed: 30349483 pmcid: 6187302 doi: 10.3389/fphys.2018.01352
Roney, C. H. et al. Constructing a human atrial fibre atlas. Ann. Biomed. Eng. 49, 233–250 (2021).
pubmed: 32458222 doi: 10.1007/s10439-020-02525-w
Saliani, A., Irakoze, É. & Jacquemet, V. Simulation of diffuse and stringy fibrosis in a bilayer interconnected cable model of the left atrium. Europace 23, i169–i177 (2021).
pubmed: 33751082 doi: 10.1093/europace/euab001
Chen, R., Wen, C., Fu, R., Li, J. & Wu, J. The effect of complex intramural microstructure caused by structural remodeling on the stability of atrial fibrillation: Insights from a three-dimensional multi-layer modeling study. PLoS ONE 13, e0208029 (2018).
pubmed: 30485346 pmcid: 6261624 doi: 10.1371/journal.pone.0208029
Nezlobinsky, T., Okenov, A. & Panfilov, A. V. Multiparametric analysis of geometric features of fibrotic textures leading to cardiac arrhythmias. Sci. Rep. 11, 21111 (2021).
pubmed: 34702936 pmcid: 8548304 doi: 10.1038/s41598-021-00606-x
Kazbanov, I. V., ten Tusscher, K. H. W. J. & Panfilov, A. V. Effects of heterogeneous diffuse fibrosis on arrhythmia dynamics and mechanism. Sci. Rep. 6, 20835 (2016).
pubmed: 26861111 pmcid: 4748409 doi: 10.1038/srep20835
Ten Tusscher, K. H. W. J. & Panfilov, A. V. Influence of diffuse fibrosis on wave propagation in human ventricular tissue. Europace 9 Suppl 6, vi38–vi45 (2007).
pubmed: 17959692 doi: 10.1093/europace/eum206
Nezlobinsky, T., Solovyova, O. & Panfilov, A. V. Anisotropic conduction in the myocardium due to fibrosis: The effect of texture on wave propagation. Sci. Rep. 10, 764 (2020).
pubmed: 31964904 pmcid: 6972912 doi: 10.1038/s41598-020-57449-1
Heikhmakhtiar, A. K., Tekle, A. A. & Lim, K. M. Influence of fibrosis amount and patterns on ventricular arrhythmogenesis and pumping efficacy: Computational study. Front. Physiol. 12, 644473 (2021).
pubmed: 34149441 pmcid: 8209383 doi: 10.3389/fphys.2021.644473
Vandersickel, N. et al. Dynamical anchoring of distant arrhythmia sources by fibrotic regions via restructuring of the activation pattern. PLoS Comput. Biol. 14, e1006637 (2018).
pubmed: 30571689 pmcid: 6319787 doi: 10.1371/journal.pcbi.1006637
Song, E. Impact of noise on the instability of spiral waves in stochastic 2D mathematical models of human atrial fibrillation. J. Biol. Phys. 49, 521–533 (2023).
pubmed: 37792115 doi: 10.1007/s10867-023-09644-0
De Coster, T. et al. Arrhythmogenicity of fibro-fatty infiltrations. Sci. Rep. 8, 2050 (2018).
pubmed: 29391548 pmcid: 5795000 doi: 10.1038/s41598-018-20450-w
Courtemanche, M., Ramirez, R. J. & Nattel, S. Ionic mechanisms underlying human atrial action potential properties: Insights from a mathematical model. Am. J. Physiol. 275, H301-321 (1998).
pubmed: 9688927
Clayton, R. H. et al. Models of cardiac tissue electrophysiology: Progress, challenges and open questions. Prog. Biophys. Mol. Biol. 104, 22–48 (2011).
pubmed: 20553746 doi: 10.1016/j.pbiomolbio.2010.05.008
Jacquemet, V. et al. Study of unipolar electrogram morphology in a computer model of atrial fibrillation. J. Cardiovasc. Electrophysiol. 14, S172-179 (2003).
pubmed: 14760921 doi: 10.1046/j.1540.8167.90308.x
Comtois, P. & Nattel, S. Interactions between cardiac fibrosis spatial pattern and ionic remodeling on electrical wave propagation. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2011, 4669–4672 (2011).
pubmed: 22255379
Akoum, N. et al. Atrial fibrosis helps select the appropriate patient and strategy in catheter ablation of atrial fibrillation: A DE-MRI guided approach. J. Cardiovasc. Electrophysiol. 22, 16–22 (2011).
pubmed: 20807271 doi: 10.1111/j.1540-8167.2010.01876.x
Cristoforetti, A., Mase, M. & Ravelli, F. A fully adaptive multiresolution algorithm for atrial arrhythmia simulation on anatomically realistic unstructured meshes. IEEE Trans. Biomed. Eng. 60, 2585–2593 (2013).
