Systematic in-silico evaluation of fibrosis effects on re-entrant wave dynamics in atrial tissue.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
19 May 2024
19 May 2024
Historique:
received:
14
12
2023
accepted:
13
05
2024
medline:
20
5
2024
pubmed:
20
5
2024
entrez:
19
5
2024
Statut:
epublish
Résumé
Despite the key role of fibrosis in atrial fibrillation (AF), the effects of different spatial distributions and textures of fibrosis on wave propagation mechanisms in AF are not fully understood. To clarify these aspects, we performed a systematic computational study to assess fibrosis effects on the characteristics and stability of re-entrant waves in electrically-remodelled atrial tissues. A stochastic algorithm, which generated fibrotic distributions with controlled overall amount, average size, and orientation of fibrosis elements, was implemented on a monolayer spheric atrial model. 245 simulations were run at changing fibrosis parameters. The emerging propagation patterns were quantified in terms of rate, regularity, and coupling by frequency-domain analysis of correspondent synthetic bipolar electrograms. At the increase of fibrosis amount, the rate of reentrant waves significantly decreased and higher levels of regularity and coupling were observed (p < 0.0001). Higher spatial variability and pattern stochasticity over repetitions was observed for larger amount of fibrosis, especially in the presence of patchy and compact fibrosis. Overall, propagation slowing and organization led to higher stability of re-entrant waves. These results strengthen the evidence that the amount and spatial distribution of fibrosis concur in dictating re-entry dynamics in remodeled tissue and represent key factors in AF maintenance.
Identifiants
pubmed: 38763959
doi: 10.1038/s41598-024-62002-5
pii: 10.1038/s41598-024-62002-5
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
11427Informations de copyright
© 2024. The Author(s).
Références
Hindricks, G. et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur. Heart J. 42, 373–498 (2021).
pubmed: 32860505
doi: 10.1093/eurheartj/ehaa612
Jones, N. R., Hobbs, F. R. & Taylor, C. J. Atrial fibrillation and stroke prevention: Where we are and where we should be. Br. J. Gen. Pract. 68, 260–261 (2018).
pubmed: 29853572
pmcid: 6001982
doi: 10.3399/bjgp18X696257
Schotten, U., Verheule, S., Kirchhof, P. & Goette, A. Pathophysiological mechanisms of atrial fibrillation: A translational appraisal. Physiol. Rev. 91, 265–325 (2011).
pubmed: 21248168
doi: 10.1152/physrev.00031.2009
Lau, D. H. et al. Pathophysiology of paroxysmal and persistent atrial fibrillation: Rotors, foci and fibrosis. Heart Lung Circ. 26, 887–893 (2017).
pubmed: 28610723
doi: 10.1016/j.hlc.2017.05.119
Masè, M., Marini, M., Disertori, M. & Ravelli, F. Dynamics of AV coupling during human atrial fibrillation: Role of atrial rate. Am. J. Physiol. Heart Circ. Physiol. 309, H198-205 (2015).
pubmed: 25910809
doi: 10.1152/ajpheart.00726.2014
Nattel, S. Molecular and cellular mechanisms of atrial fibrosis in atrial fibrillation. JACC Clin. Electrophysiol. 3, 425–435 (2017).
pubmed: 29759598
doi: 10.1016/j.jacep.2017.03.002
Jalife, J. & Kaur, K. Atrial remodeling, fibrosis, and atrial fibrillation. Trends Cardiovasc. Med. 25, 475–484 (2015).
pubmed: 25661032
doi: 10.1016/j.tcm.2014.12.015
Disertori, M., Masè, M. & Ravelli, F. Myocardial fibrosis predicts ventricular tachyarrhythmias. Trends Cardiovasc. Med. 27, 363–372 (2017).
pubmed: 28262437
doi: 10.1016/j.tcm.2017.01.011
Kottkamp, H. Human atrial fibrillation substrate: towards a specific fibrotic atrial cardiomyopathy. Eur. Heart J. 34, 2731–2738 (2013).
pubmed: 23761394
doi: 10.1093/eurheartj/eht194
Disertori, M. et al. Electroanatomic mapping and late gadolinium enhancement MRI in a genetic model of arrhythmogenic atrial cardiomyopathy. J. Cardiovasc. Electrophysiol. 25, 964–970 (2014).
pubmed: 24758425
doi: 10.1111/jce.12440
McGann, C. et al. Atrial fibrillation ablation outcome is predicted by left atrial remodeling on MRI. Circ. Arrhythm. Electrophysiol. 7, 23–30 (2014).
pubmed: 24363354
doi: 10.1161/CIRCEP.113.000689
Zhao, J. et al. Three-dimensional integrated functional, structural, and computational mapping to define the structural ‘fingerprints’ of heart-specific atrial fibrillation drivers in human heart ex vivo. J. Am. Heart Assoc. 6, e005922 (2017).
pubmed: 28862969
pmcid: 5586436
doi: 10.1161/JAHA.117.005922
Ravelli, F. et al. Quantitative assessment of transmural fibrosis profile in the human atrium: Evidence for a three-dimensional arrhythmic substrate by slice-to-slice histology. Europace 25, 739–747 (2023).
pubmed: 36349600
doi: 10.1093/europace/euac187
Verheule, S. & Schotten, U. Electrophysiological consequences of cardiac fibrosis. Cells 10, 3220 (2021).
pubmed: 34831442
pmcid: 8625398
doi: 10.3390/cells10113220
Masè, M. Application of computer models on atrial fibrillation research. Miner. Cardioangiol. 65, 398–419 (2017).
Boyle, P. M., Zahid, S. & Trayanova, N. A. Towards personalized computational modelling of the fibrotic substrate for atrial arrhythmia. Europace 18, iv136–iv145 (2016).
pubmed: 28011841
pmcid: 5841887
doi: 10.1093/europace/euw358
Aronis, K. N., Ali, R. & Trayanova, N. A. The role of personalized atrial modeling in understanding atrial fibrillation mechanisms and improving treatment. Int. J. Cardiol. 287, 139–147 (2019).
pubmed: 30755334
pmcid: 6513696
doi: 10.1016/j.ijcard.2019.01.096
Bifulco, S. F., Akoum, N. & Boyle, P. M. Translational applications of computational modelling for patients with cardiac arrhythmias. Heart https://doi.org/10.1136/heartjnl-2020-316854 (2020).
doi: 10.1136/heartjnl-2020-316854
pubmed: 33303478
Roney, C. H. et al. Modelling methodology of atrial fibrosis affects rotor dynamics and electrograms. Europace 18, iv146–iv155 (2016).
pubmed: 28011842
pmcid: 6279153
doi: 10.1093/europace/euw365
Palacio, L. C., Ugarte, J. P., Saiz, J. & Tobón, C. The effects of fibrotic cell type and its density on atrial fibrillation dynamics: An in silico study. Cells 10, 2769 (2021).
pubmed: 34685750
pmcid: 8534881
doi: 10.3390/cells10102769
Jacquemet, V. & Henriquez, C. S. Loading effect of fibroblast-myocyte coupling on resting potential, impulse propagation, and repolarization: Insights from a microstructure model. Am. J. Physiol. Heart Circ. Physiol. 294, H2040-2052 (2008).
pubmed: 18310514
doi: 10.1152/ajpheart.01298.2007
Bifulco, S. F. & Boyle, P. M. Computational modeling and simulation of the fibrotic human atria. Methods Mol. Biol. 2735, 105–115 (2024).
pubmed: 38038845
doi: 10.1007/978-1-0716-3527-8_6
Morgan, R., Colman, M. A., Chubb, H., Seemann, G. & Aslanidi, O. V. Slow conduction in the border zones of patchy fibrosis stabilizes the drivers for atrial fibrillation: Insights from multi-scale human atrial modeling. Front. Physiol. 7, 474 (2016).
pubmed: 27826248
pmcid: 5079097
doi: 10.3389/fphys.2016.00474
Corrado, C. et al. Quantifying the impact of shape uncertainty on predicted arrhythmias. Comput. Biol. Med. 153, 106528 (2023).
pubmed: 36634600
doi: 10.1016/j.compbiomed.2022.106528
Gharaviri, A. et al. Epicardial fibrosis explains increased endo-epicardial dissociation and epicardial breakthroughs in human atrial fibrillation. Front. Physiol. 11, 68 (2020).
pubmed: 32153419
pmcid: 7047215
doi: 10.3389/fphys.2020.00068
McDowell, K. S. et al. Virtual electrophysiological study of atrial fibrillation in fibrotic remodeling. PLoS ONE 10, e0117110 (2015).
pubmed: 25692857
pmcid: 4333565
doi: 10.1371/journal.pone.0117110
Solís-Lemus, J. A. et al. Evaluation of an open-source pipeline to create patient-specific left atrial models: A reproducibility study. Comput. Biol. Med. 162, 107009 (2023).
pubmed: 37301099
pmcid: 10790305
doi: 10.1016/j.compbiomed.2023.107009
Azzolin, L. et al. AugmentA: Patient-specific augmented atrial model generation tool. Comput. Med. Imaging Graph 108, 102265 (2023).
pubmed: 37392493
doi: 10.1016/j.compmedimag.2023.102265
He, J., Pertsov, A., Bullinga, J. & Mangharam, R. Individualization of atrial tachycardia models for clinical applications: performance of fiber-independent model. IEEE Trans. Biomed. Eng. 71, 258–269 (2024).
pubmed: 37486836
doi: 10.1109/TBME.2023.3298003
Roy, A. et al. Identifying locations of re-entrant drivers from patient-specific distribution of fibrosis in the left atrium. PLoS Comput. Biol. 16, e1008086 (2020).
pubmed: 32966275
pmcid: 7535127
doi: 10.1371/journal.pcbi.1008086
Gonzales, M. J., Vincent, K. P., Rappel, W.-J., Narayan, S. M. & McCulloch, A. D. Structural contributions to fibrillatory rotors in a patient-derived computational model of the atria. Europace 16 Suppl 4, iv3–iv10 (2014).
pubmed: 25362167
doi: 10.1093/europace/euu251
Roy, A., Varela, M. & Aslanidi, O. Image-based computational evaluation of the effects of atrial wall thickness and fibrosis on re-entrant drivers for atrial fibrillation. Front. Physiol. 9, 1352 (2018).
pubmed: 30349483
pmcid: 6187302
doi: 10.3389/fphys.2018.01352
Roney, C. H. et al. Constructing a human atrial fibre atlas. Ann. Biomed. Eng. 49, 233–250 (2021).
pubmed: 32458222
doi: 10.1007/s10439-020-02525-w
Saliani, A., Irakoze, É. & Jacquemet, V. Simulation of diffuse and stringy fibrosis in a bilayer interconnected cable model of the left atrium. Europace 23, i169–i177 (2021).
pubmed: 33751082
doi: 10.1093/europace/euab001
Chen, R., Wen, C., Fu, R., Li, J. & Wu, J. The effect of complex intramural microstructure caused by structural remodeling on the stability of atrial fibrillation: Insights from a three-dimensional multi-layer modeling study. PLoS ONE 13, e0208029 (2018).
pubmed: 30485346
pmcid: 6261624
doi: 10.1371/journal.pone.0208029
Nezlobinsky, T., Okenov, A. & Panfilov, A. V. Multiparametric analysis of geometric features of fibrotic textures leading to cardiac arrhythmias. Sci. Rep. 11, 21111 (2021).
pubmed: 34702936
pmcid: 8548304
doi: 10.1038/s41598-021-00606-x
Kazbanov, I. V., ten Tusscher, K. H. W. J. & Panfilov, A. V. Effects of heterogeneous diffuse fibrosis on arrhythmia dynamics and mechanism. Sci. Rep. 6, 20835 (2016).
pubmed: 26861111
pmcid: 4748409
doi: 10.1038/srep20835
Ten Tusscher, K. H. W. J. & Panfilov, A. V. Influence of diffuse fibrosis on wave propagation in human ventricular tissue. Europace 9 Suppl 6, vi38–vi45 (2007).
pubmed: 17959692
doi: 10.1093/europace/eum206
Nezlobinsky, T., Solovyova, O. & Panfilov, A. V. Anisotropic conduction in the myocardium due to fibrosis: The effect of texture on wave propagation. Sci. Rep. 10, 764 (2020).
pubmed: 31964904
pmcid: 6972912
doi: 10.1038/s41598-020-57449-1
Heikhmakhtiar, A. K., Tekle, A. A. & Lim, K. M. Influence of fibrosis amount and patterns on ventricular arrhythmogenesis and pumping efficacy: Computational study. Front. Physiol. 12, 644473 (2021).
pubmed: 34149441
pmcid: 8209383
doi: 10.3389/fphys.2021.644473
Vandersickel, N. et al. Dynamical anchoring of distant arrhythmia sources by fibrotic regions via restructuring of the activation pattern. PLoS Comput. Biol. 14, e1006637 (2018).
pubmed: 30571689
pmcid: 6319787
doi: 10.1371/journal.pcbi.1006637
Song, E. Impact of noise on the instability of spiral waves in stochastic 2D mathematical models of human atrial fibrillation. J. Biol. Phys. 49, 521–533 (2023).
pubmed: 37792115
doi: 10.1007/s10867-023-09644-0
De Coster, T. et al. Arrhythmogenicity of fibro-fatty infiltrations. Sci. Rep. 8, 2050 (2018).
pubmed: 29391548
pmcid: 5795000
doi: 10.1038/s41598-018-20450-w
Courtemanche, M., Ramirez, R. J. & Nattel, S. Ionic mechanisms underlying human atrial action potential properties: Insights from a mathematical model. Am. J. Physiol. 275, H301-321 (1998).
pubmed: 9688927
Clayton, R. H. et al. Models of cardiac tissue electrophysiology: Progress, challenges and open questions. Prog. Biophys. Mol. Biol. 104, 22–48 (2011).
pubmed: 20553746
doi: 10.1016/j.pbiomolbio.2010.05.008
Jacquemet, V. et al. Study of unipolar electrogram morphology in a computer model of atrial fibrillation. J. Cardiovasc. Electrophysiol. 14, S172-179 (2003).
pubmed: 14760921
doi: 10.1046/j.1540.8167.90308.x
Comtois, P. & Nattel, S. Interactions between cardiac fibrosis spatial pattern and ionic remodeling on electrical wave propagation. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2011, 4669–4672 (2011).
pubmed: 22255379
Akoum, N. et al. Atrial fibrosis helps select the appropriate patient and strategy in catheter ablation of atrial fibrillation: A DE-MRI guided approach. J. Cardiovasc. Electrophysiol. 22, 16–22 (2011).
pubmed: 20807271
doi: 10.1111/j.1540-8167.2010.01876.x
Cristoforetti, A., Mase, M. & Ravelli, F. A fully adaptive multiresolution algorithm for atrial arrhythmia simulation on anatomically realistic unstructured meshes. IEEE Trans. Biomed. Eng. 60, 2585–2593 (2013).
pubmed: 23674407
doi: 10.1109/TBME.2013.2261815
Jacquemet, V. & Henriquez, C. S. Finite volume stiffness matrix for solving anisotropic cardiac propagation in 2-D and 3-D unstructured meshes. IEEE Trans. Biomed. Eng. 52, 1490–1492 (2005).
pubmed: 16119246
doi: 10.1109/TBME.2005.851459
Almeida, T. P. et al. Unsupervised classification of atrial electrograms for electroanatomic mapping of human persistent atrial fibrillation. IEEE Trans. Biomed. Eng. 68, 1131–1141 (2021).
pubmed: 32881680
doi: 10.1109/TBME.2020.3021480
Everett, T. H., Kok, L. C., Vaughn, R. H., Moorman, J. R. & Haines, D. E. Frequency domain algorithm for quantifying atrial fibrillation organization to increase defibrillation efficacy. IEEE Trans. Biomed. Eng. 48, 969–978 (2001).
pubmed: 11534845
doi: 10.1109/10.942586
Ng, J., Kadish, A. H. & Goldberger, J. J. Effect of electrogram characteristics on the relationship of dominant frequency to atrial activation rate in atrial fibrillation. Heart Rhythm. 3, 1295–1305 (2006).
pubmed: 17074635
doi: 10.1016/j.hrthm.2006.07.027
Ropella, K. M. Frequency domain analysis of endocardial signals. Ann. Ist. Super Sanita 37, 351–359 (2001).
pubmed: 11889951
Ravelli, F., Masè, M., Cristoforetti, A., Marini, M. & Disertori, M. The logical operator map identifies novel candidate markers for critical sites in patients with atrial fibrillation. Prog. Biophys. Mol. Biol. 115, 186–197 (2014).
pubmed: 25077410
doi: 10.1016/j.pbiomolbio.2014.07.006
Saha, S., Linz, D., Saha, D., McEwan, A. & Baumert, M. Overcoming uncertainties in electrogram-based atrial fibrillation mapping: A review. Cardiovasc. Eng. Technol. https://doi.org/10.1007/s13239-023-00696-w (2023).
doi: 10.1007/s13239-023-00696-w
pubmed: 37962813
Alcaine, A. et al. A multi-variate predictability framework to assess invasive cardiac activity and interactions during atrial fibrillation. IEEE Trans. Biomed. Eng. 64, 1157–1168 (2017).
pubmed: 27448337
doi: 10.1109/TBME.2016.2592953
Shi, X. et al. Information theory-based direct causality measure to assess cardiac fibrillation dynamics. J. R. Soc. Interface 20, 20230443 (2023).
pubmed: 37817583
pmcid: 10565370
doi: 10.1098/rsif.2023.0443
Zhao, J. et al. Chamber-specific wall thickness features in human atrial fibrillation. Interface Focus 13, 20230044 (2023).
pubmed: 38106912
pmcid: 10722209
doi: 10.1098/rsfs.2023.0044
Ho, S. Y., Anderson, R. H. & Sánchez-Quintana, D. Atrial structure and fibres: Morphologic bases of atrial conduction. Cardiovasc. Res. 54, 325–336 (2002).
pubmed: 12062338
doi: 10.1016/S0008-6363(02)00226-2
Falkenberg, M. et al. Identifying locations susceptible to micro-anatomical reentry using a spatial network representation of atrial fibre maps. PLoS ONE 17, e0267166 (2022).
pubmed: 35737662
pmcid: 9223322
doi: 10.1371/journal.pone.0267166