pubmed: 23674407 doi: 10.1109/TBME.2013.2261815
Jacquemet, V. & Henriquez, C. S. Finite volume stiffness matrix for solving anisotropic cardiac propagation in 2-D and 3-D unstructured meshes. IEEE Trans. Biomed. Eng. 52, 1490–1492 (2005).
pubmed: 16119246 doi: 10.1109/TBME.2005.851459
Almeida, T. P. et al. Unsupervised classification of atrial electrograms for electroanatomic mapping of human persistent atrial fibrillation. IEEE Trans. Biomed. Eng. 68, 1131–1141 (2021).
pubmed: 32881680 doi: 10.1109/TBME.2020.3021480
Everett, T. H., Kok, L. C., Vaughn, R. H., Moorman, J. R. & Haines, D. E. Frequency domain algorithm for quantifying atrial fibrillation organization to increase defibrillation efficacy. IEEE Trans. Biomed. Eng. 48, 969–978 (2001).
pubmed: 11534845 doi: 10.1109/10.942586
Ng, J., Kadish, A. H. & Goldberger, J. J. Effect of electrogram characteristics on the relationship of dominant frequency to atrial activation rate in atrial fibrillation. Heart Rhythm. 3, 1295–1305 (2006).
pubmed: 17074635 doi: 10.1016/j.hrthm.2006.07.027
Ropella, K. M. Frequency domain analysis of endocardial signals. Ann. Ist. Super Sanita 37, 351–359 (2001).
pubmed: 11889951
Ravelli, F., Masè, M., Cristoforetti, A., Marini, M. & Disertori, M. The logical operator map identifies novel candidate markers for critical sites in patients with atrial fibrillation. Prog. Biophys. Mol. Biol. 115, 186–197 (2014).
pubmed: 25077410 doi: 10.1016/j.pbiomolbio.2014.07.006
Saha, S., Linz, D., Saha, D., McEwan, A. & Baumert, M. Overcoming uncertainties in electrogram-based atrial fibrillation mapping: A review. Cardiovasc. Eng. Technol. https://doi.org/10.1007/s13239-023-00696-w (2023).
doi: 10.1007/s13239-023-00696-w pubmed: 37962813
Alcaine, A. et al. A multi-variate predictability framework to assess invasive cardiac activity and interactions during atrial fibrillation. IEEE Trans. Biomed. Eng. 64, 1157–1168 (2017).
pubmed: 27448337 doi: 10.1109/TBME.2016.2592953
Shi, X. et al. Information theory-based direct causality measure to assess cardiac fibrillation dynamics. J. R. Soc. Interface 20, 20230443 (2023).
pubmed: 37817583 pmcid: 10565370 doi: 10.1098/rsif.2023.0443
Zhao, J. et al. Chamber-specific wall thickness features in human atrial fibrillation. Interface Focus 13, 20230044 (2023).
pubmed: 38106912 pmcid: 10722209 doi: 10.1098/rsfs.2023.0044
Ho, S. Y., Anderson, R. H. & Sánchez-Quintana, D. Atrial structure and fibres: Morphologic bases of atrial conduction. Cardiovasc. Res. 54, 325–336 (2002).
pubmed: 12062338 doi: 10.1016/S0008-6363(02)00226-2
Falkenberg, M. et al. Identifying locations susceptible to micro-anatomical reentry using a spatial network representation of atrial fibre maps. PLoS ONE 17, e0267166 (2022).
pubmed: 35737662 pmcid: 9223322 doi: 10.1371/journal.pone.0267166

Auteurs

Michela Masè (M)

Laboratory of Biophysics and Translational Cardiology, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Via Sommarive 18, 38123, Povo, Trento, Italy. michela.mase@unitn.it.

Alessandro Cristoforetti (A)

Laboratory of Biophysics and Translational Cardiology, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Via Sommarive 18, 38123, Povo, Trento, Italy.

Samuele Pelloni (S)

Laboratory of Biophysics and Translational Cardiology, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Via Sommarive 18, 38123, Povo, Trento, Italy.

Flavia Ravelli (F)

Laboratory of Biophysics and Translational Cardiology, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Via Sommarive 18, 38123, Povo, Trento, Italy.
CISMed-Centre for Medical Sciences, University of Trento, 38122, Trento, Italy.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH