Tumor biomarkers for diagnosis, prognosis and targeted therapy.


Journal

Signal transduction and targeted therapy
ISSN: 2059-3635
Titre abrégé: Signal Transduct Target Ther
Pays: England
ID NLM: 101676423

Informations de publication

Date de publication:
20 May 2024
Historique:
received: 05 06 2023
accepted: 02 04 2024
revised: 07 03 2024
medline: 20 5 2024
pubmed: 20 5 2024
entrez: 19 5 2024
Statut: epublish

Résumé

Tumor biomarkers, the substances which are produced by tumors or the body's responses to tumors during tumorigenesis and progression, have been demonstrated to possess critical and encouraging value in screening and early diagnosis, prognosis prediction, recurrence detection, and therapeutic efficacy monitoring of cancers. Over the past decades, continuous progress has been made in exploring and discovering novel, sensitive, specific, and accurate tumor biomarkers, which has significantly promoted personalized medicine and improved the outcomes of cancer patients, especially advances in molecular biology technologies developed for the detection of tumor biomarkers. Herein, we summarize the discovery and development of tumor biomarkers, including the history of tumor biomarkers, the conventional and innovative technologies used for biomarker discovery and detection, the classification of tumor biomarkers based on tissue origins, and the application of tumor biomarkers in clinical cancer management. In particular, we highlight the recent advancements in biomarker-based anticancer-targeted therapies which are emerging as breakthroughs and promising cancer therapeutic strategies. We also discuss limitations and challenges that need to be addressed and provide insights and perspectives to turn challenges into opportunities in this field. Collectively, the discovery and application of multiple tumor biomarkers emphasized in this review may provide guidance on improved precision medicine, broaden horizons in future research directions, and expedite the clinical classification of cancer patients according to their molecular biomarkers rather than organs of origin.

Identifiants

pubmed: 38763973
doi: 10.1038/s41392-024-01823-2
pii: 10.1038/s41392-024-01823-2
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

132

Informations de copyright

© 2024. The Author(s).

Références

Schmitt, C. A., Wang, B. & Demaria, M. Senescence and cancer - role and therapeutic opportunities. Nat. Rev. Clin. Oncol. 19, 619–636 (2022).
pubmed: 36045302 pmcid: 9428886 doi: 10.1038/s41571-022-00668-4
Wu, L. & Qu, X. Cancer biomarker detection: recent achievements and challenges. Chem. Soc. Rev. 44, 2963–2997 (2015).
pubmed: 25739971 doi: 10.1039/C4CS00370E
Sewpersad, S. & Pillay, T. S. Historical perspectives in clinical pathology: Bence Jones protein - early urine chemistry and the impact on modern day diagnostics. J. Clin. Pathol. 74, 212–215 (2021).
pubmed: 32471887 doi: 10.1136/jclinpath-2020-206675
Gupta, N., Sharma, A. & Sharma, A. Emerging biomarkers in multiple myeloma: a review. Clin. Chim. Acta 503, 45–53 (2020).
pubmed: 31901479 doi: 10.1016/j.cca.2019.12.026
Talwar, G. P., Gupta, J. C. & Shankar, N. V. Immunological approaches against human chorionic gonadotropin for control of fertility and therapy of advanced-stage cancers expressing hCG/subunits. Am. J. Reprod. Immunol. 66, 26–39 (2011).
pubmed: 21501278 doi: 10.1111/j.1600-0897.2011.01002.x
Grenache, D. G. Progress in understanding the use of human chorionic gonadotropin as a tumor marker. Clin. Chem. Lab Med. 58, 323–325 (2020).
pubmed: 31926077 doi: 10.1515/cclm-2019-1288
Markert, C. L. & Møller, F. Multiple forms of enzymes: tissue, ontogenetic, and species specific patterns. Proc. Natl Acad. Sci. USA 45, 753–763 (1959).
pubmed: 16590440 pmcid: 222630 doi: 10.1073/pnas.45.5.753
Jurisic, V., Radenkovic, S. & Konjevic, G. The actual role of LDH as tumor marker, biochemical and clinical aspects. Adv. Exp. Med. Biol. 867, 115–124 (2015).
pubmed: 26530363 doi: 10.1007/978-94-017-7215-0_8
Meador, C. K. et al. Cause of Cushing’s syndrome in patients with tumors arising from ‘nonendocrine’ tissue. J. Clin. Endocrinol. Metab. 22, 693–703 (1962).
pubmed: 14471915 doi: 10.1210/jcem-22-7-693
Khramkova, N. I. & Abelev, G. I. Antigenic structure of mouse hepatomas. II. Preparation of monospecific antibodies to the organospecific liver antigens. Neoplasma 10, 121–126 (1963).
pubmed: 14032418
Hu, X., Chen, R., Wei, Q. & Xu, X. The landscape of alpha fetoprotein in hepatocellular carcinoma: where are we? Int. J. Biol. Sci. 18, 536–551 (2022).
pubmed: 35002508 pmcid: 8741863 doi: 10.7150/ijbs.64537
Primus, F. J., Freeman, J. W. & Goldenberg, D. M. Immunological heterogeneity of carcinoembryonic antigen: purification from meconium of an antigen related to carcinoembryonic antigen. Cancer Res. 43, 679–685 (1983).
pubmed: 6401222
Grunnet, M. & Sorensen, J. B. Carcinoembryonic antigen (CEA) as tumor marker in lung cancer. Lung Cancer. 76, 138–143 (2012).
Jia, L. et al. Soluble POSTN is a novel biomarker complementing CA153 and CEA for breast cancer diagnosis and metastasis prediction. BMC Cancer 22, 760 (2022).
pubmed: 35831854 pmcid: 9281047 doi: 10.1186/s12885-022-09864-y
Lertkhachonsuk, A. A. et al. Serum CA19-9, CA-125 and CEA as tumor markers for mucinous ovarian tumors. J. Obstet. Gynaecol. Res. 46, 2287–2291 (2020).
pubmed: 32830422 pmcid: 7693209 doi: 10.1111/jog.14427
Das, V., Kalita, J. & Pal, M. Predictive and prognostic biomarkers in colorectal cancer: a systematic review of recent advances and challenges. Biomed. Pharmacother. 87, 8–19 (2017).
pubmed: 28040600 doi: 10.1016/j.biopha.2016.12.064
Watson, J. D. & Crick, F. H. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171, 737–738 (1953).
pubmed: 13054692 doi: 10.1038/171737a0
Oren, M. p53: not just a tumor suppressor. J. Mol. Cell Biol. 11, 539–543 (2019).
pubmed: 31291648 pmcid: 6736137 doi: 10.1093/jmcb/mjz070
Lane, D. P. & Crawford, L. V. T antigen is bound to a host protein in SV40-transformed cells. Nature 278, 261–263 (1979).
pubmed: 218111 doi: 10.1038/278261a0
Finlay, C. A., Hinds, P. W. & Levine, A. J. The p53 proto-oncogene can act as a suppressor of transformation. Cell 57, 1083–1093 (1989).
pubmed: 2525423 doi: 10.1016/0092-8674(89)90045-7
Levine, A. J. p53: 800 million years of evolution and 40 years of discovery. Nat. Rev. Cancer 20, 471–480 (2020).
pubmed: 32404993 doi: 10.1038/s41568-020-0262-1
Malumbres, M. & Barbacid, M. RAS oncogenes: the first 30 years. Nat. Rev. Cancer 3, 459–465 (2003).
pubmed: 12778136 doi: 10.1038/nrc1097
Downward, J. Signal transduction. prelude to an anniversary for the RAS oncogene. Science 314, 433–434 (2006).
pubmed: 17053139 doi: 10.1126/science.1134727
FDA approves first KRAS inhibitor: Sotorasib. Cancer Discov. 11, OF4 (2021).
Slack, R. S. & Miller, F. D. Retinoblastoma gene in mouse neural development. Dev. Genet. 18, 81–91 (1996).
pubmed: 8742837 doi: 10.1002/(SICI)1520-6408(1996)18:1<81::AID-DVG9>3.0.CO;2-Y
Belczacka, I. et al. Proteomics biomarkers for solid tumors: current status and future prospects. Mass Spectrom. Rev. 38, 49–78 (2019).
pubmed: 29889308 doi: 10.1002/mas.21572
Merrick, B. A., London, R. E., Bushel, P. R., Grissom, S. F. & Paules, R. S. Platforms for biomarker analysis using high-throughput approaches in genomics, transcriptomics, proteomics, metabolomics, and bioinformatics. IARC Sci. Publ. 121–142 (2011).
Qi, S. et al. High-resolution metabolomic biomarkers for lung cancer diagnosis and prognosis. Sci. Rep. 11, 11805 (2021).
pubmed: 34083687 pmcid: 8175557 doi: 10.1038/s41598-021-91276-2
Rabaan, A. A. et al. Application of CRISPR/Cas9 technology in cancer treatment: a future direction. Curr. Oncol. 30, 1954–1976 (2023).
pubmed: 36826113 pmcid: 9955208 doi: 10.3390/curroncol30020152
Hosseini, S. A. et al. CRISPR/Cas9 as precision and high-throughput genetic engineering tools in gastrointestinal cancer research and therapy. Int. J. Biol. Macromol. 223, 732–754 (2022).
pubmed: 36372102 doi: 10.1016/j.ijbiomac.2022.11.018
Parola, C., Neumeier, D. & Reddy, S. T. Integrating high-throughput screening and sequencing for monoclonal antibody discovery and engineering. Immunology. 153, 31–41 (2018).
Wurdinger, T., In ‘t Veld, S. G. J. G. & Best, M. G. Platelet RNA as pan-tumor biomarker for cancer detection. Cancer Res. 80, 1371–1373 (2020).
pubmed: 32075797 doi: 10.1158/0008-5472.CAN-19-3684
Song, P. et al. Limitations and opportunities of technologies for the analysis of cell-free DNA in cancer diagnostics. Nat. Biomed. Eng. 6, 232–245 (2022).
pubmed: 35102279 pmcid: 9336539 doi: 10.1038/s41551-021-00837-3
Zou, J. & Wang, E. Cancer biomarker discovery for precision medicine: new progress. Curr. Med. Chem. 26, 7655–7671 (2019).
pubmed: 30027846 doi: 10.2174/0929867325666180718164712
Ladabaum, U., Dominitz, J. A., Kahi, C. & Schoen, R. E. Strategies for colorectal cancer screening. Gastroenterology 158, 418–432 (2020).
pubmed: 31394083 doi: 10.1053/j.gastro.2019.06.043
Ayoub, W. S. et al. Current status of hepatocellular carcinoma detection: screening strategies and novel biomarkers. Ther. Adv. Med. Oncol. 11, 1758835919869120 (2019).
pubmed: 31523283 pmcid: 6732860 doi: 10.1177/1758835919869120
Yamashita, K. & Watanabe, M. Clinical significance of tumor markers and an emerging perspective on colorectal cancer. Cancer Sci. 100, 195–199 (2009).
pubmed: 19200256 doi: 10.1111/j.1349-7006.2008.01022.x
Sharma, S. Tumor markers in clinical practice: general principles and guidelines. Indian J. Med. Paediatr. Oncol. 30, 1–8 (2009).
pubmed: 20668599 pmcid: 2902207 doi: 10.4103/0971-5851.56328
Verma, M., Patel, P. & Verma, M. Biomarkers in prostate cancer epidemiology. Cancers 3, 3773–3798 (2011).
pubmed: 24213111 pmcid: 3763396 doi: 10.3390/cancers3043773
Petrelli, F. et al. Prognostic role of lactate dehydrogenase in solid tumors: a systematic review and meta-analysis of 76 studies. Acta Oncol. 54, 961–970 (2015).
pubmed: 25984930 doi: 10.3109/0284186X.2015.1043026
Zhang, C. et al. Overview of microRNAs as diagnostic and prognostic biomarkers for high-incidence cancers in 2021. Int. J. Mol. Sci. 23, 11389 (2022).
pubmed: 36232692 pmcid: 9570028 doi: 10.3390/ijms231911389
Ghazimoradi, M. H., Karimpour-Fard, N. & Babashah, S. The promising role of non-coding RNAs as biomarkers and therapeutic targets for leukemia. Genes 14, 131 (2023).
pubmed: 36672872 pmcid: 9859176 doi: 10.3390/genes14010131
Dai, J.-H., Tan, X.-R., Qiao, H. & Liu, N. Emerging clinical relevance of microbiome in cancer: promising biomarkers and therapeutic targets. Protein Cell https://doi.org/10.1093/procel/pwad052 (2023).
Wang, H., Wang, Y., Zhang, D. & Li, P. Circulating nucleosomes as potential biomarkers for cancer diagnosis and treatment monitoring. Int. J. Biol. Macromol. 262, 130005 (2024).
pubmed: 38331061 doi: 10.1016/j.ijbiomac.2024.130005
Wen, X., Pu, H., Liu, Q., Guo, Z. & Luo, D. Circulating tumor DNA-A novel biomarker of tumor progression and its favorable detection techniques. Cancers 14, 6025 (2022).
pubmed: 36551512 pmcid: 9775401 doi: 10.3390/cancers14246025
Lin, D. et al. Circulating tumor cells: biology and clinical significance. Signal Transduct. Target. Ther. 6, 404 (2021).
pubmed: 34803167 pmcid: 8606574 doi: 10.1038/s41392-021-00817-8
Kwong, G. A. et al. Synthetic biomarkers: a twenty-first century path to early cancer detection. Nat. Rev. Cancer 21, 655–668 (2021).
pubmed: 34489588 pmcid: 8791024 doi: 10.1038/s41568-021-00389-3
Calabrese, F. et al. Are there new biomarkers in tissue and liquid biopsies for the early detection of non-small cell lung cancer? J. Clin. Med. 8, 414 (2019).
pubmed: 30917582 pmcid: 6463117 doi: 10.3390/jcm8030414
Bresalier, R. S. et al. Biomarkers for early detection of colorectal cancer: the early detection research network, a framework for clinical translation. Cancer Epidemiol. Biomark. Prev. 29, 2431–2440 (2020).
doi: 10.1158/1055-9965.EPI-20-0234
Ye, Q., Ling, S., Zheng, S. & Xu, X. Liquid biopsy in hepatocellular carcinoma: circulating tumor cells and circulating tumor DNA. Mol. Cancer 18, 114 (2019).
pubmed: 31269959 pmcid: 6607541 doi: 10.1186/s12943-019-1043-x
Hirata, I. Evaluation of the usefulness of the simultaneous assay of fecal hemoglobin (Hb) and transferrin (Tf) in colorectal cancer screening - for the establishment of the Hb and Tf two-step cutoff assay (HTTC assay). Diagnosis 7, 133–139 (2020).
pubmed: 31472060 doi: 10.1515/dx-2019-0049
Sukumar, J., Gast, K., Quiroga, D., Lustberg, M. & Williams, N. Triple-negative breast cancer: promising prognostic biomarkers currently in development. Expert Rev. Anticancer Ther. 21, 135–148 (2021).
pubmed: 33198517 pmcid: 8174647 doi: 10.1080/14737140.2021.1840984
Yi, M. et al. Biomarkers for predicting efficacy of PD-1/PD-L1 inhibitors. Mol. Cancer 17, 129 (2018).
pubmed: 30139382 pmcid: 6107958 doi: 10.1186/s12943-018-0864-3
Moradi, A., Srinivasan, S., Clements, J. & Batra, J. Beyond the biomarker role: prostate-specific antigen (PSA) in the prostate cancer microenvironment. Cancer Metastasis Rev. 38, 333–346 (2019).
pubmed: 31659564 doi: 10.1007/s10555-019-09815-3
Kim, D. H. et al. The relationships between perioperative CEA, CA 19-9, and CA 72-4 and recurrence in gastric cancer patients after curative radical gastrectomy. J. Surg. Oncol. 104, 585–591 (2011).
pubmed: 21695697 doi: 10.1002/jso.21919
Choi, S. R. et al. Role of serum tumor markers in monitoring for recurrence of gastric cancer following radical gastrectomy. Dig. Dis. Sci. 51, 2081–2086 (2006).
pubmed: 17009116 doi: 10.1007/s10620-006-9166-5
Lu, P. et al. Methylated septin 9 as a promising biomarker in the diagnosis and recurrence monitoring of colorectal cancer. Dis. Markers 2022, 7087885 (2022).
pubmed: 35818587 pmcid: 9271001 doi: 10.1155/2022/7087885
Moding, E. J., Nabet, B. Y., Alizadeh, A. A. & Diehn, M. Detecting liquid remnants of solid tumors: circulating tumor DNA minimal residual disease. Cancer Discov. 11, 2968–2986 (2021).
pubmed: 34785539 pmcid: 8976700 doi: 10.1158/2159-8290.CD-21-0634
Zhang, J. et al. Single-cell transcriptome-based multilayer network biomarker for predicting prognosis and therapeutic response of gliomas. Brief. Bioinform. 21, 1080–1097 (2020).
pubmed: 31329830 doi: 10.1093/bib/bbz040
Goldsmith, S. J. Radioimmunoassay: review of basic principles. Semin. Nucl. Med. 5, 125–152 (1975).
pubmed: 164695 doi: 10.1016/S0001-2998(75)80028-6
Grange, R. D., Thompson, J. P., Lambert, D. G. & Mahajan, R. P. Radioimmunoassay, enzyme and non-enzyme-based immunoassays. Br. J. Anaesth. 112, 213–216 (2014).
pubmed: 24431350 doi: 10.1093/bja/aet293
Hosoki, H., Mori, M., Takahara, J. & Daito, M. Measurement of serum cortisol with 125I-cortisol radioimmunoassay. Horumon Rinsho 23, 721–729 (1975).
Hack, C. E. et al. A modified competitive inhibition radioimmunoassay for the detection of C3a. Use of 125I-C3 instead of 125I-C3a. J. Immunol. Methods 108, 77–84 (1988).
pubmed: 3258341 doi: 10.1016/0022-1759(88)90405-X
Langone, J. J. 125I-Labeled protein A: reactivity with IgG and use as a tracer in radioimmunoassay. Methods Enzymol. 70, 356–375 (1980).
pubmed: 7421598 doi: 10.1016/S0076-6879(80)70064-2
Kim, J.-H., Lee, S.-Y. & Lee, S.-K. Development of novel lab-on-a-chip platform for high-throughput radioimmunoassay. Appl. Radiat. Isot. 168, 109526 (2021).
pubmed: 33316629 doi: 10.1016/j.apradiso.2020.109526
Darwish, I. A. Immunoassay methods and their applications in pharmaceutical analysis: basic methodology and recent advances. Int. J. Biomed. Sci. 2, 217–235 (2006).
pubmed: 23674985 pmcid: 3614608 doi: 10.59566/IJBS.2006.2217
Chester, S. J. et al. A new radioimmunoassay detecting early stages of colon cancer: a comparison with CEA, AFP, and Ca 19-9. Dis. Markers 9, 265–271 (1991).
pubmed: 1724634
Booth, J. C. et al. Comparison of enzyme-linked immunosorbent assay, radioimmunoassay, complement fixation, anticomplement immunofluorescence and passive haemagglutination techniques for detecting cytomegalovirus IgG antibody. J. Clin. Pathol. 35, 1345–1348 (1982).
pubmed: 6294144 pmcid: 497975 doi: 10.1136/jcp.35.12.1345
Hemmilä, I. Fluoroimmunoassays and immunofluorometric assays. Clin. Chem. 31, 359–370 (1985).
pubmed: 3882272 doi: 10.1093/clinchem/31.3.359
Hicks, J. M. Fluorescence immunoassay. Hum. Pathol. 15, 112–116 (1984).
pubmed: 6365732 doi: 10.1016/S0046-8177(84)80049-0
Huang, X. et al. Ratiometric optical nanoprobes enable accurate molecular detection and imaging. Chem. Soc. Rev. 47, 2873–2920 (2018).
pubmed: 29568836 pmcid: 5926823 doi: 10.1039/C7CS00612H
Zhang, R. R. et al. Beyond the margins: real-time detection of cancer using targeted fluorophores. Nat. Rev. Clin. Oncol. 14, 347–364 (2017).
pubmed: 28094261 pmcid: 5683405 doi: 10.1038/nrclinonc.2016.212
Cobb, M. & Gotcher, S. Fluorescence immunoassay in the clinical laboratory. Am. J. Med. Technol. 48, 671–677 (1982).
pubmed: 6753580
Nishiyama, K. et al. One-step non-competitive fluorescence polarization immunoassay based on a Fab fragment for C-reactive protein quantification. Sens. Actuators B Chem. 326, 128982 (2021).
doi: 10.1016/j.snb.2020.128982
Nielsen, K., Lin, M., Gall, D. & Jolley, M. Fluorescence polarization immunoassay: detection of antibody to Brucella abortus. Methods 22, 71–76 (2000).
pubmed: 11020320 doi: 10.1006/meth.2000.1038
Ullman, E. F., Schwarzberg, M. & Rubenstein, K. E. Fluorescent excitation transfer immunoassay. A general method for determination of antigens. J. Biol. Chem. 251, 4172–4178 (1976).
pubmed: 945272 doi: 10.1016/S0021-9258(17)33277-5
Diamandis, E. P. Immunoassays with time-resolved fluorescence spectroscopy: principles and applications. Clin. Biochem. 21, 139–150 (1988).
pubmed: 3292080 doi: 10.1016/S0009-9120(88)80104-8
Tian, J. et al. Multiplexed detection of tumor markers with multicolor quantum dots based on fluorescence polarization immunoassay. Talanta 92, 72–77 (2012).
pubmed: 22385810 doi: 10.1016/j.talanta.2012.01.051
Jehan, Z., Uddin, S. & Al-Kuraya, K. S. In-situ hybridization as a molecular tool in cancer diagnosis and treatment. Curr. Med Chem. 19, 3730–3738 (2012).
pubmed: 22680920 doi: 10.2174/092986712801661031
Veselinyová, D. et al. Selected in situ hybridization methods: principles and application. Molecules 26, 3874 (2021).
pubmed: 34202914 pmcid: 8270300 doi: 10.3390/molecules26133874
Fox, J. L., Hsu, P. H., Legator, M. S., Morrison, L. E. & Seelig, S. A. Fluorescence in situ hybridization: powerful molecular tool for cancer prognosis. Clin. Chem. 41, 1554–1559 (1995).
pubmed: 7586542 doi: 10.1093/clinchem/41.11.1554
Chrzanowska, N. M., Kowalewski, J. & Lewandowska, M. A. Use of fluorescence in situ hybridization (FISH) in diagnosis and tailored therapies in solid tumors. Molecules 25, 1864 (2020).
pubmed: 32316657 pmcid: 7221545 doi: 10.3390/molecules25081864
Shackelford, R. E., Vora, M., Mayhall, K. & Cotelingam, J. ALK-rearrangements and testing methods in non-small cell lung cancer: a review. Genes Cancer 5, 1–14 (2014).
pubmed: 24955213 pmcid: 4063252 doi: 10.18632/genesandcancer.3
Hu, L. et al. Fluorescence in situ hybridization (FISH): an increasingly demanded tool for biomarker research and personalized medicine. Biomark. Res. 2, 3 (2014).
pubmed: 24499728 pmcid: 3917523 doi: 10.1186/2050-7771-2-3
Gökmen-Polar, Y. In Predictive Biomarkers in Oncology (eds Badve, S. & Kumar, G. L.) Ch. 5 (Springer International Publishing, 2019).
Saiki, R. K. et al. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230, 1350–1354 (1985).
pubmed: 2999980 doi: 10.1126/science.2999980
Cree, I. A. Diagnostic RAS mutation analysis by polymerase chain reaction (PCR). Biomol. Detect. Quantif. 8, 29–32 (2016).
pubmed: 27335808 pmcid: 4906127 doi: 10.1016/j.bdq.2016.05.001
Maris, J. M. Recent advances in neuroblastoma. N. Engl. J. Med. 362, 2202–2211 (2010).
pubmed: 20558371 pmcid: 3306838 doi: 10.1056/NEJMra0804577
Cheng, H. et al. Ligand-targeted polymerase chain reaction for the detection of folate receptor-positive circulating tumour cells as a potential diagnostic biomarker for pancreatic cancer. Cell Prolif. 53, e12880 (2020).
pubmed: 32707596 pmcid: 7507398 doi: 10.1111/cpr.12880
Gong, S. et al. CRISPR/Cas-based in vitro diagnostic platforms for cancer biomarker detection. Anal. Chem. 93, 11899–11909 (2021).
pubmed: 34427091 doi: 10.1021/acs.analchem.1c02533
Sanger, F. et al. Nucleotide sequence of bacteriophage phi X174 DNA. Nature 265, 687–695 (1977).
pubmed: 870828 doi: 10.1038/265687a0
Heather, J. M. & Chain, B. The sequence of sequencers: the history of sequencing DNA. Genomics 107, 1–8 (2016).
pubmed: 26554401 doi: 10.1016/j.ygeno.2015.11.003
Feng, Y., Zhang, Y., Ying, C., Wang, D. & Du, C. Nanopore-based fourth-generation DNA sequencing technology. Genomics. Proteom. Bioinforma. 13, 4–16 (2015).
doi: 10.1016/j.gpb.2015.01.009
Lappalainen, T., Scott, A. J., Brandt, M. & Hall, I. M. Genomic analysis in the age of human genome sequencing. Cell 177, 70–84 (2019).
pubmed: 30901550 pmcid: 6532068 doi: 10.1016/j.cell.2019.02.032
Foox, J. et al. Performance assessment of DNA sequencing platforms in the ABRF next-generation sequencing study. Nat. Biotechnol. 39, 1129–1140 (2021).
pubmed: 34504351 pmcid: 8985210 doi: 10.1038/s41587-021-01049-5
Kumar, K. R., Cowley, M. J. & Davis, R. L. Next-generation sequencing and emerging technologies. Semin. Thromb. Hemost. 45, 661–673 (2019).
pubmed: 31096307 doi: 10.1055/s-0039-1688446
Kim, R. Y., Xu, H., Myllykangas, S. & Ji, H. Genetic-based biomarkers and next-generation sequencing: the future of personalized care in colorectal cancer. Per. Med. 8, 331–345 (2011).
pubmed: 23662107 pmcid: 3646399 doi: 10.2217/pme.11.16
Wood, A. C. et al. Evaluation of tumor DNA sequencing results in patients with gastric and gastroesophageal junction adenocarcinoma stratified by TP53 mutation status. Oncologist 27, 307–313 (2022).
pubmed: 35380714 pmcid: 8982441 doi: 10.1093/oncolo/oyac018
Robinson, D. R. et al. Integrative clinical genomics of metastatic cancer. Nature 548, 297–303 (2017).
pubmed: 28783718 pmcid: 5995337 doi: 10.1038/nature23306
Kris, M. G. et al. Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs. JAMA 311, 1998–2006 (2014).
pubmed: 24846037 pmcid: 4163053 doi: 10.1001/jama.2014.3741
Pilgrim, S. M., Pain, S. J. & Tischkowitz, M. D. Opportunities and challenges of next-generation DNA sequencing for breast units. Br. J. Surg. 101, 889–898 (2014).
pubmed: 24676784 doi: 10.1002/bjs.9458
Hong, M. et al. RNA sequencing: new technologies and applications in cancer research. J. Hematol. Oncol. 13, 166 (2020).
pubmed: 33276803 pmcid: 7716291 doi: 10.1186/s13045-020-01005-x
Hussaini, H. M., Seo, B. & Rich, A. M. Immunohistochemistry and Immunofluorescence. Methods Mol. Biol. 2588, 439–450 (2023).
pubmed: 36418703 doi: 10.1007/978-1-0716-2780-8_26
Zaha, D. C. Significance of immunohistochemistry in breast cancer. World J. Clin. Oncol. 5, 382–392 (2014).
pubmed: 25114853 pmcid: 4127609 doi: 10.5306/wjco.v5.i3.382
Fitzgibbons, P. L. & Cooper, K. In Basic Concepts of Molecular Pathology (eds Allen, T. C. & Cagle, P. T.) Ch. 14 (Springer, 2009).
Patel, S. P. & Kurzrock, R. PD-L1 expression as a predictive biomarker in cancer immunotherapy. Mol. Cancer Ther. 14, 847–856 (2015).
pubmed: 25695955 doi: 10.1158/1535-7163.MCT-14-0983
Zhao, S. et al. Molecular subtyping of triple-negative breast cancers by immunohistochemistry: molecular basis and clinical relevance. Oncologist 25, e1481–e1491 (2020).
pubmed: 32406563 pmcid: 7543239 doi: 10.1634/theoncologist.2019-0982
Tay, T. K. Y. et al. Correlating SS18-SSX immunohistochemistry (IHC) with SS18 fluorescent in situ hybridization (FISH) in synovial sarcomas: a study of 36 cases. Virchows Arch. 479, 785–793 (2021).
pubmed: 34091760 doi: 10.1007/s00428-021-03135-0
Luu, T. T. Review of immunohistochemistry biomarkers in pancreatic cancer diagnosis. Front. Oncol. 11, 799025 (2021).
pubmed: 34988027 pmcid: 8720928 doi: 10.3389/fonc.2021.799025
Kashyap, A. et al. Quantitative microimmunohistochemistry for the grading of immunostains on tumour tissues. Nat. Biomed. Eng. 3, 478–490 (2019).
pubmed: 30962588 doi: 10.1038/s41551-019-0386-3
Hall, P. A. & Lane, D. P. p53 in tumour pathology: can we trust immunohistochemistry?–Revisited! J. Pathol. 172, 1–4 (1994).
pubmed: 7931821 doi: 10.1002/path.1711720103
Rodrigues, V. D. C. et al. Analysis of scanning electron microscopy images to investigate adsorption processes responsible for detection of cancer biomarkers. ACS Appl. Mater. Interfaces 9, 5885–5890 (2017).
pubmed: 28117964 doi: 10.1021/acsami.6b16105
Slaoui, M. & Fiette, L. Histopathology procedures: from tissue sampling to histopathological evaluation. Methods Mol. Biol. 691, 69–82 (2011).
pubmed: 20972747 doi: 10.1007/978-1-60761-849-2_4
Rizk, E. M. et al. Prognostic and predictive immunohistochemistry-based biomarkers in cancer and immunotherapy. Hematol. Oncol. Clin. North Am. 33, 291–299 (2019).
pubmed: 30833001 pmcid: 6497069 doi: 10.1016/j.hoc.2018.12.005
Nikanjam, M., Kato, S. & Kurzrock, R. Liquid biopsy: current technology and clinical applications. J. Hematol. Oncol. 15, 131 (2022).
pubmed: 36096847 pmcid: 9465933 doi: 10.1186/s13045-022-01351-y
Cescon, D. W., Bratman, S. V., Chan, S. M. & Siu, L. L. Circulating tumor DNA and liquid biopsy in oncology. Nat. Cancer 1, 276–290 (2020).
pubmed: 35122035 doi: 10.1038/s43018-020-0043-5
Zhou, B. et al. Application of exosomes as liquid biopsy in clinical diagnosis. Signal Transduct. Target Ther. 5, 144 (2020).
pubmed: 32747657 pmcid: 7400738 doi: 10.1038/s41392-020-00258-9
Ignatiadis, M., Sledge, G. W. & Jeffrey, S. S. Liquid biopsy enters the clinic - implementation issues and future challenges. Nat. Rev. Clin. Oncol. 18, 297–312 (2021).
pubmed: 33473219 doi: 10.1038/s41571-020-00457-x
Li, S. et al. The role of exosomes in liquid biopsy for cancer diagnosis and prognosis prediction. Int. J. Cancer 148, 2640–2651 (2021).
pubmed: 33180334 doi: 10.1002/ijc.33386
Yu, W. et al. Exosome-based liquid biopsies in cancer: opportunities and challenges. Ann. Oncol. 32, 466–477 (2021).
pubmed: 33548389 doi: 10.1016/j.annonc.2021.01.074
Tatischeff, I. Extracellular vesicle-DNA: the next liquid biopsy biomarker for early cancer diagnosis? Cancers 15, 1456 (2023).
pubmed: 36900248 pmcid: 10000627 doi: 10.3390/cancers15051456
Muinelo-Romay, L., Casas-Arozamena, C. & Abal, M. Liquid biopsy in endometrial cancer: new opportunities for personalized oncology. Int. J. Mol. Sci. 19, 2311 (2018).
pubmed: 30087246 pmcid: 6121388 doi: 10.3390/ijms19082311
Kemper, M. et al. Liquid biopsies in lung cancer. Cancers 15, 1430 (2023).
pubmed: 36900221 pmcid: 10000706 doi: 10.3390/cancers15051430
Zhao, Y. et al. Liquid biopsy in pancreatic cancer - Current perspective and future outlook. Biochim. Biophys. Acta Rev. Cancer 1878, 188868 (2023).
pubmed: 36842769 doi: 10.1016/j.bbcan.2023.188868
Zhou, H. et al. Liquid biopsy at the frontier of detection, prognosis and progression monitoring in colorectal cancer. Mol. Cancer 21, 86 (2022).
pubmed: 35337361 pmcid: 8951719 doi: 10.1186/s12943-022-01556-2
Ricciardi, E. et al. Metastatic melanoma: liquid biopsy as a new precision medicine approach. Int. J. Mol. Sci. 24, 4014 (2023).
pubmed: 36835424 pmcid: 9962821 doi: 10.3390/ijms24044014
Li, M. et al. Liquid biopsy at the frontier in renal cell carcinoma: recent analysis of techniques and clinical application. Mol. Cancer 22, 37 (2023).
pubmed: 36810071 pmcid: 9942319 doi: 10.1186/s12943-023-01745-7
Arneth, B. Update on the types and usage of liquid biopsies in the clinical setting: a systematic review. BMC Cancer 18, 527 (2018).
pubmed: 29728089 pmcid: 5935950 doi: 10.1186/s12885-018-4433-3
Zhao, J., Yu, X., Shentu, X. & Li, D. The application and development of electron microscopy for three-dimensional reconstruction in life science: a review. Cell Tissue Res. https://doi.org/10.1007/s00441-024-03878-7 (2024).
Stahlberg, H. & Walz, T. Molecular electron microscopy: state of the art and current challenges. ACS Chem. Biol. 3, 268–281 (2008).
pubmed: 18484707 pmcid: 2660199 doi: 10.1021/cb800037d
Lambert, L. & Mulvey, T. In Advances in Imaging and Electron Physics (ed. Hawkes, P. W.) Vol. 95, Ch.1 (Elsevier, 1996).
Dey, P. In Basic and Advanced Laboratory Techniques in Histopathology and Cytology. Ch.28 (Springer Nature, 2022).
Sobel, H. J. & Marquet, E. Usefulness of electron microscopy in the diagnosis of tumors. Pathol. Res. Pract. 167, 22–44 (1980).
pubmed: 7454600 doi: 10.1016/S0344-0338(80)80180-4
Ordóñez, N. G. & Mackay, B. Electron microscopy in tumor diagnosis: indications for its use in the immunohistochemical era. Hum. Pathol. 29, 1403–1411 (1998).
pubmed: 9865825 doi: 10.1016/S0046-8177(98)90008-9
Cohen Hyams, T., Mam, K. & Killingsworth, M. C. Scanning electron microscopy as a new tool for diagnostic pathology and cell biology. Micron 130, 102797 (2020).
pubmed: 31862481 doi: 10.1016/j.micron.2019.102797
Ferlosio, A. & Orlandi, A. The use of electron microscopy for the diagnosis of malignant pleural mesothelioma. J. Thorac. Dis. 8, E1487–E1489 (2016).
pubmed: 28066639 pmcid: 5179440 doi: 10.21037/jtd.2016.11.58
Battifora, H. & Applebaum, E. L. Electron microscopy in the diagnosis of head and neck tumors. Head Neck Surg. 1, 202–212 (1979).
pubmed: 500359 doi: 10.1002/hed.2890010303
Fisher, C., Path, F. R. C., Flood, L. M., Ramsey, A. D. The role of electron microscopy in the diagnosis of tumours of the head and neck. J. Laryngol. Otol. 106, 403–408 (1992).
pubmed: 1613365 doi: 10.1017/S002221510011967X
Wu, Y., Deng, W. & Klinke, D. J. Exosomes: improved methods to characterize their morphology, RNA content, and surface protein biomarkers. Analyst 140, 6631–6642 (2015).
pubmed: 26332016 pmcid: 4986832 doi: 10.1039/C5AN00688K
Albero-González, R. et al. Complementary value of electron microscopy and immunohistochemistry in the diagnosis of non-small cell lung cancer: a potential role for electron microscopy in the era of targeted therapy. Ultrastruct. Pathol. 43, 237–247 (2019).
pubmed: 31810413 doi: 10.1080/01913123.2019.1692118
Tao, J., Bauer, D. E. & Chiarle, R. Assessing and advancing the safety of CRISPR-Cas tools: from DNA to RNA editing. Nat. Commun. 14, 212 (2023).
pubmed: 36639728 pmcid: 9838544 doi: 10.1038/s41467-023-35886-6
Malekshoar, M. et al. CRISPR-Cas9 targeted enrichment and next-generation sequencing for mutation detection. J. Mol. Diagn. 25, 249–262 (2023).
pubmed: 36841425 doi: 10.1016/j.jmoldx.2023.01.010
Allemailem, K. S. et al. Current updates of CRISPR/Cas9-mediated genome editing and targeting within tumor cells: an innovative strategy of cancer management. Cancer Commun. 42, 1257–1287 (2022).
doi: 10.1002/cac2.12366
Almeida, R. S., Wisnieski, F., Takao Real Karia, B. & Smith, M. A. C. CRISPR/Cas9 genome-editing technology and potential clinical application in gastric cancer. Genes 13, 2029 (2022).
pubmed: 36360266 pmcid: 9690943 doi: 10.3390/genes13112029
Bensalah, K., Montorsi, F. & Shariat, S. F. Challenges of cancer biomarker profiling. Eur. Urol. 52, 1601–1609 (2007).
pubmed: 17919807 doi: 10.1016/j.eururo.2007.09.036
Bergstrand, C. G. & CZAR, B. Demonstration of a new protein fraction in serum from the human fetus. Scand. J. Clin. Lab. Invest. 8, 174 (1956).
pubmed: 13351554 doi: 10.3109/00365515609049266
Tomasi, T. B. J. Structure and function of alpha-fetoprotein. Annu. Rev. Med. 28, 453–465 (1977).
pubmed: 67821 doi: 10.1146/annurev.me.28.020177.002321
Gold, P. & Freedman, S. O. Specific carcinoembryonic antigens of the human digestive system. J. Exp. Med. 122, 467–481 (1965).
Hammarström, S. The carcinoembryonic antigen (CEA) family: structures, suggested functions and expression in normal and malignant tissues. Semin. Cancer Biol. 9, 67–81 (1999).
pubmed: 10202129 doi: 10.1006/scbi.1998.0119
Mizejewski, G. J. Biological roles of alpha-fetoprotein during pregnancy and perinatal development. Exp. Biol. Med. 229, 439–463 (2004).
doi: 10.1177/153537020422900602
Johnson, P., Zhou, Q., Dao, D. Y. & Lo, Y. M. D. Circulating biomarkers in the diagnosis and management of hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol. 19, 670–681 (2022).
pubmed: 35676420 doi: 10.1038/s41575-022-00620-y
Daniele, B., Bencivenga, A., Megna, A. S. & Tinessa, V. Alpha-fetoprotein and ultrasonography screening for hepatocellular carcinoma. Gastroenterology 127, S108–S112 (2004).
pubmed: 15508073 doi: 10.1053/j.gastro.2004.09.023
Galle, P. R. et al. Biology and significance of alpha-fetoprotein in hepatocellular carcinoma. Liver Int. 39, 2214–2229 (2019).
pubmed: 31436873 doi: 10.1111/liv.14223
Gupta, S., Bent, S. & Kohlwes, J. Test characteristics of alpha-fetoprotein for detecting hepatocellular carcinoma in patients with hepatitis C. A systematic review and critical analysis. Ann. Intern. Med. 139, 46–50 (2003).
pubmed: 12834318 doi: 10.7326/0003-4819-139-1-200307010-00012
Waidely, E., Al-Yuobi, A. R. O., Bashammakh, A. S., El-Shahawi, M. S. & Leblanc, R. M. Serum protein biomarkers relevant to hepatocellular carcinoma and their detection. Analyst 141, 36–44 (2016).
pubmed: 26606739 doi: 10.1039/C5AN01884F
Johnson, P. J. The role of serum alpha-fetoprotein estimation in the diagnosis and management of hepatocellular carcinoma. Clin. Liver Dis. 5, 145–159 (2001).
pubmed: 11218912 doi: 10.1016/S1089-3261(05)70158-6
Thomas, P., Toth, C. A., Saini, K. S., Jessup, J. M. & Steele, G. J. The structure, metabolism and function of the carcinoembryonic antigen gene family. Biochim. Biophys. Acta 1032, 177–189 (1990).
pubmed: 2261493
Fiebiger, W. & Wiltschke, C. [Tumor markers]. Acta Med. Austriaca 28, 33–37 (2001).
pubmed: 11382139 doi: 10.1046/j.1563-2571.2001.01008.x
Li, M. et al. Recent progress in biosensors for detection of tumor biomarkers. Molecules 27, 7327 (2022).
pubmed: 36364157 pmcid: 9658374 doi: 10.3390/molecules27217327
Yang, Y. et al. Serum carcinoembryonic antigen elevation in benign lung diseases. Sci. Rep. 11, 19044 (2021).
pubmed: 34561515 pmcid: 8463604 doi: 10.1038/s41598-021-98513-8
Fan, Y., Chen, X. & Li, H. Clinical value of serum biomarkers CA153, CEA, and white blood cells in predicting sentinel lymph node metastasis of breast cancer. Int. J. Clin. Exp. Pathol. 13, 2889–2894 (2020).
pubmed: 33284901 pmcid: 7716139
Lakemeyer, L. et al. Diagnostic and prognostic value of CEA and CA19-9 in colorectal cancer. Diseases 9, 21 (2021).
pubmed: 33802962 pmcid: 8006010 doi: 10.3390/diseases9010021
Pal, M., Muinao, T., Boruah, H. P. D. & Mahindroo, N. Current advances in prognostic and diagnostic biomarkers for solid cancers: detection techniques and future challenges. Biomed. Pharmacother. 146, 112488 (2022).
pubmed: 34894516 doi: 10.1016/j.biopha.2021.112488
Sørensen, C. G., Karlsson, W. K., Pommergaard, H. C., Burcharth, J. & Rosenberg, J. The diagnostic accuracy of carcinoembryonic antigen to detect colorectal cancer recurrence - a systematic review. Int. J. Surg. 25, 134–144 (2016).
pubmed: 26700203 doi: 10.1016/j.ijsu.2015.11.065
Valastyan, S. & Weinberg, R. A. Tumor metastasis: molecular insights and evolving paradigms. Cell 147, 275–292 (2011).
pubmed: 22000009 pmcid: 3261217 doi: 10.1016/j.cell.2011.09.024
Charakorn, C. et al. The association between serum squamous cell carcinoma antigen and recurrence and survival of patients with cervical squamous cell carcinoma: a systematic review and meta-analysis. Gynecol. Oncol. 150, 190–200 (2018).
pubmed: 29606483 doi: 10.1016/j.ygyno.2018.03.056
Markovina, S. et al. Serum squamous cell carcinoma antigen as an early indicator of response during therapy of cervical cancer. Br. J. Cancer 118, 72–78 (2018).
pubmed: 29112685 doi: 10.1038/bjc.2017.390
Kato, H., Nagaya, T. & Torigoe, T. Heterogeneity of a tumor antigen TA-4 of squamous cell carcinoma in relation to its appearance in the circulation. Gan 75, 433–435 (1984).
pubmed: 6745563
Zhu, H. Squamous cell carcinoma antigen: clinical application and research status. Diagnostics 12, 1065 (2022).
pubmed: 35626221 pmcid: 9139199 doi: 10.3390/diagnostics12051065
Yang, Y. et al. Clinical use of tumor biomarkers in prediction for prognosis and chemotherapeutic effect in esophageal squamous cell carcinoma. BMC Cancer 19, 526 (2019).
pubmed: 31151431 pmcid: 6544972 doi: 10.1186/s12885-019-5755-5
Travassos, D. C., Fernandes, D., Massucato, E. M. S., Navarro, C. M. & Bufalino, A. Squamous cell carcinoma antigen as a prognostic marker and its correlation with clinicopathological features in head and neck squamous cell carcinoma: systematic review and meta-analysis. J. Oral Pathol. Med. 47, 3–10 (2018).
pubmed: 28600896 doi: 10.1111/jop.12600
Polito, M. et al. Serum markers for monitoring of prostatic carcinoma. Prostate 33, 208–216 (1997).
pubmed: 9365550 doi: 10.1002/(SICI)1097-0045(19971101)33:3<208::AID-PROS10>3.0.CO;2-O
Ahn, S. K. et al. Preoperative serum tissue polypeptide-specific antigen is a valuable prognostic marker in breast cancer. Int. J. Cancer 132, 875–881 (2013).
pubmed: 22815188 doi: 10.1002/ijc.27727
Berglund, Å., Molin, D., Larsson, A., Einarsson, R. & Glimelius, B. Tumour markers as early predictors of response to chemotherapy in advanced colorectal carcinoma. Ann. Oncol. 13, 1430–1437 (2002).
pubmed: 12196369 doi: 10.1093/annonc/mdf220
Buccheri, G. & Ferrigno, D. Lung tumor markers of cytokeratin origin: an overview. Lung Cancer 34, S65–S69 (2001).
pubmed: 11720744 doi: 10.1016/S0169-5002(01)00347-6
van Dalen, A. TPS in breast cancer–a comparative study with carcinoembryonic antigen and CA 15-3. Tumour Biol. 13, 10–17 (1992).
pubmed: 1589693 doi: 10.1159/000217747
Valik, D. & Nekulova, M. Serum tissue polypeptide-specific antigen (TPS): what is its diagnostic value? Br. J. Cancer 82, 1756–175 (2000).
pubmed: 10817515 pmcid: 2374523
Zhang, J., Wei, Q., Dong, D. & Ren, L. The role of TPS, CA125, CA15-3 and CEA in prediction of distant metastasis of breast cancer. Clin. Chim. Acta 523, 19–25 (2021).
pubmed: 34454906 doi: 10.1016/j.cca.2021.08.027
Xie, S., Ding, X., Mo, W. & Chen, J. Serum tissue polypeptide-specific antigen is an independent predictor in breast cancer. Acta Histochem. 116, 372–376 (2014).
pubmed: 24144486 doi: 10.1016/j.acthis.2013.09.001
Kornek, G., Schenk, T., Raderer, M., Djavarnmad, M. & Scheithauer, W. Tissue polypeptide-specific antigen (TPS) in monitoring palliative treatment response of patients with gastrointestinal tumours. Br. J. Cancer 71, 182–185 (1995).
pubmed: 7529527 pmcid: 2033446 doi: 10.1038/bjc.1995.37
Chang, C.-H. et al. Tissue polypeptide specific antigen (TPS) as a tumor marker in renal cell carcinoma. Anticancer Res. 22, 2949–2950 (2002).
pubmed: 12530023
Noh, D. -Y., Ahn, S. K., Moon, H. -G., Han, W. & Kim, J. In Biomarkers in Cancer (eds Preedy, V. R. & Patel, V. B.) Ch.19 (Springer, 2015).
Inaba, N. et al. Immunoradiometrical measurement of tissue polypeptide specific antigen (TPS) in normal, healthy, nonpregnant and pregnant Japanese women. Asia Ocean. J. Obstet. Gynaecol. 19, 459–466 (1993).
doi: 10.1111/j.1447-0756.1993.tb00407.x
Wang, M. C., Valenzuela, L. A., Murphy, G. P. & Chu, T. M. Purification of a human prostate specific antigen. J. Urol. 197, S148–S152 (2017).
pubmed: 28012750
Prensner, J. R., Rubin, M. A., Wei, J. T. & Chinnaiyan, A. M. Beyond PSA: the next generation of prostate cancer biomarkers. Sci. Transl. Med. 4, 127rv3 (2012).
pubmed: 22461644 pmcid: 3799996 doi: 10.1126/scitranslmed.3003180
Duffy, M. J. Biomarkers for prostate cancer: prostate-specific antigen and beyond. Clin. Chem. Lab. Med. 58, 326–339 (2020).
pubmed: 31714881 doi: 10.1515/cclm-2019-0693
Adamaki, M. & Zoumpourlis, V. Prostate cancer biomarkers: from diagnosis to prognosis and precision-guided therapeutics. Pharm. Ther. 228, 107932 (2021).
doi: 10.1016/j.pharmthera.2021.107932
Van Poppel, H. et al. Serum PSA-based early detection of prostate cancer in Europe and globally: past, present and future. Nat. Rev. Urol. 19, 562–572 (2022).
pubmed: 35974245 doi: 10.1038/s41585-022-00638-6
Kouriefs, C., Sahoyl, M., Grange, P. & Muir, G. Prostate specific antigen through the years. Arch. Ital. di Urol. 81, 195–198 (2009).
Terada, N. et al. Prognostic and predictive biomarkers in prostate cancer: latest evidence and clinical implications. Ther. Adv. Med. Oncol. 9, 565–573 (2017).
pubmed: 28794807 pmcid: 5524249 doi: 10.1177/1758834017719215
Yan, P. et al. Prognostic value of neuron-specific enolase in patients with advanced and metastatic non-neuroendocrine non-small cell lung cancer. Biosci. Rep. 41, BSR20210866 (2021).
pubmed: 34286335 pmcid: 8329647 doi: 10.1042/BSR20210866
Kaiser, E., Kuzmits, R., Pregant, P., Burghuber, O. & Worofka, W. Clinical biochemistry of neuron specific enolase. Clin. Chim. Acta 183, 13–31 (1989).
pubmed: 2548772 doi: 10.1016/0009-8981(89)90268-4
Thelin, E. P. et al. Utility of neuron-specific enolase in traumatic brain injury; relations to S100B levels, outcome, and extracranial injury severity. Crit. Care 20, 285 (2016).
pubmed: 27604350 pmcid: 5015335 doi: 10.1186/s13054-016-1450-y
Ferraro, S. et al. Measurement of serum neuron-specific enolase in neuroblastoma: is there a clinical role? Clin. Chem. 66, 667–675 (2020).
pubmed: 32353141 doi: 10.1093/clinchem/hvaa073
Reifenberger, G., Szymas, J. & Wechsler, W. Differential expression of glial- and neuronal-associated antigens in human tumors of the central and peripheral nervous system. Acta Neuropathol. 74, 105–123 (1987).
pubmed: 3314309 doi: 10.1007/BF00692841
Yang, G. et al. Recent advances in biosensor for detection of lung cancer biomarkers. Biosens. Bioelectron. 141, 111416 (2019).
pubmed: 31279179 doi: 10.1016/j.bios.2019.111416
Schneider, J. Tumor markers in detection of lung cancer. Adv. Clin. Chem. 42, 1–41 (2006).
pubmed: 17131623 doi: 10.1016/S0065-2423(06)42001-1
Yu, D., Du, K., Liu, T. & Chen, G. Prognostic value of tumor markers, NSE, CA125 and SCC, in operable NSCLC Patients. Int. J. Mol. Sci. 14, 11145–11156 (2013).
pubmed: 23712355 pmcid: 3709724 doi: 10.3390/ijms140611145
Ferrigno, D., Buccheri, G. & Giordano, C. Neuron-specific enolase is an effective tumour marker in non-small cell lung cancer (NSCLC). Lung Cancer 41, 311–320 (2003).
pubmed: 12928122 doi: 10.1016/S0169-5002(03)00232-0
Pujol, J. L., Boher, J. M., Grenier, J. & Quantin, X. Cyfra 21-1, neuron specific enolase and prognosis of non-small cell lung cancer: prospective study in 621 patients. Lung Cancer 31, 221–231 (2001).
pubmed: 11165401 doi: 10.1016/S0169-5002(00)00186-0
Zhang, C. et al. Alpha-L-fucosidase has diagnostic value in prostate cancer with ‘gray-zone PSA’ and inhibits cancer progression via regulating glycosylation. Front. Oncol. 11, 742354 (2021).
pubmed: 34881177 pmcid: 8645591 doi: 10.3389/fonc.2021.742354
Giardina, M. G. et al. Serum alpha-L-fucosidase. A useful marker in the diagnosis of hepatocellular carcinoma. Cancer 70, 1044–1048 (1992).
pubmed: 1381268 doi: 10.1002/1097-0142(19920901)70:5<1044::AID-CNCR2820700506>3.0.CO;2-U
Fawzy Montaser, M., Amin Sakr, M. & Omar Khalifa, M. Alpha-L-fucosidase as a tumour marker of hepatocellular carcinoma. Arab J. Gastroenterol. 13, 9–13 (2012).
pubmed: 22560818 doi: 10.1016/j.ajg.2012.03.006
Giardina, M. G. et al. Serum alpha-L-fucosidase activity and early detection of hepatocellular carcinoma: a prospective study of patients with cirrhosis. Cancer 83, 2468–2474 (1998).
pubmed: 9874450 doi: 10.1002/(SICI)1097-0142(19981215)83:12<2468::AID-CNCR9>3.0.CO;2-Y
Wang, K. et al. Alpha-1-fucosidase as a prognostic indicator for hepatocellular carcinoma following hepatectomy: a large-scale, long-term study. Br. J. Cancer 110, 1811–1819 (2014).
pubmed: 24569461 pmcid: 3974071 doi: 10.1038/bjc.2014.102
Xing, H. et al. Clinical performance of α-L-fucosidase for early detection of hepatocellular carcinoma. Biomark. Med. 13, 545–555 (2019).
pubmed: 31140827 doi: 10.2217/bmm-2018-0414
Yu, X. et al. Alpha-l-fucosidase: a novel serum biomarker to predict prognosis in early stage esophageal squamous cell carcinoma. J. Thorac. Dis. 11, 3980–3990 (2019).
pubmed: 31656672 pmcid: 6790429 doi: 10.21037/jtd.2019.08.92
Liu, D. et al. Diagnostic value of 5 serum biomarkers for hepatocellular carcinoma with different epidemiological backgrounds: a large-scale, retrospective study. Cancer Biol. Med. 18, 256–270 (2021).
pubmed: 33628599 pmcid: 7877174 doi: 10.20892/j.issn.2095-3941.2020.0207
Khan, A. A., Allemailem, K. S., Alhumaydhi, F. A., Gowder, S. J. T. & Rahmani, A. H. The biochemical and clinical perspectives of lactate dehydrogenase: an enzyme of active metabolism. Endocr. Metab. Immune Disord. Drug Targets 20, 855–868 (2020).
pubmed: 31886754 doi: 10.2174/1871530320666191230141110
Certo, M., Tsai, C.-H., Pucino, V., Ho, P.-C. & Mauro, C. Lactate modulation of immune responses in inflammatory versus tumour microenvironments. Nat. Rev. Immunol. 21, 151–161 (2021).
pubmed: 32839570 doi: 10.1038/s41577-020-0406-2
Akins, N. S., Nielson, T. C. & Le, H. V. Inhibition of glycolysis and glutaminolysis: an emerging drug discovery approach to combat cancer. Curr. Top. Med. Chem. 18, 494–504 (2018).
pubmed: 29788892 pmcid: 6110043 doi: 10.2174/1568026618666180523111351
Young, A., Oldford, C. & Mailloux, R. J. Lactate dehydrogenase supports lactate oxidation in mitochondria isolated from different mouse tissues. Redox Biol. 28, 101339 (2020).
pubmed: 31610469 doi: 10.1016/j.redox.2019.101339
Abbaszadeh, Z., Çeşmeli, S. & Biray Avcı, Ç. Crucial players in glycolysis: cancer progress. Gene 726, 144158 (2020).
pubmed: 31629815 doi: 10.1016/j.gene.2019.144158
Mishra, D. & Banerjee, D. Lactate dehydrogenases as metabolic links between tumor and stroma in the tumor microenvironment. Cancers 11, 750 (2019).
pubmed: 31146503 pmcid: 6627402 doi: 10.3390/cancers11060750
Augoff, K., Hryniewicz-Jankowska, A. & Tabola, R. Lactate dehydrogenase 5: an old friend and a new hope in the war on cancer. Cancer Lett. 358, 1–7 (2015).
pubmed: 25528630 doi: 10.1016/j.canlet.2014.12.035
Pei, Y.-Y. et al. Lactate dehydrogenase as promising marker for prognosis of brain metastasis. J. Neurooncol. 159, 359–368 (2022).
pubmed: 35794505 doi: 10.1007/s11060-022-04070-z
Li, J. et al. Suppression of lactate dehydrogenase A compromises tumor progression by downregulation of the Warburg effect in glioblastoma. Neuroreport 27, 110–115 (2016).
pubmed: 26694942 pmcid: 4712768 doi: 10.1097/WNR.0000000000000506
Wei, Y. et al. Prognostic significance of serum lactic acid, lactate dehydrogenase, and albumin levels in patients with metastatic colorectal cancer. Biomed. Res. Int. 2018, 1804086 (2018).
pubmed: 30627541 pmcid: 6304480 doi: 10.1155/2018/1804086
Zhou, G.-Q. et al. Baseline serum lactate dehydrogenase levels for patients treated with intensity-modulated radiotherapy for nasopharyngeal carcinoma: a predictor of poor prognosis and subsequent liver metastasis. Int. J. Radiat. Oncol. Biol. Phys. 82, e359–e365 (2012).
pubmed: 22000748 doi: 10.1016/j.ijrobp.2011.06.1967
Zhang, J. et al. Prognostic value of pretreatment serum lactate dehydrogenase level in patients with solid tumors: a systematic review and meta-analysis. Sci. Rep. 5, 9800 (2015).
pubmed: 25902419 pmcid: 5386114 doi: 10.1038/srep09800
Sartor, O. et al. An exploratory analysis of alkaline phosphatase, lactate dehydrogenase, and prostate-specific antigen dynamics in the phase 3 ALSYMPCA trial with radium-223. Ann. Oncol. 28, 1090–1097 (2017).
pubmed: 28453701 pmcid: 5406754 doi: 10.1093/annonc/mdx044
Colgan, S. M., Mukherjee, S. & Major, P. Hypoxia-induced lactate dehydrogenase expression and tumor angiogenesis. Clin. Colorectal Cancer 6, 442–446 (2007).
pubmed: 17531108 doi: 10.3816/CCC.2007.n.014
Comandatore, A. et al. Lactate dehydrogenase and its clinical significance in pancreatic and thoracic cancers. Semin. Cancer Biol. 86, 93–100 (2022).
pubmed: 36096316 doi: 10.1016/j.semcancer.2022.09.001
Cho, J. et al. The prognostic role of tumor associated glycoprotein 72 (TAG-72) in stage II and III colorectal adenocarcinoma. Pathol. Res. Pract. 215, 171–176 (2019).
pubmed: 30466765 doi: 10.1016/j.prp.2018.10.024
Li, M., Men, X. & Zhang, X. Diagnostic value of carbohydrate antigen 72-4 combined with carbohydrate antigen 15.3 in ovarian cancer, cervical cancer and endometrial cancer. J. Buon. 25, 1918–1927 (2020).
pubmed: 33099933
Mariampillai, A. I. et al. Cancer antigen 72-4 for the monitoring of advanced tumors of the gastrointestinal tract, lung, breast and ovaries. Anticancer Res. 37, 3649–3656 (2017).
pubmed: 28668856
Guadagni, F. et al. CA 72-4 measurement of tumor-associated glycoprotein 72 (TAG-72) as a serum marker in the management of gastric carcinoma. Cancer Res. 52, 1222–1227 (1992).
pubmed: 1737383
Chen, X.-Z. et al. Correlation between serum CA724 and gastric cancer: multiple analyses based on Chinese population. Mol. Biol. Rep. 39, 9031–9039 (2012).
pubmed: 22752725 doi: 10.1007/s11033-012-1774-x
Xu, Y., Zhang, P., Zhang, K. & Huang, C. The application of CA72-4 in the diagnosis, prognosis, and treatment of gastric cancer. Biochim. Biophys. Acta Rev. Cancer 1876, 188634 (2021).
pubmed: 34656687 doi: 10.1016/j.bbcan.2021.188634
Zhang, Y., Zhang, M., Bai, X., Li, C. & Zhang, L. Increased serum CA724 levels in patients suffering gout vs cancers. Prog. Mol. Biol. Transl. Sci. 162, 177–186 (2019).
pubmed: 30905448 doi: 10.1016/bs.pmbts.2018.12.005
Yang, A.-P. et al. CA72-4 combined with CEA, CA125 and CAl9-9 improves the sensitivity for the early diagnosis of gastric cancer. Clin. Chim. Acta 437, 183–186 (2014).
pubmed: 25086284 doi: 10.1016/j.cca.2014.07.034
Bast, R. C. et al. Reactivity of a monoclonal antibody with human ovarian carcinoma. J. Clin. Invest. 68, 1331–1337 (1981).
pubmed: 7028788 pmcid: 370929 doi: 10.1172/JCI110380
Diamandis, E. P., Bast, R. C. J., Gold, P., Chu, T. M. & Magnani, J. L. Reflection on the discovery of carcinoembryonic antigen, prostate-specific antigen, and cancer antigens CA125 and CA19-9. Clin. Chem. 59, 22–31 (2013).
pubmed: 23204222 doi: 10.1373/clinchem.2012.187047
Zhang, M., Cheng, S., Jin, Y., Zhao, Y. & Wang, Y. Roles of CA125 in diagnosis, prediction, and oncogenesis of ovarian cancer. Biochim. Biophys. Acta Rev. Cancer 1875, 188503 (2021).
pubmed: 33421585 doi: 10.1016/j.bbcan.2021.188503
Rustin, G. J. S. et al. Definitions for response and progression in ovarian cancer clinical trials incorporating recist 1.1 and CA 125 agreed by the gynecological cancer intergroup (GCIG). Int. J. Gynecol. Cancer 21, 419–423 (2011).
pubmed: 21270624 doi: 10.1097/IGC.0b013e3182070f17
Franier, B. D. L. & Thompson, M. Early stage detection and screening of ovarian cancer: a research opportunity and significant challenge for biosensor technology. Biosens. Bioelectron. 135, 71–81 (2019).
pubmed: 31003031 doi: 10.1016/j.bios.2019.03.041
Feng, F. et al. Diagnostic and prognostic value of CEA, CA19–9, AFP and CA125 for early gastric cancer. BMC Cancer 17, 737 (2017).
pubmed: 29121872 pmcid: 5679342 doi: 10.1186/s12885-017-3738-y
Bast, R. C. J. et al. A radioimmunoassay using a monoclonal antibody to monitor the course of epithelial ovarian cancer. N. Engl. J. Med. 309, 883–887 (1983).
pubmed: 6310399 doi: 10.1056/NEJM198310133091503
Akinwunmi, B. O. et al. Chronic medical conditions and CA125 levels among women without ovarian cancer. Cancer Epidemiol. Biomark. Prev. 27, 1483–1490 (2018).
doi: 10.1158/1055-9965.EPI-18-0203
Crosby, D. A., Glover, L. E., Martyn, F. & Wingfield, M. CA125 measured during menstruation can be misleading. Ir. Med. J. 111, 738 (2018).
pubmed: 30488683
Haglund, C., Lundin, J., Kuusela, P. & Roberts, P. J. CA 242, a new tumour marker for pancreatic cancer: a comparison with CA 19-9, CA 50 and CEA. Br. J. Cancer 70, 487–492 (1994).
pubmed: 8080735 pmcid: 2033366 doi: 10.1038/bjc.1994.332
Dou, H., Sun, G. & Zhang, L. CA242 as a biomarker for pancreatic cancer and other diseases. Prog. Mol. Biol. Transl. Sci. 162, 229–239 (2019).
pubmed: 30905452 doi: 10.1016/bs.pmbts.2018.12.007
Tang, Y., Cui, Y., Zhang, S. & Zhang, L. The sensitivity and specificity of serum glycan-based biomarkers for cancer detection. Prog. Mol. Biol. Transl. Sci. 162, 121–140 (2019).
pubmed: 30905445 doi: 10.1016/bs.pmbts.2019.01.010
Ni, X. G. et al. The clinical value of serum CEA, CA19-9, and CA242 in the diagnosis and prognosis of pancreatic cancer. Eur. J. Surg. Oncol. 31, 164–169 (2005).
pubmed: 15698733 doi: 10.1016/j.ejso.2004.09.007
Ozkan, H., Kaya, M. & Cengiz, A. Comparison of tumor marker CA 242 with CA 19-9 and carcinoembryonic antigen (CEA) in pancreatic cancer. Hepatogastroenterology 50, 1669–1674 (2003).
pubmed: 14571813
Nilsson, O. et al. Sensitivity and specificity of CA242 in gastro-intestinal cancer. A comparison with CEA, CA50 and CA 19-9. Br. J. Cancer 65, 215–221 (1992).
pubmed: 1739620 pmcid: 1977720 doi: 10.1038/bjc.1992.44
Pasanen, P. A. et al. Clinical evaluation of a new serum tumour marker CA 242 in pancreatic carcinoma. Br. J. Cancer 65, 731–734 (1992).
pubmed: 1316775 pmcid: 1977373 doi: 10.1038/bjc.1992.154
Nath, S. & Mukherjee, P. MUC1: a multifaceted oncoprotein with a key role in cancer progression. Trends Mol. Med. 20, 332–342 (2014).
pubmed: 24667139 pmcid: 5500204 doi: 10.1016/j.molmed.2014.02.007
Gendler, S. J. MUC1, the renaissance molecule. J. Mammary Gland Biol. Neoplasia 6, 339–353 (2001).
pubmed: 11547902 doi: 10.1023/A:1011379725811
Yousefi, M. et al. Aptasensors as a new sensing technology developed for the detection of MUC1 mucin: a review. Biosens. Bioelectron. 130, 1–19 (2019).
pubmed: 30716589 doi: 10.1016/j.bios.2019.01.015
Price, M. R. High molecular weight epithelial mucins as markers in breast cancer. Eur. J. Cancer Clin. Oncol. 24, 1799–1804 (1988).
pubmed: 3065084 doi: 10.1016/0277-5379(88)90088-0
Seale, K. N. & Tkaczuk, K. H. R. Circulating biomarkers in breast cancer. Clin. Breast Cancer 22, e319–e331 (2022).
pubmed: 34756687 doi: 10.1016/j.clbc.2021.09.006
Duffy, M. J. Serum tumor markers in breast cancer: are they of clinical value? Clin. Chem. 52, 345–351 (2006).
pubmed: 16410341 doi: 10.1373/clinchem.2005.059832
Lindholm, L. et al. Monoclonal antibodies against gastrointestinal tumour-associated antigens isolated as monosialogangliosides. Int. Arch. Allergy Appl. Immunol. 71, 178–181 (1983).
pubmed: 6840874 doi: 10.1159/000233384
Kawa, S. et al. Elevated serum levels of dupan-2 in pancreatic cancer patients negative for lewis blood group phenotype. Br. J. Cancer 64, 899–902 (1991).
pubmed: 1931612 pmcid: 1977472 doi: 10.1038/bjc.1991.422
Shan, M., Tian, Q. & Zhang, L. Serum CA50 levels in patients with cancers and other diseases. Prog. Mol. Biol. Transl. Sci. 162, 187–198 (2019).
pubmed: 30905449 doi: 10.1016/bs.pmbts.2018.12.006
Bouhours, J. F., Bouhours, D. & Hansson, G. C. Developmental changes of gangliosides of the rat stomach. Appearance of a blood group B-active ganglioside. J. Biol. Chem. 262, 16370–16375 (1987).
pubmed: 3680254 doi: 10.1016/S0021-9258(18)49265-4
Steinberg, W. The clinical utility of the CA 19-9 tumor-associated antigen. Am. J. Gastroenterol. 85, 350–355 (1990).
pubmed: 2183589
Ryan, D. P., Hong, T. S. & Bardeesy, N. Pancreatic adenocarcinoma. N. Engl. J. Med. 371, 2140–2141 (2014).
pubmed: 25427123 doi: 10.1056/NEJMra1404198
Kannagi, R. Carbohydrate antigen sialyl Lewis a–its pathophysiological significance and induction mechanism in cancer progression. Chang Gung Med. J. 30, 189–209 (2007).
pubmed: 17760270
Goonetilleke, K. S. & Siriwardena, A. K. Systematic review of carbohydrate antigen (CA 19-9) as a biochemical marker in the diagnosis of pancreatic cancer. Eur. J. Surg. Oncol. 33, 266–270 (2007).
pubmed: 17097848 doi: 10.1016/j.ejso.2006.10.004
Luo, G. et al. Roles of CA19-9 in pancreatic cancer: biomarker, predictor and promoter. Biochim. Biophys. Acta Rev. cancer 1875, 188409 (2021).
pubmed: 32827580 doi: 10.1016/j.bbcan.2020.188409
Scarà, S., Bottoni, P. & Scatena, R. CA 19-9: biochemical and clinical aspects. Adv. Exp. Med. Biol. 867, 247–260 (2015).
pubmed: 26530370 doi: 10.1007/978-94-017-7215-0_15
Al-Janabi, A. A. H. S. & Tawfeeq, E. F. Interfering effect of black tea consumption on diagnosis of pancreatic cancer by CA 19-9. J. Gastrointest. Cancer 48, 148–150 (2017).
pubmed: 27402465 doi: 10.1007/s12029-016-9855-z
Mujica, V. R., Barkin, J. S. & Go, V. L. Acute pancreatitis secondary to pancreatic carcinoma. Study group participants. Pancreas 21, 329–332 (2000).
pubmed: 11075985 doi: 10.1097/00006676-200011000-00001
Zhang, D. et al. Metformin reduces serum CA199 levels in type 2 diabetes Chinese patients with time-effect and gender difference. Diabetes Technol. Ther. 17, 72–79 (2015).
pubmed: 25548963 pmcid: 4321771 doi: 10.1089/dia.2014.0176
Luo, G. et al. Optimize CA19-9 in detecting pancreatic cancer by Lewis and Secretor genotyping. Pancreatology 16, 1057–1062 (2016).
pubmed: 27692554 doi: 10.1016/j.pan.2016.09.013
Wannhoff, A. et al. FUT2 and FUT3 genotype determines CA19-9 cut-off values for detection of cholangiocarcinoma in patients with primary sclerosing cholangitis. J. Hepatol. 59, 1278–1284 (2013).
pubmed: 23958938 doi: 10.1016/j.jhep.2013.08.005
Kirchhoff, C., Habben, I., Ivell, R. & Krull, N. A major human epididymis-specific cDNA encodes a protein with sequence homology to extracellular proteinase inhibitors. Biol. Reprod. 45, 350–357 (1991).
pubmed: 1686187 doi: 10.1095/biolreprod45.2.350
Galgano, M. T., Hampton, G. M. & Frierson, H. F. J. Comprehensive analysis of HE4 expression in normal and malignant human tissues. Mod. Pathol. 19, 847–853 (2006).
pubmed: 16607372 doi: 10.1038/modpathol.3800612
Behrouzi, R., Barr, C. E. & Crosbie, E. J. HE4 as a biomarker for endometrial cancer. Cancers 13, 4764 (2021).
pubmed: 34638250 pmcid: 8507549 doi: 10.3390/cancers13194764
Zhang, R., Siu, M. K. Y., Ngan, H. Y. S. & Chan, K. K. L. Molecular biomarkers for the early detection of ovarian cancer. Int. J. Mol. Sci. 23, 12041 (2022).
pubmed: 36233339 pmcid: 9569881 doi: 10.3390/ijms231912041
Qu, W. et al. Physiopathological factors affecting the diagnostic value of serum HE4-test for gynecologic malignancies. Expert Rev. Mol. Diagn. 16, 1271–1282 (2016).
pubmed: 27784171 doi: 10.1080/14737159.2016.1251317
Truman-Rosentsvit, M. et al. Ferritin is secreted via 2 distinct nonclassical vesicular pathways. Blood 131, 342–352 (2018).
pubmed: 29074498 pmcid: 5774206 doi: 10.1182/blood-2017-02-768580
Mei, Z. et al. Physiologically based serum ferritin thresholds for iron deficiency in children and non-pregnant women: a US National Health and Nutrition Examination Surveys (NHANES) serial cross-sectional study. Lancet Haematol. 8, e572–e582 (2021).
pubmed: 34329578 pmcid: 8948503 doi: 10.1016/S2352-3026(21)00168-X
Koperdanova, M. & Cullis, J. O. Interpreting raised serum ferritin levels. BMJ 351, h3692 (2015).
pubmed: 26239322 doi: 10.1136/bmj.h3692
Matzner, Y., Konijn, A. M. & Hershko, C. Serum ferritin in hematologic malignancies. Am. J. Hematol. 9, 13–22 (1980).
pubmed: 7001894 doi: 10.1002/ajh.2830090103
Gray, C. P., Arosio, P. & Hersey, P. Association of increased levels of heavy-chain ferritin with increased CD4 + CD25+ regulatory T-cell levels in patients with melanoma. Clin. Cancer Res. 9, 2551–2559 (2003).
pubmed: 12855630
de Almeida, S. M., da Cunha, D. S., Yamada, E., Doi, E. M. & Ono, M. Quantification of cerebrospinal fluid ferritin as a biomarker for CNS malignant infiltration. Arq. Neuropsiquiatr. 66, 720–724 (2008).
pubmed: 18949270 doi: 10.1590/S0004-282X2008000500022
Lazzeri, M. et al. Serum isoform [-2]proPSA derivatives significantly improve prediction of prostate cancer at initial biopsy in a total PSA range of 2-10 ng/ml: a multicentric european study. Eur. Urol. 63, 986–994 (2013).
pubmed: 23375961 doi: 10.1016/j.eururo.2013.01.011
Fossati, N. et al. Preoperative prostate-specific antigen isoform p2PSA and its derivatives, %p2PSA and prostate health index, predict pathologic outcomes in patients undergoing radical prostatectomy for prostate cancer: Results from a multicentric european prospective stud. Eur. Urol. 68, 132–138 (2015).
pubmed: 25139197 doi: 10.1016/j.eururo.2014.07.034
Gilligan, T. D. et al. American society of clinical oncology clinical practice guideline on uses of serum tumor markers in adult males with germ cell tumors. J. Clin. Oncol. 28, 3388–3404 (2010).
pubmed: 20530278 doi: 10.1200/JCO.2009.26.4481
Gregory, J. J. J. & Finlay, J. L. Alpha-fetoprotein and beta-human chorionic gonadotropin: their clinical significance as tumour markers. Drugs 57, 463–467 (1999).
pubmed: 10235686 doi: 10.2165/00003495-199957040-00001
Openshaw, M. R. et al. Circulating cell free DNA in the diagnosis of trophoblastic tumors. EBioMedicine 4, 146–152 (2016).
pubmed: 26981554 doi: 10.1016/j.ebiom.2015.12.022
Gallagher, D. J., Riches, J. & Bajorin, D. F. False elevation of human chorionic gonadotropin in a patient with testicular cancer. Nat. Rev. Urol. 7, 230–233 (2010).
pubmed: 20383188 doi: 10.1038/nrurol.2010.10
Gansauge, F. et al. CAM 17.1–a new diagnostic marker in pancreatic cancer. Br. J. Cancer 74, 1997–2002 (1996).
pubmed: 8980403 pmcid: 2074816 doi: 10.1038/bjc.1996.666
Rhodes, J. M. Usefulness of novel tumour markers. Ann. Oncol. 10, 118–121 (1999).
pubmed: 10436801 doi: 10.1093/annonc/10.suppl_4.S118
Ryu, M. R., Kang, E.-S. & Park, H.-D. Performance evaluation of serum PIVKA-II measurement using HISCL-5000 and a method comparison of HISCL-5000, LUMIPULSE G1200, and ARCHITECT i2000. J. Clin. Lab. Anal. 33, e22921 (2019).
pubmed: 31131509 pmcid: 6642327 doi: 10.1002/jcla.22921
Hu, B., Tian, X., Sun, J. & Meng, X. Evaluation of individual and combined applications of serum biomarkers for diagnosis of hepatocellular carcinoma: a meta-analysis. Int. J. Mol. Sci. 14, 23559–23580 (2013).
pubmed: 24317431 pmcid: 3876063 doi: 10.3390/ijms141223559
Xing, H. et al. Clinical application of protein induced by vitamin K antagonist-II as a biomarker in hepatocellular carcinoma. Tumour Biol. https://doi.org/10.1007/s13277-016-5443-x . (2016).
Tartaglione, S. et al. Protein induced by vitamin K absence II (PIVKA-II) as a potential serological biomarker in pancreatic cancer: a pilot study. Biochem. Med. 29, 20707 (2019).
doi: 10.11613/BM.2019.020707
Marrero, J. A. et al. Des-gamma carboxyprothrombin can differentiate hepatocellular carcinoma from nonmalignant chronic liver disease in american patients. Hepatology 37, 1114–1121 (2003).
pubmed: 12717392 doi: 10.1053/jhep.2003.50195
Durazo, F. A. et al. Des-gamma-carboxyprothrombin, alpha-fetoprotein and AFP-L3 in patients with chronic hepatitis, cirrhosis and hepatocellular carcinoma. J. Gastroenterol. Hepatol. 23, 1541–1548 (2008).
pubmed: 18422961 doi: 10.1111/j.1440-1746.2008.05395.x
Wojcik, E. & Kulpa, J. K. Pro-gastrin-releasing peptide (ProGRP) as a biomarker in small-cell lung cancer diagnosis, monitoring and evaluation of treatment response. Lung Cancer 8, 231–240 (2017).
pubmed: 29238236 pmcid: 5716401
Lv, S. P. et al. Meta-analysis of serum gastrin-releasing peptide precursor as a biomarker for diagnosis of small cell lung cancer. Asian Pac. J. Cancer Prev. 18, 391–397 (2017).
pubmed: 28345820 pmcid: 5454733
Tutar, N. et al. Clinical significance of progastrin-releasing peptide, neuron-specific enolase, chromogranin a, and squamous cell cancer antigen in pulmonary neuroendocrine tumors. Turkish J. Med. Sci. 49, 774–781 (2019).
Busch, R. A., Heneghan, A. F., Pierre, J. F., Wang, X. & Kudsk, K. A. The enteric nervous system neuropeptide, bombesin, reverses innate immune impairments during parenteral nutrition. Ann. Surg. 260, 432–434 (2014).
pubmed: 25115419 doi: 10.1097/SLA.0000000000000871
Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).
pubmed: 10647931 doi: 10.1016/S0092-8674(00)81683-9
Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).
pubmed: 21376230 doi: 10.1016/j.cell.2011.02.013
Hanahan, D. Hallmarks of cancer: new dimensions. Cancer Discov. 12, 31–46 (2022).
pubmed: 35022204 doi: 10.1158/2159-8290.CD-21-1059
Pylayeva-Gupta, Y., Grabocka, E. & Bar-Sagi, D. RAS oncogenes: weaving a tumorigenic web. Nat. Rev. Cancer 11, 761–774 (2011).
pubmed: 21993244 pmcid: 3632399 doi: 10.1038/nrc3106
Ediriweera, M. K., Tennekoon, K. H. & Samarakoon, S. R. Role of the PI3K/AKT/mTOR signaling pathway in ovarian cancer: biological and therapeutic significance. Semin. Cancer Biol. 59, 147–160 (2019).
pubmed: 31128298 doi: 10.1016/j.semcancer.2019.05.012
Rocca, A., Braga, L., Volpe, M. C., Maiocchi, S. & Generali, D. The predictive and prognostic role of RAS-RAF-MEK-ERK pathway alterations in breast cancer: revision of the literature and comparison with the analysis of cancer genomic datasets. Cancers 14, 5306 (2022).
pubmed: 36358725 pmcid: 9653766 doi: 10.3390/cancers14215306
Barbacid, M. ras genes. Annu. Rev. Biochem. 56, 779–827 (1987).
pubmed: 3304147 doi: 10.1146/annurev.bi.56.070187.004023
Chang, E. H., Gonda, M. A., Ellis, R. W., Scolnick, E. M. & Lowy, D. R. Human genome contains four genes homologous to transforming genes of Harvey and Kirsten murine sarcoma viruses. Proc. Natl Acad. Sci. USA 79, 4848–4852 (1982).
pubmed: 6289320 pmcid: 346782 doi: 10.1073/pnas.79.16.4848
Downward, J. Targeting RAS signalling pathways in cancer therapy. Nat. Rev. Cancer 3, 11–22 (2003).
pubmed: 12509763 doi: 10.1038/nrc969
Kwan, A. K., Piazza, G. A., Keeton, A. B. & Leite, C. A. The path to the clinic: a comprehensive review on direct KRAS(G12C) inhibitors. J. Exp. Clin. Cancer Res. 41, 27 (2022).
pubmed: 35045886 pmcid: 8767686 doi: 10.1186/s13046-021-02225-w
Yang, H. et al. Targeting RAS mutants in malignancies: successes, failures, and reasons for hope. Cancer Commun. 43, 42–74 (2023).
doi: 10.1002/cac2.12377
Mukhopadhyay, S., Vander Heiden, M. G. & McCormick, F. The metabolic landscape of RAS-driven cancers from biology to therapy. Nat. Cancer 2, 271–283 (2021).
pubmed: 33870211 pmcid: 8045781 doi: 10.1038/s43018-021-00184-x
Buchanan, F. G. et al. Up-regulation of the enzymes involved in prostacyclin synthesis via Ras induces vascular endothelial growth factor. Gastroenterology 127, 1391–1400 (2004).
pubmed: 15521009 doi: 10.1053/j.gastro.2004.07.025
Ancrile, B. B., O’Hayer, K. M. & Counter, C. M. Oncogenic ras-induced expression of cytokines: a new target of anti-cancer therapeutics. Mol. Inter. 8, 22–27 (2008).
doi: 10.1124/mi.8.1.6
Murugan, A. K., Grieco, M. & Tsuchida, N. RAS mutations in human cancers: roles in precision medicine. Semin. Cancer Biol. 59, 23–35 (2019).
pubmed: 31255772 doi: 10.1016/j.semcancer.2019.06.007
Taieb, J. et al. Prognostic value of BRAF and KRAS mutations in MSI and MSS stage III colon cancer. J. Natl Cancer Inst. 109, djw272 (2017).
pubmed: 28040692 doi: 10.1093/jnci/djw272
Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330–337 (2012).
Cancer Genome Atlas Research Network. Integrated genomic characterization of pancreatic ductal adenocarcinoma. Cancer Cell 32, 185–203.e13 (2017).
Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature 511, 543–550 (2014).
Cancer Genome Atlas Research Network. Genomic classification of cutaneous melanoma. Cell 161, 1681–1696 (2015).
Karnoub, A. E. & Weinberg, R. A. Ras oncogenes: split personalities. Nat. Rev. Mol. Cell Biol. 9, 517–531 (2008).
pubmed: 18568040 pmcid: 3915522 doi: 10.1038/nrm2438
Longo, D. L. & Rosen, N. Targeting oncogenic RAS protein. N. Engl. J. Med. 387, 184–186 (2022).
pubmed: 35830646 doi: 10.1056/NEJMe2206831
Santos, E. et al. Malignant activation of a K-ras oncogene in lung carcinoma but not in normal tissue of the same patient. Science 223, 661–664 (1984).
pubmed: 6695174 doi: 10.1126/science.6695174
Prior, I. A., Hood, F. E. & Hartley, J. L. The frequency of Ras mutations in cancer. Cancer Res. 80, 2969–2974 (2020).
pubmed: 32209560 pmcid: 7367715 doi: 10.1158/0008-5472.CAN-19-3682
Dai, M., Chen, S., Teng, X., Chen, K. & Cheng, W. KRAS as a key oncogene in the clinical precision diagnosis and treatment of pancreatic cancer. J. Cancer 13, 3209–3220 (2022).
pubmed: 36118526 pmcid: 9475360 doi: 10.7150/jca.76695
Modest, D. P. et al. Outcome according to KRAS-, NRAS- and BRAF-mutation as well as KRAS mutation variants: Pooled analysis of five randomized trials in metastatic colorectal cancer by the AIO colorectal cancer study group. Ann. Oncol. 27, 1746–1753 (2016).
pubmed: 27358379 pmcid: 4999563 doi: 10.1093/annonc/mdw261
Gallina, F. T. et al. KRAS G12C mutation and risk of disease recurrence in stage I surgically resected lung adenocarcinoma. Lung Cancer 181, 107254 (2023).
pubmed: 37253296 doi: 10.1016/j.lungcan.2023.107254
Buscail, L., Bournet, B. & Cordelier, P. Role of oncogenic KRAS in the diagnosis, prognosis and treatment of pancreatic cancer. Nat. Rev. Gastroenterol. Hepatol. 17, 153–168 (2020).
pubmed: 32005945 doi: 10.1038/s41575-019-0245-4
Shen, H. et al. KRAS G12D mutation subtype in pancreatic ductal adenocarcinoma: does it influence prognosis or stage of disease at presentation? Cells 11, 3175 (2022).
pubmed: 36231137 pmcid: 9562007 doi: 10.3390/cells11193175
Santana-Codina, N. et al. Oncogenic KRAS supports pancreatic cancer through regulation of nucleotide synthesis. Nat. Commun. 9, 4945 (2018).
pubmed: 30470748 pmcid: 6251888 doi: 10.1038/s41467-018-07472-8
Weinberg, F. et al. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc. Natl Acad. Sci. USA 107, 8788–8793 (2010).
pubmed: 20421486 pmcid: 2889315 doi: 10.1073/pnas.1003428107
Kerk, S. A., Papagiannakopoulos, T., Shah, Y. M. & Lyssiotis, C. A. Metabolic networks in mutant KRAS-driven tumours: tissue specificities and the microenvironment. Nat. Rev. Cancer 21, 510–525 (2021).
pubmed: 34244683 pmcid: 10257891 doi: 10.1038/s41568-021-00375-9
Amendola, C. R. et al. KRAS4A directly regulates hexokinase 1. Nature 576, 482–486 (2019).
pubmed: 31827279 pmcid: 6923592 doi: 10.1038/s41586-019-1832-9
Wang, H. et al. Inhibition of glycolytic enzyme hexokinase II (HK2) suppresses lung tumor growth. Cancer Cell Int. 16, 9 (2016).
pubmed: 26884725 pmcid: 4755025 doi: 10.1186/s12935-016-0280-y
Ying, H. et al. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149, 656–670 (2012).
pubmed: 22541435 pmcid: 3472002 doi: 10.1016/j.cell.2012.01.058
Padanad, M. S. et al. Fatty acid oxidation mediated by acyl-CoA synthetase long chain 3 is required for mutant KRAS lung tumorigenesis. Cell Rep. 16, 1614–1628 (2016).
pubmed: 27477280 pmcid: 4981512 doi: 10.1016/j.celrep.2016.07.009
Akhave, N. S., Biter, A. B. & Hong, D. S. Mechanisms of resistance to KRAS(G12C)-targeted therapy. Cancer Discov. 11, 1345–1352 (2021).
pubmed: 33820777 pmcid: 8178176 doi: 10.1158/2159-8290.CD-20-1616
Zhu, C. et al. Targeting KRAS mutant cancers: from druggable therapy to drug resistance. Mol. Cancer 21, 159 (2022).
pubmed: 35922812 pmcid: 9351107 doi: 10.1186/s12943-022-01629-2
Lu, S. et al. Ras conformational ensembles, allostery, and signaling. Chem. Rev. 116, 6607–6665 (2016).
pubmed: 26815308 doi: 10.1021/acs.chemrev.5b00542
Manning, B. D. & Toker, A. AKT/PKB signaling: navigating the network. Cell 169, 381–405 (2017).
pubmed: 28431241 pmcid: 5546324 doi: 10.1016/j.cell.2017.04.001
Mossmann, D., Park, S. & Hall, M. N. mTOR signalling and cellular metabolism are mutual determinants in cancer. Nat. Rev. Cancer 18, 744–757 (2018).
pubmed: 30425336 doi: 10.1038/s41568-018-0074-8
Sawyers, C. L. Will mTOR inhibitors make it as cancer drugs? Cancer Cell 4, 343–348 (2003).
pubmed: 14667501 doi: 10.1016/S1535-6108(03)00275-7
Saxton, R. A. & Sabatini, D. M. mTOR signaling in growth, metabolism, and disease. Cell 168, 960–976 (2017).
pubmed: 28283069 pmcid: 5394987 doi: 10.1016/j.cell.2017.02.004
Engelman, J. A., Luo, J. & Cantley, L. C. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat. Rev. Genet. 7, 606–619 (2006).
pubmed: 16847462 doi: 10.1038/nrg1879
Fruman, D. A. et al. The PI3K pathway in human disease. Cell 170, 605–635 (2017).
pubmed: 28802037 pmcid: 5726441 doi: 10.1016/j.cell.2017.07.029
Polivka, J. J. & Janku, F. Molecular targets for cancer therapy in the PI3K/AKT/mTOR pathway. Pharmacol. Ther. 142, 164–175 (2014).
pubmed: 24333502 doi: 10.1016/j.pharmthera.2013.12.004
Papadimitrakopoulou, V. & Adjei, A. A. The Akt/mTOR and mitogen-activated protein kinase pathways in lung cancer therapy. J. Thorac. Oncol. 1, 749–751 (2006).
pubmed: 17409953
Hung, M.-C., Wang, W.-P. & Chi, Y.-H. AKT phosphorylation as a predictive biomarker for PI3K/mTOR dual inhibition-induced proteolytic cleavage of mTOR companion proteins in small cell lung cancer. Cell Biosci. 12, 122 (2022).
pubmed: 35918763 pmcid: 9344631 doi: 10.1186/s13578-022-00862-y
Nunnery, S. E. & Mayer, I. A. Targeting the PI3K/AKT/mTOR pathway in hormone-positive breast cancer. Drugs 80, 1685–1697 (2020).
pubmed: 32894420 pmcid: 7572750 doi: 10.1007/s40265-020-01394-w
Wang, W. et al. Activation of Akt/mTOR pathway is associated with poor prognosis of nasopharyngeal carcinoma. PLoS ONE 9, e106098 (2014).
pubmed: 25165983 pmcid: 4148345 doi: 10.1371/journal.pone.0106098
Li, H.-L., Deng, N.-H., He, X.-S. & Li, Y.-H. Small biomarkers with massive impacts: PI3K/AKT/mTOR signalling and microRNA crosstalk regulate nasopharyngeal carcinoma. Biomark. Res. 10, 52 (2022).
pubmed: 35883139 pmcid: 9327212 doi: 10.1186/s40364-022-00397-x
Janku, F. et al. PI3K/AKT/mTOR inhibitors in patients with breast and gynecologic malignancies harboring PIK3CA mutations. J. Clin. Oncol. 30, 777–782 (2012).
pubmed: 22271473 pmcid: 3295566 doi: 10.1200/JCO.2011.36.1196
Janku, F. et al. PIK3CA mutation H1047R is associated with response to PI3K/AKT/mTOR signaling pathway inhibitors in early-phase clinical trials. Cancer Res. 73, 276–284 (2013).
pubmed: 23066039 doi: 10.1158/0008-5472.CAN-12-1726
Owonikoko, T. K. & Khuri, F. R. Targeting the PI3K/AKT/mTOR pathway: biomarkers of success and tribulation. Am. Soc. Clin. Oncol. Educ. Book 33, e395–e401 (2013).
doi: 10.14694/EdBook_AM.2013.33.e395
Fusco, N. et al. PIK3CA mutations as a molecular target for hormone receptor-positive, HER2-negative metastatic breast cancer. Front. Oncol. 11, 644737 (2021).
pubmed: 33842357 pmcid: 8027489 doi: 10.3389/fonc.2021.644737
Punekar, S. R., Velcheti, V., Neel, B. G. & Wong, K. K. The current state of the art and future trends in RAS-targeted cancer therapies. Nat. Rev. Clin. Oncol. 19, 637–655 (2022).
pubmed: 36028717 pmcid: 9412785 doi: 10.1038/s41571-022-00671-9
Holderfield, M., Deuker, M. M., McCormick, F. & McMahon, M. Targeting RAF kinases for cancer therapy: BRAF-mutated melanoma and beyond. Nat. Rev. Cancer 14, 455–467 (2014).
pubmed: 24957944 pmcid: 4250230 doi: 10.1038/nrc3760
Takács, T. et al. The effects of mutant Ras proteins on the cell signalome. Cancer Metastasis Rev. 39, 1051–1065 (2020).
pubmed: 32648136 pmcid: 7680337 doi: 10.1007/s10555-020-09912-8
Bahar, M. E., Kim, H. J. & Kim, D. R. Targeting the RAS/RAF/MAPK pathway for cancer therapy: from mechanism to clinical studies. Signal Transduct. Target Ther. 8, 455 (2023).
pubmed: 38105263 pmcid: 10725898 doi: 10.1038/s41392-023-01705-z
Su, W. et al. ARAF protein kinase activates RAS by antagonizing its binding to RASGAP NF1. Mol. Cell 82, 2443–2457.e7 (2022).
pubmed: 35613620 pmcid: 9271631 doi: 10.1016/j.molcel.2022.04.034
da Rocha Dias, S. et al. Activated B-RAF is an Hsp90 client protein that is targeted by the anticancer drug 17-allylamino-17-demethoxygeldanamycin. Cancer Res. 65, 10686–10691 (2005).
pubmed: 16322212 doi: 10.1158/0008-5472.CAN-05-2632
Grammatikakis, N., Lin, J. H., Grammatikakis, A., Tsichlis, P. N. & Cochran, B. H. p50(cdc37) acting in concert with Hsp90 is required for Raf-1 function. Mol. Cell. Biol. 19, 1661–1672 (1999).
pubmed: 10022854 pmcid: 83960 doi: 10.1128/MCB.19.3.1661
Michaud, N. R. et al. KSR stimulates Raf-1 activity in a kinase-independent manner. Proc. Natl Acad. Sci. USA 94, 12792–12796 (1997).
pubmed: 9371754 pmcid: 24217 doi: 10.1073/pnas.94.24.12792
Steelman, L. S. et al. Roles of the Ras/Raf/MEK/ERK pathway in leukemia therapy. Leukemia 25, 1080–1094 (2011).
pubmed: 21494257 doi: 10.1038/leu.2011.66
Imperial, R., Toor, O. M., Hussain, A., Subramanian, J. & Masood, A. Comprehensive pancancer genomic analysis reveals (RTK)-RAS-RAF-MEK as a key dysregulated pathway in cancer: its clinical implications. Semin. Cancer Biol. 54, 14–28 (2019).
pubmed: 29175106 doi: 10.1016/j.semcancer.2017.11.016
Liu, D. & Zhou, K. BRAF/MEK pathway is associated with breast cancer in ER-dependent mode and improves ER status-based cancer recurrence prediction. Clin. Breast Cancer 20, 41–50.e8 (2020).
pubmed: 31547956 doi: 10.1016/j.clbc.2019.08.005
Steck, P. A. et al. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat. Genet. 15, 356–362 (1997).
pubmed: 9090379 doi: 10.1038/ng0497-356
Worby, C. A. & Dixon, J. E. PTEN. Annu. Rev. Biochem. 83, 641–669 (2014).
pubmed: 24905788 doi: 10.1146/annurev-biochem-082411-113907
Maehama, T. & Dixon, J. E. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem. 273, 13375–13378 (1998).
pubmed: 9593664 doi: 10.1074/jbc.273.22.13375
Hollander, M. C., Blumenthal, G. M. & Dennis, P. A. PTEN loss in the continuum of common cancers, rare syndromes and mouse models. Nat. Rev. Cancer 11, 289–301 (2011).
pubmed: 21430697 pmcid: 6946181 doi: 10.1038/nrc3037
Xie, P. et al. Neddylation of PTEN regulates its nuclear import and promotes tumor development. Cell Res. 31, 291–311 (2021).
pubmed: 33299139 doi: 10.1038/s41422-020-00443-z
Sansal, I. & Sellers, W. R. The biology and clinical relevance of the PTEN tumor suppressor pathway. J. Clin. Oncol. 22, 2954–2963 (2004).
pubmed: 15254063 doi: 10.1200/JCO.2004.02.141
Bazzichetto, C. et al. Pten as a prognostic/predictive biomarker in cancer: an unfulfilled promise? Cancers 11, 435 (2019).
pubmed: 30925702 pmcid: 6520939 doi: 10.3390/cancers11040435
Song, M. S., Salmena, L. & Pandolfi, P. P. The functions and regulation of the PTEN tumour suppressor. Nat. Rev. Mol. Cell Biol. 13, 283–296 (2012).
pubmed: 22473468 doi: 10.1038/nrm3330
Lee, Y.-R., Chen, M. & Pandolfi, P. P. The functions and regulation of the PTEN tumour suppressor: new modes and prospects. Nat. Rev. Mol. Cell Biol. 19, 547–562 (2018).
pubmed: 29858604 doi: 10.1038/s41580-018-0015-0
Friend, S. H. et al. A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 323, 643–646 (1986).
pubmed: 2877398 doi: 10.1038/323643a0
Benavente, C. A. & Dyer, M. A. Genetics and epigenetics of human retinoblastoma. Annu. Rev. Pathol. 10, 547–562 (2015).
pubmed: 25621664 doi: 10.1146/annurev-pathol-012414-040259
Kent, L. N. & Leone, G. The broken cycle: E2F dysfunction in cancer. Nat. Rev. Cancer 19, 326–338 (2019).
pubmed: 31053804 doi: 10.1038/s41568-019-0143-7
Burkhart, D. L. & Sage, J. Cellular mechanisms of tumour suppression by the retinoblastoma gene. Nat. Rev. Cancer 8, 671–682 (2008).
pubmed: 18650841 pmcid: 6996492 doi: 10.1038/nrc2399
Munro, S., Carr, S. M. & La Thangue, N. B. Diversity within the pRb pathway: is there a code of conduct. Oncogene 31, 4343–4352 (2012).
pubmed: 22249267 doi: 10.1038/onc.2011.603
Weinberg, R. A. The retinoblastoma protein and cell cycle control. Cell 81, 323–330 (1995).
pubmed: 7736585 doi: 10.1016/0092-8674(95)90385-2
Dyson, N. J. RB1: a prototype tumor suppressor and an enigma. Genes Dev. 30, 1492–1502 (2016).
pubmed: 27401552 pmcid: 4949322 doi: 10.1101/gad.282145.116
Knudsen, E. S. et al. Pan-cancer molecular analysis of the RB tumor suppressor pathway. Commun. Biol. 3, 158 (2020).
pubmed: 32242058 pmcid: 7118159 doi: 10.1038/s42003-020-0873-9
Lane, D. P. Cancer. p53, guardian of the genome. Nature 358, 15–16 (1992).
pubmed: 1614522 doi: 10.1038/358015a0
Bieging, K. T., Mello, S. S. & Attardi, L. D. Unravelling mechanisms of p53-mediated tumour suppression. Nat. Rev. Cancer 14, 359–370 (2014).
pubmed: 24739573 pmcid: 4049238 doi: 10.1038/nrc3711
Bieging, K. T. & Attardi, L. D. Cancer: a piece of the p53 puzzle. Nature 520, 37–38 (2015).
pubmed: 25799989 doi: 10.1038/nature14374
Vousden, K. H. & Prives, C. Blinded by the light: the growing complexity of p53. Cell 137, 413–431 (2009).
pubmed: 19410540 doi: 10.1016/j.cell.2009.04.037
Wang, M. & Attardi, L. D. A balancing act: p53 activity from tumor suppression to pathology and therapeutic implications. Annu. Rev. Pathol. 17, 205–226 (2022).
pubmed: 34699262 doi: 10.1146/annurev-pathol-042320-025840
Hollstein, M., Sidransky, D., Vogelstein, B. & Harris, C. C. p53 mutations in human cancers. Science 253, 49–53 (1991).
pubmed: 1905840 doi: 10.1126/science.1905840
Zhu, H. et al. Targeting p53–MDM2 interaction by small-molecule inhibitors: learning from MDM2 inhibitors in clinical trials. J. Hematol. Oncol. 15, 91 (2022).
pubmed: 35831864 pmcid: 9277894 doi: 10.1186/s13045-022-01314-3
Shi, C., Liu, S., Tian, X., Wang, X. & Gao, P. A TP53 mutation model for the prediction of prognosis and therapeutic responses in head and neck squamous cell carcinoma. BMC Cancer 21, 1035 (2021).
pubmed: 34530752 pmcid: 8447564 doi: 10.1186/s12885-021-08765-w
Li, V. D., Li, K. H. & Li, J. T. TP53 mutations as potential prognostic markers for specific cancers: analysis of data from The Cancer Genome Atlas and the International Agency for Research on Cancer TP53 Database. J. Cancer Res. Clin. Oncol. 145, 625–636 (2019).
pubmed: 30542790 doi: 10.1007/s00432-018-2817-z
Jafri, M. A., Ansari, S. A., Alqahtani, M. H. & Shay, J. W. Roles of telomeres and telomerase in cancer, and advances in telomerase-targeted therapies. Genome Med. 8, 69 (2016).
pubmed: 27323951 pmcid: 4915101 doi: 10.1186/s13073-016-0324-x
Meyne, J., Ratliff, R. L. & Moyzis, R. K. Conservation of the human telomere sequence (TTAGGG)n among vertebrates. Proc. Natl Acad. Sci. USA 86, 7049–7053 (1989).
pubmed: 2780561 pmcid: 297991 doi: 10.1073/pnas.86.18.7049
Gao, J. & Pickett, H. A. Targeting telomeres: advances in telomere maintenance mechanism-specific cancer therapies. Nat. Rev. Cancer 22, 515–532 (2022).
pubmed: 35790854 doi: 10.1038/s41568-022-00490-1
Marinaccio, J. et al. TERT extra-telomeric roles: antioxidant activity and mitochondrial protection. Int. J. Mol. Sci. 24, 4450 (2023).
pubmed: 36901881 pmcid: 10002448 doi: 10.3390/ijms24054450
Bajaj, S., Kumar, M. S., Peters, G. J. & Mayur, Y. C. Targeting telomerase for its advent in cancer therapeutics. Med. Res. Rev. 40, 1871–1919 (2020).
pubmed: 32391613 doi: 10.1002/med.21674
Bertorelle, R. et al. Telomerase is an independent prognostic marker of overall survival in pataients with colorectal cancer. Br. J. Cancer 108, 278–284 (2013).
pubmed: 23322193 pmcid: 3566802 doi: 10.1038/bjc.2012.602
Powter, B. et al. Human TERT promoter mutations as a prognostic biomarker in glioma. J. Cancer Res. Clin. Oncol. 147, 1007–1017 (2021).
pubmed: 33547950 pmcid: 7954705 doi: 10.1007/s00432-021-03536-3
Masutomi, K. et al. The telomerase reverse transcriptase regulates chromatin state and DNA damage responses. Proc. Natl Acad. Sci. USA 102, 8222–8227 (2005).
pubmed: 15928077 pmcid: 1149439 doi: 10.1073/pnas.0503095102
Baeriswyl, V. & Christofori, G. The angiogenic switch in carcinogenesis. Semin. Cancer Biol. 19, 329–337 (2009).
pubmed: 19482086 doi: 10.1016/j.semcancer.2009.05.003
Hanahan, D. & Folkman, J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353–364 (1996).
pubmed: 8756718 doi: 10.1016/S0092-8674(00)80108-7
Weidner, N. et al. Tumor angiogenesis: a new significant and independent prognostic indicator in early-stage breast carcinoma. J. Natl Cancer Inst. 84, 1875–1887 (1992).
pubmed: 1281237 doi: 10.1093/jnci/84.24.1875
Al-Husein, B., Abdalla, M., Trepte, M., DeRemer, D. L. & Somanath, P. R. Antiangiogenic therapy for cancer: an update. Pharmacotherapy 32, 1095–1111 (2012).
pubmed: 23208836 pmcid: 3555403 doi: 10.1002/phar.1147
Senger, D. R. et al. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219, 983–985 (1983).
pubmed: 6823562 doi: 10.1126/science.6823562
Ferrara, N. & Henzel, W. J. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem. Biophys. Res. Commun. 161, 851–858 (1989).
pubmed: 2735925 doi: 10.1016/0006-291X(89)92678-8
Dabravolski, S. A., Khotina, V. A., Omelchenko, A. V., Kalmykov, V. A. & Orekhov, A. N. The role of the VEGF family in atherosclerosis development and its potential as treatment targets. Int. J. Mol. Sci. 23, 931 (2022).
pubmed: 35055117 pmcid: 8781560 doi: 10.3390/ijms23020931
Ebos, J. M. L., Lee, C. R., Christensen, J. G., Mutsaers, A. J. & Kerbel, R. S. Multiple circulating proangiogenic factors induced by sunitinib malate are tumor-independent and correlate with antitumor efficacy. Proc. Natl Acad. Sci. USA 104, 17069–17074 (2007).
pubmed: 17942672 pmcid: 2040401 doi: 10.1073/pnas.0708148104
Kerbel, R. S. Tumor angiogenesis. N. Engl. J. Med. 358, 2039–2049 (2008).
pubmed: 18463380 pmcid: 4542009 doi: 10.1056/NEJMra0706596
Kerbel, R. & Folkman, J. Clinical translation of angiogenesis inhibitors. Nat. Rev. Cancer 2, 727–739 (2002).
pubmed: 12360276 doi: 10.1038/nrc905
Lee, S. H., Jeong, D., Han, Y.-S. & Baek, M. J. Pivotal role of vascular endothelial growth factor pathway in tumor angiogenesis. Ann. Surg. Treat. Res. 89, 1–8 (2015).
pubmed: 26131438 pmcid: 4481026 doi: 10.4174/astr.2015.89.1.1
Simons, M., Gordon, E. & Claesson-Welsh, L. Mechanisms and regulation of endothelial VEGF receptor signalling. Nat. Rev. Mol. Cell Biol. 17, 611–625 (2016).
pubmed: 27461391 doi: 10.1038/nrm.2016.87
de Vries, C. et al. The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science 255, 989–991 (1992).
pubmed: 1312256 doi: 10.1126/science.1312256
Park, J. E., Chen, H. H., Winer, J., Houck, K. A. & Ferrara, N. Placenta growth factor. Potentiation of vascular endothelial growth factor bioactivity, in vitro and in vivo, and high affinity binding to Flt-1 but not to Flk-1/KDR. J. Biol. Chem. 269, 25646–25654 (1994).
pubmed: 7929268 doi: 10.1016/S0021-9258(18)47298-5
Ye, X., Gaucher, J.-F., Vidal, M. & Broussy, S. A structural overview of vascular endothelial growth factors pharmacological ligands: from macromolecules to designed peptidomimetics. Molecules 26, 6759 (2021).
pubmed: 34833851 pmcid: 8625919 doi: 10.3390/molecules26226759
Ceci, C., Atzori, M. G., Lacal, P. M. & Graziani, G. Role of VEGFs/VEGFR-1 signaling and its inhibition in modulating tumor invasion: experimental evidence in different metastatic cancer models. Int. J. Mol. Sci. 21, 1388 (2020).
pubmed: 32085654 pmcid: 7073125 doi: 10.3390/ijms21041388
Apte, R. S., Chen, D. S. & Ferrara, N. VEGF in signaling and disease: beyond discovery and development. Cell 176, 1248–1264 (2019).
pubmed: 30849371 pmcid: 6410740 doi: 10.1016/j.cell.2019.01.021
Ferrara, N., Gerber, H.-P. & LeCouter, J. The biology of VEGF and its receptors. Nat. Med. 9, 669–676 (2003).
pubmed: 12778165 doi: 10.1038/nm0603-669
Yao, C. et al. Angiogenesis in hepatocellular carcinoma: mechanisms and anti-angiogenic therapies. Cancer Biol. Med. 20, 25–43 (2023).
pubmed: 36647777 pmcid: 9843448 doi: 10.20892/j.issn.2095-3941.2022.0449
Karkkainen, M. J., Mäkinen, T. & Alitalo, K. Lymphatic endothelium: a new frontier of metastasis research. Nat. Cell Biol. 4, E2–E5 (2002).
pubmed: 11780131 doi: 10.1038/ncb0102-e2
Alitalo, K., Tammela, T. & Petrova, T. V. Lymphangiogenesis in development and human disease. Nature 438, 946–953 (2005).
pubmed: 16355212 doi: 10.1038/nature04480
Aguilar-Cazares, D. et al. Contribution of angiogenesis to inflammation and cancer. Front. Oncol. 9, 1399 (2019).
pubmed: 31921656 pmcid: 6920210 doi: 10.3389/fonc.2019.01399
Lacin, S. & Yalcin, S. The prognostic value of circulating VEGF-A level in patients with hepatocellular cancer. Technol. Cancer Res. Treat. 19, 153303382097167 (2020).
doi: 10.1177/1533033820971677
Bocci, G. et al. Increased plasma vascular endothelial growth factor (VEGF) as a surrogate marker for optimal therapeutic dosing of VEGF receptor-2 monoclonal antibodies. Cancer Res. 64, 6616–6625 (2004).
pubmed: 15374976 doi: 10.1158/0008-5472.CAN-04-0401
Turner, N. & Grose, R. Fibroblast growth factor signalling: from development to cancer. Nat. Rev. Cancer 10, 116–129 (2010).
pubmed: 20094046 doi: 10.1038/nrc2780
De Moerlooze, L. et al. An important role for the IIIb isoform of fibroblast growth factor receptor 2 (FGFR2) in mesenchymal-epithelial signalling during mouse organogenesis. Development 127, 483–492 (2000).
pubmed: 10631169 doi: 10.1242/dev.127.3.483
Eswarakumar, V. P., Lax, I. & Schlessinger, J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev. 16, 139–149 (2005).
pubmed: 15863030 doi: 10.1016/j.cytogfr.2005.01.001
Mashreghi, M. et al. Angiogenesis biomarkers and their targeting ligands as potential targets for tumor angiogenesis. J. Cell. Physiol. 233, 2949–2965 (2018).
pubmed: 28608549 doi: 10.1002/jcp.26049
Presta, M. et al. Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev. 16, 159–178 (2005).
pubmed: 15863032 doi: 10.1016/j.cytogfr.2005.01.004
Doll, J. A. et al. Thrombospondin-1, vascular endothelial growth factor and fibroblast growth factor-2 are key functional regulators of angiogenesis in the prostate. Prostate 49, 293–305 (2001).
pubmed: 11746276 doi: 10.1002/pros.10025
Birrer, M. J. et al. Whole genome oligonucleotide-based array comparative genomic hybridization analysis identified fibroblast growth factor 1 as a prognostic marker for advanced-stage serous ovarian adenocarcinomas. J. Clin. Oncol. 25, 2281–2287 (2007).
pubmed: 17538174 doi: 10.1200/JCO.2006.09.0795
Dienstmann, R. et al. Genomic aberrations in the FGFR pathway: opportunities for targeted therapies in solid tumors. Ann. Oncol. 25, 552–563 (2014).
pubmed: 24265351 doi: 10.1093/annonc/mdt419
Zhang, Y. et al. Role of epithelial cell fibroblast growth factor receptor substrate 2alpha in prostate development, regeneration and tumorigenesis. Development 135, 775–784 (2008).
pubmed: 18184727 doi: 10.1242/dev.009910
Schaeffer, E. M. et al. Androgen-induced programs for prostate epithelial growth and invasion arise in embryogenesis and are reactivated in cancer. Oncogene 27, 7180–7191 (2008).
pubmed: 18794802 pmcid: 2676849 doi: 10.1038/onc.2008.327
Desai, A. & Adjei, A. A. FGFR signaling as a target for lung cancer therapy. J. Thorac. Oncol. 11, 9–20 (2016).
pubmed: 26762735 doi: 10.1016/j.jtho.2015.08.003
Xian, W. et al. Fibroblast growth factor receptor 1-transformed mammary epithelial cells are dependent on RSK activity for growth and survival. Cancer Res. 69, 2244–2251 (2009).
pubmed: 19258500 doi: 10.1158/0008-5472.CAN-08-3398
Nomura, S. et al. FGF10/FGFR2 signal induces cell migration and invasion in pancreatic cancer. Br. J. Cancer 99, 305–313 (2008).
pubmed: 18594526 pmcid: 2480967 doi: 10.1038/sj.bjc.6604473
Greenman, C. et al. Patterns of somatic mutation in human cancer genomes. Nature 446, 153–158 (2007).
pubmed: 17344846 pmcid: 2712719 doi: 10.1038/nature05610
Cappellen, D. et al. Frequent activating mutations of FGFR3 in human bladder and cervix carcinomas. Nat. Genet. 23, 18–20 (1999).
pubmed: 10471491 doi: 10.1038/12615
Dutt, A. et al. Drug-sensitive FGFR2 mutations in endometrial carcinoma. Proc. Natl Acad. Sci. USA 105, 8713–8717 (2008).
pubmed: 18552176 pmcid: 2438391 doi: 10.1073/pnas.0803379105
Pearson, A. et al. High-level clonal FGFR amplification and response to FGFR inhibition in a translational clinical trial. Cancer Discov. 6, 838–851 (2016).
pubmed: 27179038 pmcid: 5338732 doi: 10.1158/2159-8290.CD-15-1246
Weiss, J. et al. Frequent and focal FGFR1 amplification associates with therapeutically tractable FGFR1 dependency in squamous cell lung cancer. Sci. Transl. Med. 2, 62ra93 (2010).
pubmed: 21160078 pmcid: 3990281 doi: 10.1126/scitranslmed.3001451
Ahmad, I., Iwata, T. & Leung, H. Y. Mechanisms of FGFR-mediated carcinogenesis. Biochim. Biophys. Acta 1823, 850–860 (2012).
pubmed: 22273505 doi: 10.1016/j.bbamcr.2012.01.004
Nakamura, I. T. et al. Comprehensive functional evaluation of variants of fibroblast growth factor receptor genes in cancer. NPJ Precis. Oncol. 5, 66 (2021).
pubmed: 34272467 pmcid: 8285406 doi: 10.1038/s41698-021-00204-0
Wang, S. & Ding, Z. Fibroblast growth factor receptors in breast cancer. Tumour Biol. 39, 1010428317698370 (2017).
pubmed: 28459213
Zou, X. et al. Targeting the PDGF/PDGFR signaling pathway for cancer therapy: a review. Int. J. Biol. Macromol. 202, 539–557 (2022).
pubmed: 35074329 doi: 10.1016/j.ijbiomac.2022.01.113
Kalra, K., Eberhard, J., Farbehi, N., Chong, J. J. & Xaymardan, M. Role of PDGF-A/B ligands in cardiac repair after myocardial infarction. Front. Cell Dev. Biol. 9, 669188 (2021).
pubmed: 34513823 pmcid: 8424099 doi: 10.3389/fcell.2021.669188
Nordby, Y. et al. High expression of PDGFR-β in prostate cancer stroma is independently associated with clinical and biochemical prostate cancer recurrence. Sci. Rep. 7, 43378 (2017).
pubmed: 28233816 pmcid: 5324133 doi: 10.1038/srep43378
Demoulin, J.-B. & Essaghir, A. PDGF receptor signaling networks in normal and cancer cells. Cytokine Growth Factor Rev. 25, 273–283 (2014).
pubmed: 24703957 doi: 10.1016/j.cytogfr.2014.03.003
Thies, K. A. et al. Stromal platelet-derived growth factor receptor-β signaling promotes breast cancer metastasis in the brain. Cancer Res. 81, 606–618 (2021).
pubmed: 32327406 doi: 10.1158/0008-5472.CAN-19-3731
Lin, L.-H. et al. Overexpression of platelet-derived growth factor and its receptor are correlated with oral tumorigenesis and Poor Prognosis in Oral Squamous Cell Carcinoma. Int. J. Mol. Sci. 21, 2360 (2020).
pubmed: 32235327 pmcid: 7177415 doi: 10.3390/ijms21072360
Bernat-Peguera, A. et al. PDGFR-induced autocrine SDF-1 signaling in cancer cells promotes metastasis in advanced skin carcinoma. Oncogene 38, 5021–5037 (2019).
pubmed: 30874597 pmcid: 6756210 doi: 10.1038/s41388-019-0773-y
Brahmi, M. et al. Expression and prognostic significance of PDGF ligands and receptors across soft tissue sarcomas. ESMO Open 6, 100037 (2021).
pubmed: 33524869 pmcid: 7848659 doi: 10.1016/j.esmoop.2020.100037
Yang, J. et al. A positive feedback loop between inactive VHL-triggered histone lactylation and PDGFRβ signaling drives clear cell renal cell carcinoma progression. Int. J. Biol. Sci. 18, 3470–3483 (2022).
pubmed: 35637958 pmcid: 9134910 doi: 10.7150/ijbs.73398
Roskoski, R. J. The role of small molecule platelet-derived growth factor receptor (PDGFR) inhibitors in the treatment of neoplastic disorders. Pharmacol. Res. 129, 65–83 (2018).
pubmed: 29408302 doi: 10.1016/j.phrs.2018.01.021
Manzat Saplacan, R. M. et al. The role of PDGFs and PDGFRs in colorectal cancer. Mediators Inflamm. 2017, 4708076 (2017).
pubmed: 28163397 pmcid: 5259650 doi: 10.1155/2017/4708076
Taeger, J. et al. Targeting FGFR/PDGFR/VEGFR impairs tumor growth, angiogenesis, and metastasis by effects on tumor cells, endothelial cells, and pericytes in pancreatic cancer. Mol. Cancer Ther. 10, 2157–2167 (2011).
pubmed: 21885862 doi: 10.1158/1535-7163.MCT-11-0312
Qian, H. et al. The clinical significance of platelet-derived growth factors (PDGFs) and their receptors (PDGFRs) in gastric cancer: A systematic review and meta-analysis. Crit. Rev. Oncol. Hematol. 127, 15–28 (2018).
pubmed: 29891108 doi: 10.1016/j.critrevonc.2018.05.004
Cavalcanti, E., Ignazzi, A., De Michele, F. & Caruso, M. L. PDGFRα expression as a novel therapeutic marker in well-differentiated neuroendocrine tumors. Cancer Biol. Ther. 20, 423–430 (2019).
pubmed: 30346879 doi: 10.1080/15384047.2018.1529114
Sethi, S., Macoska, J., Chen, W. & Sarkar, F. H. Molecular signature of epithelial-mesenchymal transition (EMT) in human prostate cancer bone metastasis. Am. J. Transl. Res. 3, 90–99 (2010).
pubmed: 21139809 pmcid: 2981429
Ustach, C. V. et al. A novel signaling axis of matriptase/PDGF-D/ß-PDGFR in human prostate cancer. Cancer Res. 70, 9631–9640 (2010).
pubmed: 21098708 pmcid: 3058856 doi: 10.1158/0008-5472.CAN-10-0511
Yang, Y. et al. Application and interpretation of current autophagy inhibitors and activators. Acta Pharmacol. Sin. 34, 625–635 (2013).
pubmed: 23524572 pmcid: 4002883 doi: 10.1038/aps.2013.5
Levy, J. M. M., Towers, C. G. & Thorburn, A. Targeting autophagy in cancer. Nat. Rev. Cancer 17, 528–542 (2017).
pubmed: 28751651 doi: 10.1038/nrc.2017.53
Zong, W. X. & Thompson, C. B. Necrotic death as a cell fate. Genes Dev. 20, 1–15 (2006).
pubmed: 16391229 doi: 10.1101/gad.1376506
Hata, A. N., Engelman, J. A. & Faber, A. C. The BCL2 family: key mediators of the apoptotic response to targeted anticancer therapeutics. Cancer Discov. 5, 475–487 (2015).
pubmed: 25895919 pmcid: 4727530 doi: 10.1158/2159-8290.CD-15-0011
Carneiro, B. A. & El-Deiry, W. S. Targeting apoptosis in cancer therapy. Nat. Rev. Clin. Oncol. 17, 395–417 (2020).
pubmed: 32203277 pmcid: 8211386 doi: 10.1038/s41571-020-0341-y
Pistritto, G., Trisciuoglio, D. & Ceci, C. Apoptosis as anticancer mechanism: Function and dysfunction of its modulators and targeted therapeutic strategies. Aging 8, 603–619 (2016).
pubmed: 27019364 pmcid: 4925817 doi: 10.18632/aging.100934
Ledgerwood, E. C. & Morison, I. M. Targeting the apoptosome for cancer therapy. Clin. cancer Res. 15, 420–424 (2009).
pubmed: 19147745 doi: 10.1158/1078-0432.CCR-08-1172
Jin, Z. & El-Deiry, W. S. Overview of cell death signaling pathways. Cancer Biol. Ther. 4, 139–163 (2005).
pubmed: 15725726 doi: 10.4161/cbt.4.2.1508
Letai, A. G. Diagnosing and exploiting cancer’s addiction to blocks in apoptosis. Nat. Rev. Cancer 8, 121–132 (2008).
pubmed: 18202696 doi: 10.1038/nrc2297
Hu, W. & Kavanagh, J. J. Anticancer therapy targeting the apoptotic pathway. Lancet Oncol. 4, 721–729 (2003).
pubmed: 14662428 doi: 10.1016/S1470-2045(03)01277-4
Delbridge, A. R. D., Grabow, S., Strasser, A. & Vaux, D. L. Thirty years of BCL-2: translating cell death discoveries into novel cancer therapies. Nat. Rev. Cancer 16, 99–109 (2016).
pubmed: 26822577 doi: 10.1038/nrc.2015.17
Adams, J. M. & Cory, S. The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 26, 1324–1337 (2007).
pubmed: 17322918 pmcid: 2930981 doi: 10.1038/sj.onc.1210220
Boise, L. H. et al. bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 74, 597–608 (1993).
pubmed: 8358789 doi: 10.1016/0092-8674(93)90508-N
Lee, E. F. & Fairlie, W. D. The Structural Biology of Bcl-x(L). Int. J. Mol. Sci. 20, 2234 (2019).
Li, M., Wang, D., He, J., Chen, L. & Li, H. Bcl-X(L): a multifunctional anti-apoptotic protein. Pharmacol. Res. 151, 104547 (2020).
pubmed: 31734345 doi: 10.1016/j.phrs.2019.104547
Singh, R., Letai, A. & Sarosiek, K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat. Rev. Mol. Cell Biol. 20, 175–193 (2019).
pubmed: 30655609 pmcid: 7325303 doi: 10.1038/s41580-018-0089-8
Oltersdorf, T. et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435, 677–681 (2005).
pubmed: 15902208 doi: 10.1038/nature03579
Vo, T.-T. & Letai, A. BH3-only proteins and their effects on cancer. Adv. Exp. Med. Biol. 687, 49–63 (2010).
pubmed: 20919637 pmcid: 3733261 doi: 10.1007/978-1-4419-6706-0_3
Letai, A. et al. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2, 183–192 (2002).
pubmed: 12242151 doi: 10.1016/S1535-6108(02)00127-7
Huang, D. C. & Strasser, A. BH3-Only proteins-essential initiators of apoptotic cell death. Cell 103, 839–842 (2000).
pubmed: 11136969 doi: 10.1016/S0092-8674(00)00187-2
Siddiqui, W. A., Ahad, A. & Ahsan, H. The mystery of BCL2 family: Bcl-2 proteins and apoptosis: an update. Arch. Toxicol. 89, 289–317 (2015).
pubmed: 25618543 doi: 10.1007/s00204-014-1448-7
Qian, S. et al. The role of BCL-2 family proteins in regulating apoptosis and cancer therapy. Front. Oncol. 12, 985363 (2022).
pubmed: 36313628 pmcid: 9597512 doi: 10.3389/fonc.2022.985363
Mohammad, R. M. et al. Broad targeting of resistance to apoptosis in cancer. Semin. Cancer Biol. 35, S78–S103 (2015).
pubmed: 25936818 pmcid: 4720504 doi: 10.1016/j.semcancer.2015.03.001
Schott, A. F., Apel, I. J., Nuñez, G. & Clarke, M. F. Bcl-XL protects cancer cells from p53-mediated apoptosis. Oncogene 11, 1389–1394 (1995).
pubmed: 7478561
Dole, M. G. et al. Bcl-xL is expressed in neuroblastoma cells and modulates chemotherapy-induced apoptosis. Cancer Res. 55, 2576–2582 (1995).
pubmed: 7780971
Jin-Song, Y. et al. Prognostic significance of Bcl-xL gene expression in human colorectal cancer. Acta Histochem. 113, 810–814 (2011).
pubmed: 21277008 doi: 10.1016/j.acthis.2011.01.002
Kondo, S. et al. Over-expression of bcl-xL gene in human gastric adenomas and carcinomas. Int. J. cancer 68, 727–730 (1996).
pubmed: 8980174 doi: 10.1002/(SICI)1097-0215(19961211)68:6<727::AID-IJC6>3.0.CO;2-5
Bouchalova, K. et al. Triple negative breast cancer - BCL2 in prognosis and prediction. Review. Curr. Drug Targets 15, 1166–1175 (2014).
pubmed: 25374001 doi: 10.2174/1389450115666141106151143
Cartron, P.-F. et al. The first alpha helix of Bax plays a necessary role in its ligand-induced activation by the BH3-only proteins Bid and PUMA. Mol. Cell 16, 807–818 (2004).
pubmed: 15574335 doi: 10.1016/j.molcel.2004.10.028
Lalier, L. et al. Bax activation and mitochondrial insertion during apoptosis. Apoptosis 12, 887–896 (2007).
pubmed: 17453158 doi: 10.1007/s10495-007-0749-1
Hantusch, A., Das, K. K., García-Sáez, A. J., Brunner, T. & Rehm, M. Bax retrotranslocation potentiates Bcl-x(L)’s antiapoptotic activity and is essential for switch-like transitions between MOMP competency and resistance. Cell Death Dis. 9, 430 (2018).
pubmed: 29567940 pmcid: 5864878 doi: 10.1038/s41419-018-0464-6
McArthur, K. et al. BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis. Science 359, eaao6047 (2018).
pubmed: 29472455 doi: 10.1126/science.aao6047
Igney, F. H. & Krammer, P. H. Death and anti-death: tumour resistance to apoptosis. Nat. Rev. Cancer 2, 277–288 (2002).
pubmed: 12001989 doi: 10.1038/nrc776
Pietrantonio, F. et al. Role of BAX for outcome prediction in gastrointestinal malignancies. Med. Oncol. 30, 610 (2013).
pubmed: 23700226 doi: 10.1007/s12032-013-0610-z
Rampino, N. et al. Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science 275, 967–969 (1997).
pubmed: 9020077 doi: 10.1126/science.275.5302.967
Meijerink, J. P. et al. Hematopoietic malignancies demonstrate loss-of-function mutations of BAX. Blood 91, 2991–2997 (1998).
pubmed: 9531611 doi: 10.1182/blood.V91.8.2991.2991_2991_2997
Perego, P. et al. Association between cisplatin resistance and mutation of p53 gene and reduced bax expression in ovarian carcinoma cell systems. Cancer Res. 56, 556–562 (1996).
pubmed: 8564971
Manoochehri, M., Karbasi, A., Bandehpour, M. & Kazemi, B. Down-regulation of BAX gene during carcinogenesis and acquisition of resistance to 5-FU in colorectal cancer. Pathol. Oncol. Res. 20, 301–307 (2014).
pubmed: 24122668 doi: 10.1007/s12253-013-9695-0
Aoyagi, T. et al. Lung cancer cell line sensitivity to zoledronic acid is BAX-dependent. Anticancer Res. 33, 5357–5363 (2013).
pubmed: 24324070
Liu, Z. et al. Direct activation of Bax protein for cancer therapy. Med. Res. Rev. 36, 313–341 (2016).
pubmed: 26395559 doi: 10.1002/med.21379
Kubo, T. et al. BAK is a predictive and prognostic biomarker for the therapeutic effect of docetaxel treatment in patients with advanced gastric cancer. Gastric Cancer 19, 827–838 (2016).
pubmed: 26486506 doi: 10.1007/s10120-015-0557-1
Srivastava, A. et al. BAX-BAK heterodimer as a pharmacodynamic biomarker of on-target drug action of Mcl-1 inhibitors to evaluate in-vivo effectiveness. JCO 36, 2582–2582 (2018).
doi: 10.1200/JCO.2018.36.15_suppl.2582
de Duve, C., Pressman, B. C., Gianetto, R., Wattiaux, R. & Appelmans, F. Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue. Biochem. J. 60, 604–617 (1955).
pubmed: 13249955 pmcid: 1216159 doi: 10.1042/bj0600604
Klionsky, D. J. Autophagy: from phenomenology to molecular understanding in less than a decade. Nat. Rev. Mol. Cell Biol. 8, 931–937 (2007).
pubmed: 17712358 doi: 10.1038/nrm2245
Towers, C. G. & Thorburn, A. Therapeutic targeting of autophagy. EBioMedicine 14, 15–23 (2016).
pubmed: 28029600 pmcid: 5161418 doi: 10.1016/j.ebiom.2016.10.034
Mizushima, N. Autophagy: process and function. Genes Dev. 21, 2861–2873 (2007).
pubmed: 18006683 doi: 10.1101/gad.1599207
Barbeau, L. M. O., Keulers, T. G. H. & Rouschop, K. M. A. Tumors responsive to autophagy-inhibition: Identification and biomarkers. Cancers 12, 1–24 (2020).
doi: 10.3390/cancers12092463
Kroemer, G., Mariño, G. & Levine, B. Autophagy and the integrated stress response. Mol. Cell 40, 280–293 (2010).
pubmed: 20965422 pmcid: 3127250 doi: 10.1016/j.molcel.2010.09.023
Amaravadi, R. K., Kimmelman, A. C. & Debnath, J. Targeting autophagy in cancer: recent advances and future directions. Cancer Discov. 9, 1167–1181 (2019).
pubmed: 31434711 pmcid: 7306856 doi: 10.1158/2159-8290.CD-19-0292
Mathew, R., Karantza-Wadsworth, V. & White, E. Role of autophagy in cancer. Nat. Rev. Cancer 7, 961–967 (2007).
pubmed: 17972889 pmcid: 2866167 doi: 10.1038/nrc2254
Mizushima, N., Yoshimori, T. & Ohsumi, Y. The role of Atg proteins in autophagosome formation. Annu. Rev. Cell Dev. Biol. 27, 107–132 (2011).
pubmed: 21801009 doi: 10.1146/annurev-cellbio-092910-154005
Gao, W., Wang, X., Zhou, Y., Wang, X. & Yu, Y. Autophagy, ferroptosis, pyroptosis, and necroptosis in tumor immunotherapy. Signal Transduct. Target Ther. 7, 196 (2022).
pubmed: 35725836 pmcid: 9208265 doi: 10.1038/s41392-022-01046-3
Long, X. et al. Autophagy-targeted nanoparticles for effective cancer treatment: advances and outlook. NPG Asia Mater. 14, 71 (2022).
doi: 10.1038/s41427-022-00422-3
Liang, X. H. et al. Protection against fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein. J. Virol. 72, 8586–8596 (1998).
pubmed: 9765397 pmcid: 110269 doi: 10.1128/JVI.72.11.8586-8596.1998
Wirawan, E. et al. Beclin1: a role in membrane dynamics and beyond. Autophagy 8, 6–17 (2012).
pubmed: 22170155 doi: 10.4161/auto.8.1.16645
Fu, L. L., Cheng, Y. & Liu, B. Beclin-1: autophagic regulator and therapeutic target in cancer. Int. J. Biochem. Cell Biol. 45, 921–924 (2013).
pubmed: 23420005 doi: 10.1016/j.biocel.2013.02.007
Mei, Y. et al. Conformational flexibility enables the function of a BECN1 region essential for starvation-mediated Autophagy. Biochemistry 55, 1945–1958 (2016).
pubmed: 26937551 doi: 10.1021/acs.biochem.5b01264
Li, X. et al. Imperfect interface of Beclin1 coiled-coil domain regulates homodimer and heterodimer formation with Atg14L and UVRAG. Nat. Commun. 3, 662 (2012).
pubmed: 22314358 doi: 10.1038/ncomms1648
Liang, X. H., Yu, J., Brown, K. & Levine, B. Beclin 1 contains a leucine-rich nuclear export signal that is required for its autophagy and tumor suppressor function. Cancer Res. 61, 3443–3449 (2001).
pubmed: 11309306
Khan, T. et al. Autophagy modulators for the treatment of oral and esophageal squamous cell carcinomas. Med. Res. Rev. 40, 1002–1060 (2020).
pubmed: 31742748 doi: 10.1002/med.21646
Xiang, H. et al. Targeting autophagy-related protein kinases for potential therapeutic purpose. Acta Pharm. Sin. B 10, 569–581 (2020).
pubmed: 32322463 doi: 10.1016/j.apsb.2019.10.003
Cao, Y. & Klionsky, D. J. Physiological functions of Atg6/Beclin 1: a unique autophagy-related protein. Cell Res. 17, 839–849 (2007).
pubmed: 17893711 doi: 10.1038/cr.2007.78
Tran, S., Fairlie, W. D. & Lee, E. F. Beclin1: protein structure, function and regulation. Cells 10, 1522 (2021).
pubmed: 34204202 pmcid: 8235419 doi: 10.3390/cells10061522
Vega-Rubín-de-Celis, S. The role of Beclin 1-dependent autophagy in cancer. Biology 9, 4 (2019).
pubmed: 31877888 pmcid: 7168252 doi: 10.3390/biology9010004
Zhou, W.-H. et al. Low expression of Beclin 1, associated with high Bcl-xL, predicts a malignant phenotype and poor prognosis of gastric cancer. Autophagy 8, 389–400 (2012).
pubmed: 22240664 doi: 10.4161/auto.18641
Liang, X. H. et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402, 672–676 (1999).
pubmed: 10604474 doi: 10.1038/45257
Park, J. M., Huang, S., Wu, T. T., Foster, N. R. & Sinicrope, F. A. Prognostic impact of Beclin 1, p62/sequestosome 1 and LC3 protein expression in colon carcinomas from patients receiving 5-fluorouracil as adjuvant chemotherapy. Cancer Biol. Ther. 14, 100–107 (2013).
pubmed: 23192274 pmcid: 3571991 doi: 10.4161/cbt.22954
Han, Y. et al. Prognostic significance of Beclin-1 expression in colorectal cancer: a meta-analysis. Asian Pac. J. Cancer Prev. 15, 4583–4587 (2014).
pubmed: 24969889 doi: 10.7314/APJCP.2014.15.11.4583
He, Y. et al. The prognostic value of autophagy-related markers beclin-1 and microtubule-associated protein light chain 3B in cancers: a systematic review and meta-analysis. Tumour Biol. 35, 7317–7326 (2014).
pubmed: 24838948 doi: 10.1007/s13277-014-2060-4
Hwang, H. J. & Kim, Y. K. The role of LC3B in autophagy as an RNA-binding protein. Autophagy 19, 1028–1030 (2023).
pubmed: 35968566 doi: 10.1080/15548627.2022.2111083
Bhutia, S. K. et al. Monitoring and measuring mammalian autophagy. Methods Mol. Biol. 1854, 209–222 (2019).
pubmed: 29855817 doi: 10.1007/7651_2018_159
Bortnik, S. & Gorski, S. M. Clinical applications of autophagy proteins in cancer: from potential targets to biomarkers. Int. J. Mol. Sci. 18, 1496 (2017).
pubmed: 28696368 pmcid: 5535986 doi: 10.3390/ijms18071496
Masuda, G. O. et al. Clinicopathological correlations of autophagy-related proteins LC3, Beclin 1 and p62 in gastric cancer. Anticancer Res. 36, 129–136 (2016).
pubmed: 26722036
Guo, G.-F. et al. Predictive and prognostic implications of 4E-BP1, Beclin-1, and LC3 for cetuximab treatment combined with chemotherapy in advanced colorectal cancer with wild-type KRAS: analysis from real-world data. World J. Gastroenterol. 25, 1840–1853 (2019).
pubmed: 31057298 pmcid: 6478617 doi: 10.3748/wjg.v25.i15.1840
Zhao, H. et al. High expression of LC3B is associated with progression and poor outcome in triple-negative breast cancer. Med. Oncol. 30, 475 (2013).
pubmed: 23371253 doi: 10.1007/s12032-013-0475-1
Lazova, R. et al. Punctate LC3B expression is a common feature of solid tumors and associated with proliferation, metastasis, and poor outcome. Clin. Cancer Res. 18, 370–379 (2012).
pubmed: 22080440 doi: 10.1158/1078-0432.CCR-11-1282
Winardi, D. et al. Correlation of altered expression of the autophagy marker LC3B with poor prognosis in astrocytoma. Biomed. Res. Int. 2014, 723176 (2014).
pubmed: 24900981 pmcid: 4036717 doi: 10.1155/2014/723176
El-Mashed, S. et al. LC3B globular structures correlate with survival in esophageal adenocarcinoma. BMC Cancer 15, 582 (2015).
pubmed: 26265176 pmcid: 4533787 doi: 10.1186/s12885-015-1574-5
Liu, J. L. et al. Prognostic significance of p62/SQSTM1 subcellular localization and LC3B in oral squamous cell carcinoma. Br. J. Cancer 111, 944–954 (2014).
pubmed: 24983366 pmcid: 4150268 doi: 10.1038/bjc.2014.355
Choi, J., Jung, W. & Koo, J. S. Expression of autophagy-related markers beclin-1, light chain 3 A, light chain 3B and p62 according to the molecular subtype of breast cancer. Histopathology 62, 275–286 (2013).
pubmed: 23134379 doi: 10.1111/his.12002
Wu, D.-H. et al. Autophagic LC3B overexpression correlates with malignant progression and predicts a poor prognosis in hepatocellular carcinoma. Tumour Biol. 35, 12225–12233 (2014).
pubmed: 25256671 doi: 10.1007/s13277-014-2531-7
Papinski, D. & Kraft, C. Regulation of autophagy by signaling through the Atg1/ULK1 complex. J. Mol. Biol. 428, 1725–1741 (2016).
pubmed: 27059781 doi: 10.1016/j.jmb.2016.03.030
Jiang, L. et al. Association of the expression of unc-51-Like kinase 1 with lymph node metastasis and survival in patients with esophageal squamous cell carcinoma. Int. J. Clin. Exp. Med. 7, 1349–1354 (2014).
pubmed: 24995094 pmcid: 4073755
Xu, H. et al. UNC51-like kinase 1 as a potential prognostic biomarker for hepatocellular carcinoma. Int. J. Clin. Exp. Pathol. 6, 711–717 (2013).
pubmed: 23573318 pmcid: 3606861
Yun, M. et al. ULK1: a promising biomarker in predicting poor prognosis and therapeutic response in human nasopharygeal carcinoma. PLoS ONE 10, e0117375 (2015).
pubmed: 25714809 pmcid: 4340914 doi: 10.1371/journal.pone.0117375
Zhang, H.-Y., Ma, Y.-D., Zhang, Y., Cui, J. & Wang, Z.-M. Elevated levels of autophagy-related marker ULK1 and mitochondrion-associated autophagy inhibitor LRPPRC are associated with biochemical progression and overall survival after androgen deprivation therapy in patients with metastatic prostate cancer. J. Clin. Pathol. 70, 383–389 (2017).
pubmed: 27679555 doi: 10.1136/jclinpath-2016-203926
Zou, Y. et al. High expression levels of unc-51-like kinase 1 as a predictor of poor prognosis in colorectal cancer. Oncol. Lett. 10, 1583–1588 (2015).
pubmed: 26622714 pmcid: 4533611 doi: 10.3892/ol.2015.3417
Wu, D.-H. et al. Combination of ULK1 and LC3B improve prognosis assessment of hepatocellular carcinoma. Biomed. Pharmacother. 97, 195–202 (2018).
pubmed: 29091866 doi: 10.1016/j.biopha.2017.10.025
Schmitz, K. J., Ademi, C., Bertram, S., Schmid, K. W. & Baba, H. A. Prognostic relevance of autophagy-related markers LC3, p62/sequestosome 1, Beclin-1 and ULK1 in colorectal cancer patients with respect to KRAS mutational status. World J. Surg. Oncol. 14, 189 (2016).
pubmed: 27444698 pmcid: 4957418 doi: 10.1186/s12957-016-0946-x
Tang, J. et al. Low expression of ULK1 is associated with operable breast cancer progression and is an adverse prognostic marker of survival for patients. Breast Cancer Res. Treat. 134, 549–560 (2012).
pubmed: 22585231 doi: 10.1007/s10549-012-2080-y
John Clotaire, D. Z. et al. MiR-26b inhibits autophagy by targeting ULK2 in prostate cancer cells. Biochem. Biophys. Res. Commun. 472, 194–200 (2016).
pubmed: 26920049 doi: 10.1016/j.bbrc.2016.02.093
Moscat, J. & Diaz-Meco, M. T. p62 at the crossroads of autophagy, apoptosis, and cancer. Cell 137, 1001–1004 (2009).
pubmed: 19524504 pmcid: 3971861 doi: 10.1016/j.cell.2009.05.023
Tao, M., Liu, T., You, Q. & Jiang, Z. p62 as a therapeutic target for tumor. Eur. J. Med. Chem. 193, 112231 (2020).
pubmed: 32193054 doi: 10.1016/j.ejmech.2020.112231
Islam, M. A., Sooro, M. A. & Zhang, P. Autophagic regulation of p62 is critical for cancer therapy. Int. J. Mol. Sci. 19, 1405 (2018).
pubmed: 29738493 pmcid: 5983640 doi: 10.3390/ijms19051405
Sanz, L., Sanchez, P., Lallena, M. J., Diaz-Meco, M. T. & Moscat, J. The interaction of p62 with RIP links the atypical PKCs to NF-kappaB activation. EMBO J. 18, 3044–3053 (1999).
pubmed: 10356400 pmcid: 1171386 doi: 10.1093/emboj/18.11.3044
Jadhav, T., Geetha, T., Jiang, J. & Wooten, M. W. Identification of a consensus site for TRAF6/p62 polyubiquitination. Biochem. Biophys. Res. Commun. 371, 521–524 (2008).
pubmed: 18457658 pmcid: 2474794 doi: 10.1016/j.bbrc.2008.04.138
Pankiv, S. et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 282, 24131–24145 (2007).
pubmed: 17580304 doi: 10.1074/jbc.M702824200
Komatsu, M. et al. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat. Cell Biol. 12, 213–223 (2010).
pubmed: 20173742 doi: 10.1038/ncb2021
Moscat, J., Karin, M. & Diaz-Meco, M. T. p62 in cancer: signaling adaptor beyond autophagy. Cell 167, 606–609 (2016).
pubmed: 27768885 pmcid: 5114003 doi: 10.1016/j.cell.2016.09.030
Cohen-Kaplan, V. et al. p62- and ubiquitin-dependent stress-induced autophagy of the mammalian 26 S proteasome. Proc. Natl Acad. Sci. USA 113, E7490–E7499 (2016).
pubmed: 27791183 pmcid: 5127335 doi: 10.1073/pnas.1615455113
Pugsley, H. R. Assessing autophagic flux by measuring LC3, p62, and LAMP1 co-localization using multispectral imaging flow cytometry. J. Vis. Exp. 55637 (2017).
Iwadate, R. et al. High expression of p62 protein Is associated with poor prognosis and aggressive phenotypes in endometrial cancer. Am. J. Pathol. 185, 2523–2533 (2015).
pubmed: 26162509 doi: 10.1016/j.ajpath.2015.05.008
Iwadate, R. et al. High expression of SQSTM1/p62 protein is associated with poor prognosis in epithelial ovarian cancer. Acta Histochem. Cytochem. 47, 295–301 (2014).
pubmed: 25859063 pmcid: 4387266 doi: 10.1267/ahc.14048
Inoue, D. et al. Accumulation of p62/SQSTM1 is associated with poor prognosis in patients with lung adenocarcinoma. Cancer Sci. 103, 760–766 (2012).
pubmed: 22320446 pmcid: 7659245 doi: 10.1111/j.1349-7006.2012.02216.x
Rolland, P. et al. The ubiquitin-binding protein p62 is expressed in breast cancers showing features of aggressive disease. Endocr. Relat. Cancer 14, 73–80 (2007).
pubmed: 17395976 doi: 10.1677/erc.1.01312
Yuan, Z.-Y. et al. Accumulation of p62 is associated with poor prognosis in patients with triple-negative breast cancer. Onco. Targets Ther. 6, 883–888 (2013).
pubmed: 23888115 pmcid: 3722135 doi: 10.2147/OTT.S46222
Su, Z., Yang, Z., Xie, L., Dewitt, J. P. & Chen, Y. Cancer therapy in the necroptosis era. Cell Death Differ. 23, 748–756 (2016).
pubmed: 26915291 pmcid: 4832112 doi: 10.1038/cdd.2016.8
Razaghi, A., Heimann, K., Schaeffer, P. M. & Gibson, S. B. Negative regulators of cell death pathways in cancer: perspective on biomarkers and targeted therapies. Apoptosis 23, 93–112 (2018).
pubmed: 29322476 doi: 10.1007/s10495-018-1440-4
Yu, X., Deng, Q., Bode, A. M., Dong, Z. & Cao, Y. The role of necroptosis, an alternative form of cell death, in cancer therapy. Expert Rev. Anticancer Ther. 13, 883–893 (2013).
pubmed: 23875666 doi: 10.1586/14737140.2013.811180
Xie, Y. et al. Ferroptosis: process and function. Cell Death Differ. 23, 369–379 (2016).
pubmed: 26794443 pmcid: 5072448 doi: 10.1038/cdd.2015.158
He, R., Wang, Z., Dong, S., Chen, Z. & Zhou, W. Understanding necroptosis in pancreatic diseases. Biomolecules 12, 828 (2022).
pubmed: 35740953 pmcid: 9221205 doi: 10.3390/biom12060828
Zhang, L. et al. Tumor necrosis as a prognostic variable for the clinical outcome in patients with renal cell carcinoma: a systematic review and meta-analysis. BMC Cancer 18, 870 (2018).
pubmed: 30176824 pmcid: 6122538 doi: 10.1186/s12885-018-4773-z
Richards, C. H., Mohammed, Z., Qayyum, T., Horgan, P. G. & McMillan, D. C. The prognostic value of histological tumor necrosis in solid organ malignant disease: a systematic review. Futur. Oncol. 7, 1223–1235 (2011).
doi: 10.2217/fon.11.99
Salah, S., Lewin, J., Amir, E. & Abdul Razak, A. Tumor necrosis and clinical outcomes following neoadjuvant therapy in soft tissue sarcoma: a systematic review and meta-analysis. Cancer Treat. Rev. 69, 1–10 (2018).
pubmed: 29843049 doi: 10.1016/j.ctrv.2018.05.007
Ofengeim, D. & Yuan, J. Regulation of RIP1 kinase signalling at the crossroads of inflammation and cell death. Nat. Rev. Mol. Cell Biol. 14, 727–736 (2013).
pubmed: 24129419 doi: 10.1038/nrm3683
Huang, X. et al. Bypassing drug resistance by triggering necroptosis: Recent advances in mechanisms and its therapeutic exploitation in leukemia. J. Exp. Clin. Cancer Res. 37, 310 (2018).
pubmed: 30541583 pmcid: 6291981 doi: 10.1186/s13046-018-0976-z
Cho, Y. S. et al. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137, 1112–1123 (2009).
pubmed: 19524513 pmcid: 2727676 doi: 10.1016/j.cell.2009.05.037
Murphy, J. M. et al. The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. Immunity 39, 443–453 (2013).
pubmed: 24012422 doi: 10.1016/j.immuni.2013.06.018
Lalaoui, N. & Brumatti, G. Relevance of necroptosis in cancer. Immunol. Cell Biol. 95, 137–145 (2017).
pubmed: 27922620 doi: 10.1038/icb.2016.120
Qin, X., Ma, D., Tan, Y.-X., Wang, H.-Y. & Cai, Z. The role of necroptosis in cancer: a double-edged sword? Biochim. Biophys. Acta Rev. Cancer 1871, 259–266 (2019).
pubmed: 30716362 doi: 10.1016/j.bbcan.2019.01.006
Chan, F. K.-M. RIPK3 slams the brake on leukemogenesis. Cancer Cell 30, 7–9 (2016).
pubmed: 27411581 doi: 10.1016/j.ccell.2016.06.017
Höckendorf, U. et al. RIPK3 restricts myeloid leukemogenesis by promoting cell death and differentiation of leukemia initiating cells. Cancer Cell 30, 75–91 (2016).
pubmed: 27411587 doi: 10.1016/j.ccell.2016.06.002
Koo, G. B. et al. Methylation-dependent loss of RIP3 expression in cancer represses programmed necrosis in response to chemotherapeutics. Cell Res. 25, 707–725 (2015).
pubmed: 25952668 pmcid: 4456623 doi: 10.1038/cr.2015.56
Geserick, P. et al. Absence of RIPK3 predicts necroptosis resistance in malignant melanoma. Cell Death Dis. 6, e1884 (2015).
pubmed: 26355347 pmcid: 4650439 doi: 10.1038/cddis.2015.240
Fukasawa, M. et al. Microarray analysis of promoter methylation in lung cancers. J. Hum. Genet. 51, 368–374 (2006).
pubmed: 16435073 doi: 10.1007/s10038-005-0355-4
Moriwaki, K., Bertin, J., Gough, P. J., Orlowski, G. M. & Chan, F. K. M. Differential roles of RIPK1 and RIPK3 in TNF-induced necroptosis and chemotherapeutic agent-induced cell death. Cell Death Dis. 6, e1636 (2015).
pubmed: 25675296 pmcid: 4669795 doi: 10.1038/cddis.2015.16
Bozec, D., Iuga, A. C., Roda, G., Dahan, S. & Yeretssian, G. Critical function of the necroptosis adaptor RIPK3 in protecting from intestinal tumorigenesis. Oncotarget 7, 46384–46400 (2016).
pubmed: 27344176 pmcid: 5216805 doi: 10.18632/oncotarget.10135
Feng, X. et al. Receptor-interacting protein kinase 3 is a predictor of survival and plays a tumor suppressive role in colorectal cancer. Neoplasma 62, 592–601 (2015).
pubmed: 25997957 doi: 10.4149/neo_2015_071
McCabe, K. E. et al. Triggering necroptosis in cisplatin and IAP antagonist-resistant ovarian carcinoma. Cell Death Dis. 5, e1496 (2014).
pubmed: 25356865 pmcid: 4237265 doi: 10.1038/cddis.2014.448
Seifert, L. et al. The necrosome promotes pancreatic oncogenesis via CXCL1 and Mincle-induced immune suppression. Nature 532, 245–249 (2016).
pubmed: 27049944 pmcid: 4833566 doi: 10.1038/nature17403
Liu, Z.-Y. et al. RIP3 promotes colitis-associated colorectal cancer by controlling tumor cell proliferation and CXCL1-induced immune suppression. Theranostics 9, 3659–3673 (2019).
pubmed: 31281505 pmcid: 6587173 doi: 10.7150/thno.32126
Zhan, C., Huang, M., Yang, X. & Hou, J. MLKL: functions beyond serving as the executioner of necroptosis. Theranostics 11, 4759–4769 (2021).
pubmed: 33754026 pmcid: 7978304 doi: 10.7150/thno.54072
Colbert, L. E. et al. Pronecrotic mixed lineage kinase domain-like protein expression is a prognostic biomarker in patients with early-stage resected pancreatic adenocarcinoma. Cancer 119, 3148–3155 (2013).
pubmed: 23720157 doi: 10.1002/cncr.28144
Ertao, Z. et al. Prognostic value of mixed lineage kinase domain-like protein expression in the survival of patients with gastric caner. Tumour Biol. 37, 13679–13685 (2016).
pubmed: 27473085 doi: 10.1007/s13277-016-5229-1
He, L., Peng, K., Liu, Y., Xiong, J. & Zhu, F. F. Low expression of mixed lineage kinase domain-like protein is associated with poor prognosis in ovarian cancer patients. Onco. Targets Ther. 6, 1539–1543 (2013).
pubmed: 24204164 pmcid: 3817086
Ruan, J., Mei, L., Zhu, Q., Shi, G. & Wang, H. Mixed lineage kinase domain-like protein is a prognostic biomarker for cervical squamous cell cancer. Int. J. Clin. Exp. Pathol. 8, 15035–15038 (2015).
pubmed: 26823841 pmcid: 4713627
Li, X. et al. Association of mixed lineage kinase domain-like protein expression with prognosis in patients with colon cancer. Technol. Cancer Res. Treat. 16, 428–434 (2017).
pubmed: 27432118 doi: 10.1177/1533034616655909
Liu, X. et al. Key roles of necroptotic factors in promoting tumor growth. Oncotarget 7, 22219–22233 (2016).
pubmed: 26959742 pmcid: 5008357 doi: 10.18632/oncotarget.7924
Suhail, Y. et al. Systems biology of cancer metastasis. Cell Syst. 9, 109–127 (2019).
pubmed: 31465728 pmcid: 6716621 doi: 10.1016/j.cels.2019.07.003
Gupta, G. P. & Massagué, J. Cancer metastasis: building a framework. Cell 127, 679–695 (2006).
pubmed: 17110329 doi: 10.1016/j.cell.2006.11.001
Steeg, P. S. Tumor metastasis: mechanistic insights and clinical challenges. Nat. Med. 12, 895–904 (2006).
pubmed: 16892035 doi: 10.1038/nm1469
Fares, J., Fares, M. Y., Khachfe, H. H., Salhab, H. A. & Fares, Y. Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduct. Target Ther. 5, 28 (2020).
pubmed: 32296047 pmcid: 7067809 doi: 10.1038/s41392-020-0134-x
Maishi, N. & Hida, K. Tumor endothelial cells accelerate tumor metastasis. Cancer Sci. 108, 1921–1926 (2017).
pubmed: 28763139 pmcid: 5623747 doi: 10.1111/cas.13336
Paget, S. The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev. 8, 98–101 (1989).
pubmed: 2673568
Liu, Q. et al. Factors involved in cancer metastasis: a better understanding to ‘seed and soil’ hypothesis. Mol. Cancer 16, 176 (2017).
pubmed: 29197379 pmcid: 5712107 doi: 10.1186/s12943-017-0742-4
Curran, S. & Murray, G. I. Matrix metalloproteinases: molecular aspects of their roles in tumour invasion and metastasis. Eur. J. Cancer 36, 1621–1630 (2000).
pubmed: 10959048 doi: 10.1016/S0959-8049(00)00156-8
Steeg, P. S. Targeting metastasis. Nat. Rev. Cancer 16, 201–218 (2016).
pubmed: 27009393 pmcid: 7055530 doi: 10.1038/nrc.2016.25
Ma, B., Wells, A. & Clark, A. M. The pan-therapeutic resistance of disseminated tumor cells: role of phenotypic plasticity and the metastatic microenvironment. Semin. Cancer Biol. 60, 138–147 (2020).
pubmed: 31376430 doi: 10.1016/j.semcancer.2019.07.021
Howard, E. W., Camm, K. D., Wong, Y. C. & Wang, X. H. E-cadherin upregulation as a therapeutic goal in cancer treatment. Mini Rev. Med. Chem. 8, 496–518 (2008).
pubmed: 18473938 doi: 10.2174/138955708784223521
Hazan, R. B., Qiao, R., Keren, R., Badano, I. & Suyama, K. Cadherin switch in tumor progression. Ann. N. Y. Acad. Sci. 1014, 155–163 (2004).
pubmed: 15153430 doi: 10.1196/annals.1294.016
Wijnhoven, B. P., Dinjens, W. N. & Pignatelli, M. E-cadherin-catenin cell-cell adhesion complex and human cancer. Br. J. Surg. 87, 992–1005 (2000).
pubmed: 10931041 doi: 10.1046/j.1365-2168.2000.01513.x
Beavon, I. R. The E-cadherin-catenin complex in tumour metastasis: structure, function and regulation. Eur. J. Cancer 36, 1607–1620 (2000).
pubmed: 10959047 doi: 10.1016/S0959-8049(00)00158-1
Steinberg, M. S. & McNutt, P. M. Cadherins and their connections: adhesion junctions have broader functions. Curr. Opin. Cell Biol. 11, 554–560 (1999).
pubmed: 10508659 doi: 10.1016/S0955-0674(99)00027-7
Venhuizen, J.-H., Jacobs, F. J. C., Span, P. N. & Zegers, M. M. P120 and E-cadherin: double-edged swords in tumor metastasis. Semin. Cancer Biol. 60, 107–120 (2020).
pubmed: 31369816 doi: 10.1016/j.semcancer.2019.07.020
Schmalhofer, O., Brabletz, S. & Brabletz, T. E-cadherin, beta-catenin, and ZEB1 in malignant progression of cancer. Cancer Metastasis Rev. 28, 151–166 (2009).
pubmed: 19153669 doi: 10.1007/s10555-008-9179-y
Yilmaz, M., Christofori, G. & Lehembre, F. Distinct mechanisms of tumor invasion and metastasis. Trends Mol. Med. 13, 535–541 (2007).
pubmed: 17981506 doi: 10.1016/j.molmed.2007.10.004
Thiery, J. P. Epithelial-mesenchymal transitions in tumour progression. Nat. Rev. Cancer 2, 442–454 (2002).
pubmed: 12189386 doi: 10.1038/nrc822
Christofori, G. & Semb, H. The role of the cell-adhesion molecule E-cadherin as a tumour-suppressor gene. Trends Biochem. Sci. 24, 73–76 (1999).
pubmed: 10098402 doi: 10.1016/S0968-0004(98)01343-7
Fearon, E. R. Connecting estrogen receptor function, transcriptional repression, and E-cadherin expression in breast cancer. Cancer Cell 3, 307–310 (2003).
pubmed: 12726856 doi: 10.1016/S1535-6108(03)00087-4
Karayiannakis, A. J. et al. Aberrant E-cadherin expression associated with loss of differentiation and advanced stage in human pancreatic cancer. Anticancer Res. 18, 4177–4180 (1998).
pubmed: 9891464
Pignatelli, M. et al. Loss of membranous E-cadherin expression in pancreatic cancer: correlation with lymph node metastasis, high grade, and advanced stage. J. Pathol. 174, 243–248 (1994).
pubmed: 7884585 doi: 10.1002/path.1711740403
Van Aken, J. et al. Immunohistochemical analysis of E-cadherin expression in human colorectal tumours. Pathol. Res. Pract. 189, 975–978 (1993).
pubmed: 8302730 doi: 10.1016/S0344-0338(11)80667-9
Mayer, B. et al. E-cadherin expression in primary and metastatic gastric cancer: down-regulation correlates with cellular dedifferentiation and glandular disintegration. Cancer Res. 53, 1690–1695 (1993).
pubmed: 8453643
Chetty, R., Serra, S. & Asa, S. L. Loss of membrane localization and aberrant nuclear E-cadherin expression correlates with invasion in pancreatic endocrine tumors. Am. J. Surg. Pathol. 32, 413–419 (2008).
pubmed: 18300809 doi: 10.1097/PAS.0b013e31813547f8
Kadowaki, T. et al. E-cadherin and alpha-catenin expression in human esophageal cancer. Cancer Res. 54, 291–296 (1994).
pubmed: 8261454
Slagle, B. L., Zhou, Y. Z., Birchmeier, W. & Scorsone, K. A. Deletion of the E-cadherin gene in hepatitis B virus-positive Chinese hepatocellular carcinomas. Hepatology 18, 757–762 (1993).
pubmed: 8104855 doi: 10.1002/hep.1840180402
Bremnes, R. M., Veve, R., Hirsch, F. R. & Franklin, W. A. The E-cadherin cell-cell adhesion complex and lung cancer invasion, metastasis, and prognosis. Lung Cancer 36, 115–124 (2002).
pubmed: 11955645 doi: 10.1016/S0169-5002(01)00471-8
Otto, T. et al. Inverse relation of E-cadherin and autocrine motility factor receptor expression as a prognostic factor in patients with bladder carcinomas. Cancer Res. 54, 3120–3123 (1994).
pubmed: 8205527
Morton, R. A., Ewing, C. M., Nagafuchi, A., Tsukita, S. & Isaacs, W. B. Reduction of E-cadherin levels and deletion of the alpha-catenin gene in human prostate cancer cells. Cancer Res. 53, 3585–3590 (1993).
pubmed: 8339265
Umbas, R. et al. Expression of the cellular adhesion molecule E-cadherin is reduced or absent in high-grade prostate cancer. Cancer Res. 52, 5104–5109 (1992).
pubmed: 1516067
Rasbridge, S. A., Gillett, C. E., Sampson, S. A., Walsh, F. S. & Millis, R. R. Epithelial (E-) and placental (P-) cadherin cell adhesion molecule expression in breast carcinoma. J. Pathol. 169, 245–250 (1993).
pubmed: 8383197 doi: 10.1002/path.1711690211
Saito, T., Nishimura, M., Yamasaki, H. & Kudo, R. Hypermethylation in promoter region of E-cadherin gene is associated with tumor dedifferention and myometrial invasion in endometrial carcinoma. Cancer 97, 1002–1009 (2003).
pubmed: 12569599 doi: 10.1002/cncr.11157
Veatch, A. L., Carson, L. F. & Ramakrishnan, S. Differential expression of the cell-cell adhesion molecule E-cadherin in ascites and solid human ovarian tumor cells. Int. J. Cancer 58, 393–399 (1994).
pubmed: 7519585 doi: 10.1002/ijc.2910580315
Brabant, G. et al. E-cadherin: a differentiation marker in thyroid malignancies. Cancer Res. 53, 4987–4993 (1993).
pubmed: 8402689
Kurtz, K. A., Hoffman, H. T., Zimmerman, M. B. & Robinson, R. A. Decreased E-cadherin but not beta-catenin expression is associated with vascular invasion and decreased survival in head and neck squamous carcinomas. Otolaryngol. Head Neck Surg. 134, 142–146 (2006).
pubmed: 16399195 doi: 10.1016/j.otohns.2005.08.026
Puisieux, A., Brabletz, T. & Caramel, J. Oncogenic roles of EMT-inducing transcription factors. Nat. Cell Biol. 16, 488–494 (2014).
pubmed: 24875735 doi: 10.1038/ncb2976
Serrano-Gomez, S. J., Maziveyi, M. & Alahari, S. K. Regulation of epithelial-mesenchymal transition through epigenetic and post-translational modifications. Mol. Cancer 15, 18 (2016).
pubmed: 26905733 pmcid: 4765192 doi: 10.1186/s12943-016-0502-x
Dong, C. et al. Loss of FBP1 by Snail-mediated repression provides metabolic advantages in basal-like breast cancer. Cancer Cell 23, 316–331 (2013).
pubmed: 23453623 pmcid: 3703516 doi: 10.1016/j.ccr.2013.01.022
Debnath, P., Huirem, R. S., Dutta, P. & Palchaudhuri, S. Epithelial-mesenchymal transition and its transcription factors. Biosci. Rep. 42, BSR20211754 (2022).
pubmed: 34708244 doi: 10.1042/BSR20211754
Lu, W. & Kang, Y. Epithelial-mesenchymal plasticity in cancer progression and metastasis. Dev. Cell 49, 361–374 (2019).
pubmed: 31063755 pmcid: 6506183 doi: 10.1016/j.devcel.2019.04.010
Stemmler, M. P., Eccles, R. L., Brabletz, S. & Brabletz, T. Non-redundant functions of EMT transcription factors. Nat. Cell Biol. 21, 102–112 (2019).
pubmed: 30602760 doi: 10.1038/s41556-018-0196-y
Pearlman, R. L., Montes de Oca, M. K., Pal, H. C. & Afaq, F. Potential therapeutic targets of epithelial-mesenchymal transition in melanoma. Cancer Lett. 391, 125–140 (2017).
pubmed: 28131904 pmcid: 5371401 doi: 10.1016/j.canlet.2017.01.029
Sánchez-Tilló, E. et al. EMT-activating transcription factors in cancer: Beyond EMT and tumor invasiveness. Cell Mol. Life Sci. 69, 3429–3456 (2012).
pubmed: 22945800 doi: 10.1007/s00018-012-1122-2
Brabletz, S., Schuhwerk, H., Brabletz, T. & Stemmler, M. P. Dynamic EMT: a multi-tool for tumor progression. EMBO J. 40, e108647 (2021).
pubmed: 34459003 pmcid: 8441439 doi: 10.15252/embj.2021108647
Zhang, Z. et al. Genomics and prognosis analysis of epithelial-mesenchymal transition in colorectal cancer patients. BMC Cancer 20, 1135 (2020).
pubmed: 33228590 pmcid: 7686680 doi: 10.1186/s12885-020-07615-5
Matysiak, M., Kapka-Skrzypczak, L., Jodłowska-Jędrych, B. & Kruszewski, M. EMT promoting transcription factors as prognostic markers in human breast cancer. Arch. Gynecol. Obstet. 295, 817–825 (2017).
pubmed: 28190105 doi: 10.1007/s00404-017-4304-1
Goossens, S., Vandamme, N., Van Vlierberghe, P. & Berx, G. EMT transcription factors in cancer development re-evaluated: Beyond EMT and MET. Biochim. Biophys. Acta Rev. Cancer 1868, 584–591 (2017).
pubmed: 28669750 doi: 10.1016/j.bbcan.2017.06.006
Ng, L., Poon, R. T. P. & Pang, R. Biomarkers for predicting future metastasis of human gastrointestinal tumors. Cell Mol. Life Sci. 70, 3631–3656 (2013).
pubmed: 23370778 doi: 10.1007/s00018-013-1266-8
Ansieau, S. et al. Induction of EMT by twist proteins as a collateral effect of tumor-promoting inactivation of premature senescence. Cancer Cell 14, 79–89 (2008).
pubmed: 18598946 doi: 10.1016/j.ccr.2008.06.005
Yang, J. et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117, 927–939 (2004).
pubmed: 15210113 doi: 10.1016/j.cell.2004.06.006
Khales, S. A., Mozaffari-Jovin, S., Geerts, D. & Abbaszadegan, M. R. TWIST1 activates cancer stem cell marker genes to promote epithelial-mesenchymal transition and tumorigenesis in esophageal squamous cell carcinoma. BMC Cancer 22, 1272 (2022).
pubmed: 36474162 pmcid: 9724315 doi: 10.1186/s12885-022-10252-9
Sepporta, M.-V. et al. TWIST1 expression is associated with high-risk neuroblastoma and promotes primary and metastatic tumor growth. Commun. Biol. 5, 42 (2022).
pubmed: 35022561 pmcid: 8755726 doi: 10.1038/s42003-021-02958-6
Xiong, H. et al. Twist1 enhances hypoxia induced radioresistance in cervical cancer cells by promoting nuclear EGFR localization. J. Cancer 8, 345–353 (2017).
pubmed: 28261334 pmcid: 5332884 doi: 10.7150/jca.16607
Ohba, K. et al. High expression of twist is associated with tumor aggressiveness and poor prognosis in patients with renal cell carcinoma. Int. J. Clin. Exp. Pathol. 7, 3158–3165 (2014).
pubmed: 25031735 pmcid: 4097249
Norozi, F., Ahmadzadeh, A., Shahjahani, M., Shahrabi, S. & Saki, N. Twist as a new prognostic marker in hematological malignancies. Clin. Transl. Oncol. 18, 113–124 (2016).
pubmed: 26203802 doi: 10.1007/s12094-015-1357-0
Nieto, M. A. The snail superfamily of zinc-finger transcription factors. Nat. Rev. Mol. Cell Biol. 3, 155–166 (2002).
pubmed: 11994736 doi: 10.1038/nrm757
Nüsslein-Volhard, C., Wieschaus, E. & Kluding, H. Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster: I. Zygotic loci on the second chromosome. Wilhelm. Roux’s Arch. Dev. Biol. 193, 267–282 (1984).
doi: 10.1007/BF00848156
Wang, Y., Shi, J., Chai, K., Ying, X. & Zhou, B. P. The role of Snail in EMT and tumorigenesis. Curr. Cancer Drug Targets 13, 963–972 (2013).
pubmed: 24168186 pmcid: 4004763 doi: 10.2174/15680096113136660102
Tran, H. D. et al. Transient SNAIL1 expression is necessary for metastatic competence in breast cancer. Cancer Res. 74, 6330–6340 (2014).
pubmed: 25164016 pmcid: 4925010 doi: 10.1158/0008-5472.CAN-14-0923
De Craene, B. et al. The transcription factor snail induces tumor cell invasion through modulation of the epithelial cell differentiation program. Cancer Res. 65, 6237–6244 (2005).
pubmed: 16024625 doi: 10.1158/0008-5472.CAN-04-3545
Zhang, M., Dong, X., Zhang, D., Chen, X. & Zhu, X. High expression of Snail and NF-κB predicts poor survival in Chinese hepatocellular carcinoma patients. Oncotarget 8, 4543–4548 (2017).
pubmed: 27965464 doi: 10.18632/oncotarget.13891
Kosaka, T. et al. Expression of snail in upper urinary tract urothelial carcinoma: prognostic significance and implications for tumor invasion. Clin. Cancer Res. 16, 5814–5823 (2010).
pubmed: 20947514 doi: 10.1158/1078-0432.CCR-10-0230
Shioiri, M. et al. Slug expression is an independent prognostic parameter for poor survival in colorectal carcinoma patients. Br. J. Cancer 94, 1816–1822 (2006).
pubmed: 16773075 pmcid: 2361350 doi: 10.1038/sj.bjc.6603193
XU, S. et al. Expression of twist, slug and snail in esophageal squamous cell carcinoma and their prognostic significance. Oncol. Lett. 21, 184 (2021).
Vandewalle, C., Van Roy, F. & Berx, G. The role of the ZEB family of transcription factors in development and disease. Cell. Mol. Life Sci. 66, 773–787 (2009).
pubmed: 19011757 doi: 10.1007/s00018-008-8465-8
Brabletz, S. & Brabletz, T. The ZEB/miR-200 feedback loop–a motor of cellular plasticity in development and cancer? EMBO Rep. 11, 670–677 (2010).
pubmed: 20706219 pmcid: 2933868 doi: 10.1038/embor.2010.117
Krebs, A. M. et al. The EMT-activator Zeb1 is a key factor for cell plasticity and promotes metastasis in pancreatic cancer. Nat. Cell Biol. 19, 518–529 (2017).
pubmed: 28414315 doi: 10.1038/ncb3513
Zhang, P., Sun, Y. & Ma, L. ZEB1: at the crossroads of epithelial-mesenchymal transition, metastasis and therapy resistance. Cell Cycle 14, 481–487 (2015).
pubmed: 25607528 pmcid: 4614883 doi: 10.1080/15384101.2015.1006048
Galván, J. A. et al. Expression of E-cadherin repressors SNAIL, ZEB1 and ZEB2 by tumour and stromal cells influences tumour-budding phenotype and suggests heterogeneity of stromal cells in pancreatic cancer. Br. J. Cancer 112, 1944–1950 (2015).
pubmed: 25989272 pmcid: 4580384 doi: 10.1038/bjc.2015.177
Sangrador, I. et al. Zeb1 in stromal myofibroblasts promotes Kras-driven development of pancreatic cancer. Cancer Res. 78, 2624–2637 (2018).
pubmed: 29490942 doi: 10.1158/0008-5472.CAN-17-1882
Zawati, I. et al. Association of ZEB1 and Vimentin with poor prognosis in metaplastic breast cancer. Ann. Diagn. Pathol. 59, 151954 (2022).
pubmed: 35523002 doi: 10.1016/j.anndiagpath.2022.151954
Hegarty, S. V., Sullivan, A. M. & O’Keeffe, G. W. Zeb2: a multifunctional regulator of nervous system development. Prog. Neurobiol. 132, 81–95 (2015).
pubmed: 26193487 doi: 10.1016/j.pneurobio.2015.07.001
Kang, Y. & Massagué, J. Epithelial-mesenchymal transitions: twist in development and metastasis. Cell 118, 277–279 (2004).
pubmed: 15294153 doi: 10.1016/j.cell.2004.07.011
Burks, H. E. et al. ZEB2 regulates endocrine therapy sensitivity and metastasis in luminal a breast cancer cells through a non-canonical mechanism. Breast Cancer Res. Treat. 189, 25–37 (2021).
pubmed: 34231077 doi: 10.1007/s10549-021-06256-x
Li, N. et al. An FBXW7-ZEB2 axis links EMT and tumour microenvironment to promote colorectal cancer stem cells and chemoresistance. Oncogenesis 8, 13 (2019).
pubmed: 30783098 pmcid: 6381143 doi: 10.1038/s41389-019-0125-3
Maeda, G. et al. Expression of SIP1 in oral squamous cell carcinomas: implications for E-cadherin expression and tumor progression. Int. J. Oncol. 27, 1535–1541 (2005).
pubmed: 16273209
Birchmeier, C., Birchmeier, W., Gherardi, E. & Vande Woude, G. F. Met, metastasis, motility and more. Nat. Rev. Mol. Cell Biol. 4, 915–925 (2003).
pubmed: 14685170 doi: 10.1038/nrm1261
Cooper, C. S. et al. Molecular cloning of a new transforming gene from a chemically transformed human cell line. Nature 311, 29–33 (1984).
pubmed: 6590967 doi: 10.1038/311029a0
Bradley, C. A. et al. Targeting c-MET in gastrointestinal tumours: rationale, opportunities and challenges. Nat. Rev. Clin. Oncol. 14, 562–576 (2017).
pubmed: 28374784 doi: 10.1038/nrclinonc.2017.40
Faiella, A., Riccardi, F., Cartenì, G., Chiurazzi, M. & Onofrio, L. The emerging role of c-Met in carcinogenesis and clinical implications as a possible therapeutic target. J. Oncol. 2022, 5179182 (2022).
pubmed: 35069735 pmcid: 8776431 doi: 10.1155/2022/5179182
Zou, H. Y. et al. An orally available small-molecule inhibitor of c-Met, PF-2341066, exhibits cytoreductive antitumor efficacy through antiproliferative and antiangiogenic mechanisms. Cancer Res. 67, 4408–4417 (2007).
pubmed: 17483355 doi: 10.1158/0008-5472.CAN-06-4443
Rong, S., Segal, S., Anver, M., Resau, J. H. & Vande Woude, G. F. Invasiveness and metastasis of NIH 3T3 cells induced by Met-hepatocyte growth factor/scatter factor autocrine stimulation. Proc. Natl Acad. Sci. USA 91, 4731–4735 (1994).
pubmed: 8197126 pmcid: 43862 doi: 10.1073/pnas.91.11.4731
Moshitch-Moshkovitz, S. et al. In vivo direct molecular imaging of early tumorigenesis and malignant progression induced by transgenic expression of GFP-Met. Neoplasia 8, 353–363 (2006).
pubmed: 16790084 pmcid: 1592452 doi: 10.1593/neo.05634
Otsuka, T. et al. c-Met autocrine activation induces development of malignant melanoma and acquisition of the metastatic phenotype. Cancer Res. 58, 5157–5167 (1998).
pubmed: 9823327
Demkova, L. & Kucerova, L. Role of the HGF/c-MET tyrosine kinase inhibitors in metastasic melanoma. Mol. Cancer 17, 26 (2018).
pubmed: 29455657 pmcid: 5817811 doi: 10.1186/s12943-018-0795-z
Yao, J.-F. et al. Role of HGF/c-Met in the treatment of colorectal cancer with liver metastasis. J. Biochem. Mol. Toxicol. 33, e22316 (2019).
pubmed: 30897285 pmcid: 6617765 doi: 10.1002/jbt.22316
Lee, J. H. et al. A novel germ line juxtamembrane Met mutation in human gastric cancer. Oncogene 19, 4947–4953 (2000).
pubmed: 11042681 doi: 10.1038/sj.onc.1203874
Ma, P. C. et al. c-MET mutational analysis in small cell lung cancer: novel juxtamembrane domain mutations regulating cytoskeletal functions. Cancer Res. 63, 6272–6281 (2003).
pubmed: 14559814
Di Renzo, M. F. et al. Somatic mutations of the MET oncogene are selected during metastatic spread of human HNSC carcinomas. Oncogene 19, 1547–1555 (2000).
pubmed: 10734314 doi: 10.1038/sj.onc.1203455
Hartmann, S., Bhola, N. E. & Grandis, J. R. HGF/Met signaling in head and neck cancer: impact on the tumor microenvironment. Clin. Cancer Res. 22, 4005–4013 (2016).
pubmed: 27370607 pmcid: 6820346 doi: 10.1158/1078-0432.CCR-16-0951
Boromand, N. et al. Clinical and prognostic value of the C-Met/HGF signaling pathway in cervical cancer. J. Cell. Physiol. 233, 4490–4496 (2018).
pubmed: 29058790 doi: 10.1002/jcp.26232
Wang, H. et al. The function of the HGF/c-Met axis in hepatocellular carcinoma. Front. Cell Dev. Biol. 8, 55 (2020).
pubmed: 32117981 pmcid: 7018668 doi: 10.3389/fcell.2020.00055
Miranda, O., Farooqui, M. & Siegfried, J. M. Status of agents targeting the HGF/c-Met axis in lung cancer. Cancers 10, 280 (2018).
pubmed: 30134579 pmcid: 6162713 doi: 10.3390/cancers10090280
Goyal, L., Muzumdar, M. D. & Zhu, A. X. Targeting the HGF/c-MET pathway in hepatocellular carcinoma. Clin. Cancer Res. 19, 2310–2318 (2013).
pubmed: 23388504 pmcid: 4583193 doi: 10.1158/1078-0432.CCR-12-2791
Kim, H. J. Therapeutic strategies for ovarian cancer in point of HGF/c-MET targeting. Medicina. 58, 649 (2022).
pubmed: 35630066 pmcid: 9147666 doi: 10.3390/medicina58050649
Lam, B. Q., Dai, L. & Qin, Z. The role of HGF/c-MET signaling pathway in lymphoma. J. Hematol. Oncol. 9, 135 (2016).
pubmed: 27923392 pmcid: 5141645 doi: 10.1186/s13045-016-0366-y
Guryanova, O. A. & Bao, S. How scatter factor receptor c-MET contributes to tumor radioresistance: ready, set, scatter! J. Natl Cancer Inst. 103, 617–619 (2011).
pubmed: 21464396 doi: 10.1093/jnci/djr103
Kwak, E. L. et al. Molecular heterogeneity and receptor coamplification drive resistance to targeted therapy in MET-Amplified esophagogastric cancer. Cancer Discov. 5, 1271–1281 (2015).
pubmed: 26432108 pmcid: 4670804 doi: 10.1158/2159-8290.CD-15-0748
Mrozik, K. M. et al. Therapeutic targeting of N-cadherin is an effective treatment for multiple myeloma. Br. J. Haematol. 171, 387–399 (2015).
pubmed: 26194766 doi: 10.1111/bjh.13596
Hatta, K. & Takeichi, M. Expression of N-cadherin adhesion molecules associated with early morphogenetic events in chick development. Nature 320, 447–449 (1986).
pubmed: 3515198 doi: 10.1038/320447a0
Cao, Z.-Q., Wang, Z. & Leng, P. Aberrant N-cadherin expression in cancer. Biomed. Pharmacother. 118, 109320 (2019).
pubmed: 31545265 doi: 10.1016/j.biopha.2019.109320
Leckband, D. E. & de Rooij, J. Cadherin adhesion and mechanotransduction. Annu. Rev. Cell Dev. Biol. 30, 291–315 (2014).
pubmed: 25062360 doi: 10.1146/annurev-cellbio-100913-013212
Blaschuk, O. W. N-cadherin antagonists as oncology therapeutics. Philos. Trans. R. Soc. Lond. Ser. B, Biol. Sci. 370, 20140039 (2015).
doi: 10.1098/rstb.2014.0039
Mrozik, K. M., Blaschuk, O. W., Cheong, C. M., Zannettino, A. C. W. & Vandyke, K. N-cadherin in cancer metastasis, its emerging role in haematological malignancies and potential as a therapeutic target in cancer. BMC Cancer 18, 939 (2018).
pubmed: 30285678 pmcid: 6167798 doi: 10.1186/s12885-018-4845-0
Ciołczyk-Wierzbicka, D. & Laidler, P. The inhibition of invasion of human melanoma cells through N-cadherin knock-down. Med. Oncol. 35, 42 (2018).
pubmed: 29492694 pmcid: 5830464 doi: 10.1007/s12032-018-1104-9
Lammens, T. et al. N-Cadherin in neuroblastoma disease: expression and clinical significance. PLoS ONE 7, e31206 (2012).
pubmed: 22355346 pmcid: 3280274 doi: 10.1371/journal.pone.0031206
Hulit, J. et al. N-cadherin signaling potentiates mammary tumor metastasis via enhanced extracellular signal-regulated kinase activation. Cancer Res. 67, 3106–3116 (2007).
pubmed: 17409417 doi: 10.1158/0008-5472.CAN-06-3401
Klymenko, Y. et al. Cadherin composition and multicellular aggregate invasion in organotypic models of epithelial ovarian cancer intraperitoneal metastasis. Oncogene 36, 5840–5851 (2017).
pubmed: 28628116 pmcid: 5648607 doi: 10.1038/onc.2017.171
Mariotti, A., Perotti, A., Sessa, C. & Rüegg, C. N-cadherin as a therapeutic target in cancer. Expert Opin. Investig. Drugs 16, 451–465 (2007).
pubmed: 17371194 doi: 10.1517/13543784.16.4.451
Groen, R. W. J. et al. N-cadherin-mediated interaction with multiple myeloma cells inhibits osteoblast differentiation. Haematologica 96, 1653–1661 (2011).
pubmed: 21828122 pmcid: 3208683 doi: 10.3324/haematol.2010.038133
Sadler, N. M., Harris, B. R., Metzger, B. A. & Kirshner, J. N-cadherin impedes proliferation of the multiple myeloma cancer stem cells. Am. J. Blood Res. 3, 271–285 (2013).
pubmed: 24396705 pmcid: 3875273
Shintani, Y. et al. ADH-1 suppresses N-cadherin-dependent pancreatic cancer progression. Int. J. Cancer 122, 71–77 (2008).
pubmed: 17721921 doi: 10.1002/ijc.23027
Sun, Y. et al. N-cadherin inhibitor creates a microenvironment that protect TILs from immune checkpoints and Treg cells. J. Immunother. Cancer 9, e002138 (2021).
pubmed: 33692219 pmcid: 7949480 doi: 10.1136/jitc-2020-002138
Richards, L. Genetics: N-cadherin—a target for prostate cancer therapy. Nat. Rev. Clin. Oncol. 8, 63 (2011).
pubmed: 21360843
Tokito, A. & Jougasaki, M. Matrix metalloproteinases in non-neoplastic disorders. Int. J. Mol. Sci. 17, 1178 (2016).
pubmed: 27455234 pmcid: 4964549 doi: 10.3390/ijms17071178
Huang, H. Matrix metalloproteinase-9 (MMP-9) as a cancer biomarker and MMP-9 biosensors: recent advances. Sensors 18, 3249 (2018).
pubmed: 30262739 pmcid: 6211011 doi: 10.3390/s18103249
de Almeida, L. G. N. et al. Matrix metalloproteinases: from molecular mechanisms to physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 74, 712–768 (2022).
pubmed: 35738680 doi: 10.1124/pharmrev.121.000349
Roy, R., Yang, J. & Moses, M. A. Matrix metalloproteinases as novel biomarkers and potential therapeutic targets in human cancer. J. Clin. Oncol. 27, 5287–5297 (2009).
pubmed: 19738110 pmcid: 2773480 doi: 10.1200/JCO.2009.23.5556
Klein, T. & Bischoff, R. Physiology and pathophysiology of matrix metalloproteases. Amino Acids 41, 271–290 (2011).
pubmed: 20640864 doi: 10.1007/s00726-010-0689-x
Szarvas, T., Vom Dorp, F., Ergün, S. & Rübben, H. Matrix metalloproteinases and their clinical relevance in urinary bladder cancer. Nat. Rev. Urol. 8, 241–254 (2011).
pubmed: 21487384 doi: 10.1038/nrurol.2011.44
Talvensaari-Mattila, A., Pääkkö, P., Höyhtyä, M., Blanco-Sequeiros, G. & Turpeenniemi-Hujanen, T. Matrix metalloproteinase-2 immunoreactive protein: a marker of aggressiveness in breast carcinoma. Cancer 83, 1153–1162 (1998).
pubmed: 9740080 doi: 10.1002/(SICI)1097-0142(19980915)83:6<1153::AID-CNCR14>3.0.CO;2-4
Murray, G. I., Duncan, M. E., O’Neil, P., Melvin, W. T. & Fothergill, J. E. Matrix metalloproteinase-1 is associated with poor prognosis in colorectal cancer. Nat. Med. 2, 461–462 (1996).
pubmed: 8597958 doi: 10.1038/nm0496-461
Sier, C. F. et al. Tissue levels of matrix metalloproteinases MMP-2 and MMP-9 are related to the overall survival of patients with gastric carcinoma. Br. J. Cancer 74, 413–417 (1996).
pubmed: 8695357 pmcid: 2074643 doi: 10.1038/bjc.1996.374
Murray, G. I. et al. Matrix metalloproteinase-1 is associated with poor prognosis in oesophageal cancer. J. Pathol. 185, 256–261 (1998).
pubmed: 9771478 doi: 10.1002/(SICI)1096-9896(199807)185:3<256::AID-PATH115>3.0.CO;2-A
Vandenbroucke, R. E., Dejonckheere, E. & Libert, C. A therapeutic role for matrix metalloproteinase inhibitors in lung diseases? Eur. Respir. J. 38, 1200–1214 (2011).
pubmed: 21659416 doi: 10.1183/09031936.00027411
Isaacson, K. J., Martin Jensen, M., Subrahmanyam, N. B. & Ghandehari, H. Matrix-metalloproteinases as targets for controlled delivery in cancer: an analysis of upregulation and expression. J. Control. Release 259, 62–75 (2017).
pubmed: 28153760 pmcid: 5537048 doi: 10.1016/j.jconrel.2017.01.034
Gong, L. et al. Prognostic impact of serum and tissue MMP-9 in non-small cell lung cancer: a systematic review and meta-analysis. Oncotarget 7, 18458–18468 (2016).
pubmed: 26918342 pmcid: 4951301 doi: 10.18632/oncotarget.7607
Li, Y., Wu, T., Zhang, B., Yao, Y. & Yin, G. Matrix metalloproteinase-9 is a prognostic marker for patients with cervical cancer. Med. Oncol. 29, 3394–3399 (2012).
pubmed: 22752570 doi: 10.1007/s12032-012-0283-z
Lian, P.-L. et al. Integrin αvβ6 and matrix metalloproteinase 9 correlate with survival in gastric cancer. World J. Gastroenterol. 22, 3852–3859 (2016).
pubmed: 27076771 pmcid: 4814749 doi: 10.3748/wjg.v22.i14.3852
Li, L.-N., Zhou, X., Gu, Y. & Yan, J. Prognostic value of MMP-9 in ovarian cancer: a meta-analysis. Asian Pac. J. Cancer Prev. 14, 4107–4113 (2013).
pubmed: 23991961 doi: 10.7314/APJCP.2013.14.7.4107
Yousef, E. M., Tahir, M. R., St-Pierre, Y. & Gaboury, L. A. MMP-9 expression varies according to molecular subtypes of breast cancer. BMC Cancer 14, 609 (2014).
pubmed: 25151367 pmcid: 4150970 doi: 10.1186/1471-2407-14-609
Wang, J. et al. Matrix metalloproteinase 9 (MMP-9) in osteosarcoma: review and meta-analysis. Clin. Chim. Acta 433, 225–231 (2014).
pubmed: 24704305 doi: 10.1016/j.cca.2014.03.023
Tian, M. et al. Proteomic analysis identifies MMP-9, DJ-1 and A1BG as overexpressed proteins in pancreatic juice from pancreatic ductal adenocarcinoma patients. BMC Cancer 8, 241 (2008).
pubmed: 18706098 pmcid: 2528014 doi: 10.1186/1471-2407-8-241
Wang, T., Zhang, Y., Bai, J., Xue, Y. & Peng, Q. MMP1 and MMP9 are potential prognostic biomarkers and targets for uveal melanoma. BMC Cancer 21, 1068 (2021).
pubmed: 34587931 pmcid: 8482640 doi: 10.1186/s12885-021-08788-3
Groelly, F. J., Fawkes, M., Dagg, R. A., Blackford, A. N. & Tarsounas, M. Targeting DNA damage response pathways in cancer. Nat. Rev. Cancer 23, 78–94 (2023).
pubmed: 36471053 doi: 10.1038/s41568-022-00535-5
Chu, Y.-Y., Yam, C., Yamaguchi, H. & Hung, M.-C. Biomarkers beyond BRCA: promising combinatorial treatment strategies in overcoming resistance to PARP inhibitors. J. Biomed. Sci. 29, 86 (2022).
pubmed: 36284291 pmcid: 9594904 doi: 10.1186/s12929-022-00870-7
Wang, Y. et al. PARP inhibitors in gastric cancer: beacon of hope. J. Exp. Clin. Cancer Res. 40, 211 (2021).
pubmed: 34167572 pmcid: 8228511 doi: 10.1186/s13046-021-02005-6
Quinet, A., Lemaçon, D. & Vindigni, A. Replication fork reversal: players and guardians. Mol. Cell 68, 830–833 (2017).
pubmed: 29220651 pmcid: 5895179 doi: 10.1016/j.molcel.2017.11.022
Roy, R., Chun, J. & Powell, S. N. BRCA1 and BRCA2: different roles in a common pathway of genome protection. Nat. Rev. Cancer 12, 68–78 (2011).
pubmed: 22193408 pmcid: 4972490 doi: 10.1038/nrc3181
Jin, T. Y. et al. BRCA1/2 serves as a biomarker for poor prognosis in breast carcinoma. Int. J. Mol. Sci. 23, 3754 (2022).
pubmed: 35409110 pmcid: 8998777 doi: 10.3390/ijms23073754
Wang, G.-H. et al. BRCA1 and BRCA2 expression patterns and prognostic significance in digestive system cancers. Hum. Pathol. 71, 135–144 (2018).
pubmed: 29126833 doi: 10.1016/j.humpath.2017.10.032
Breast Cancer Linkage Consortium. Cancer risks in BRCA2 mutation carriers. J. Natl Cancer Inst. 91, 1310–1316 (1999).
Bryant, H. E. et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434, 913–917 (2005).
pubmed: 15829966 doi: 10.1038/nature03443
Blackford, A. N. & Jackson, S. P. ATM, ATR, and DNA-PK: the trinity at the heart of the DNA damage response. Mol. Cell 66, 801–817 (2017).
pubmed: 28622525 doi: 10.1016/j.molcel.2017.05.015
Ngoi, N. Y. L. et al. Targeting ATR in patients with cancer. Nat. Rev. Clin. Oncol. 21, 278–293 (2024).
pubmed: 38378898 doi: 10.1038/s41571-024-00863-5
Matsuoka, S. et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316, 1160–1166 (2007).
pubmed: 17525332 doi: 10.1126/science.1140321
Cremona, C. A. & Behrens, A. ATM signalling and cancer. Oncogene 33, 3351–3360 (2014).
pubmed: 23851492 doi: 10.1038/onc.2013.275
Bailey, P. et al. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature 531, 47–52 (2016).
pubmed: 26909576 doi: 10.1038/nature16965
Sun, L., Wang, R.-C., Zhang, Q. & Guo, L.-L. ATM mutations as an independent prognostic factor and potential biomarker for immune checkpoint therapy in endometrial cancer. Pathol. Res. Pract. 216, 153032 (2020).
pubmed: 32703496 doi: 10.1016/j.prp.2020.153032
Randon, G. et al. Prognostic impact of ATM mutations in patients with metastatic colorectal cancer. Sci. Rep. 9, 2858 (2019).
pubmed: 30814645 pmcid: 6393680 doi: 10.1038/s41598-019-39525-3
Moossavi, M., Parsamanesh, N., Bahrami, A., Atkin, S. L. & Sahebkar, A. Role of the NLRP3 inflammasome in cancer. Mol. Cancer 17, 158 (2018).
pubmed: 30447690 pmcid: 6240225 doi: 10.1186/s12943-018-0900-3
Grivennikov, S. I., Greten, F. R. & Karin, M. Immunity, inflammation, and cancer. Cell 140, 883–899 (2010).
pubmed: 20303878 pmcid: 2866629 doi: 10.1016/j.cell.2010.01.025
Carswell, E. A. et al. An endotoxin-induced serum factor that causes necrosis of tumors. Proc. Natl Acad. Sci. USA 72, 3666–3670 (1975).
pubmed: 1103152 pmcid: 433057 doi: 10.1073/pnas.72.9.3666
Szlosarek, P. W. & Balkwill, F. R. Tumour necrosis factor alpha: a potential target for the therapy of solid tumours. Lancet Oncol. 4, 565–573 (2003).
pubmed: 12965278 doi: 10.1016/S1470-2045(03)01196-3
van Loo, G. & Bertrand, M. J. M. Death by TNF: a road to inflammation. Nat. Rev. Immunol. 23, 289–303 (2023).
pubmed: 36380021 doi: 10.1038/s41577-022-00792-3
Szlosarek, P., Charles, K. A. & Balkwill, F. R. Tumour necrosis factor-alpha as a tumour promoter. Eur. J. Cancer 42, 745–750 (2006).
pubmed: 16517151 doi: 10.1016/j.ejca.2006.01.012
Balkwill, F. Tumour necrosis factor and cancer. Nat. Rev. Cancer 9, 361–371 (2009).
pubmed: 19343034 doi: 10.1038/nrc2628
Bounder, G. et al. Associations of the -238(G/A) and -308(G/A) TNF-α promoter polymorphisms and TNF-α serum levels with the susceptibility to gastric precancerous lesions and gastric cancer related to Helicobacter pylori infection in a Moroccan population. Asian Pac. J. Cancer Prev. 21, 1623–1629 (2020).
pubmed: 32592356 pmcid: 7568906 doi: 10.31557/APJCP.2020.21.6.1623
Noguchi, M., Hiwatashi, N., Liu, Z. & Toyota, T. Secretion imbalance between tumour necrosis factor and its inhibitor in inflammatory bowel disease. Gut 43, 203–209 (1998).
pubmed: 10189845 pmcid: 1727225 doi: 10.1136/gut.43.2.203
Szlosarek, P. W. et al. Expression and regulation of tumor necrosis factor alpha in normal and malignant ovarian epithelium. Mol. Cancer Ther. 5, 382–390 (2006).
pubmed: 16505113 doi: 10.1158/1535-7163.MCT-05-0303
Andersson, B. Å. et al. Plasma tumor necrosis factor-α and C-reactive protein as biomarker for survival in head and neck squamous cell carcinoma. J. Cancer Res. Clin. Oncol. 140, 515–519 (2014).
pubmed: 24481866 doi: 10.1007/s00432-014-1592-8
Sen, R. & Baltimore, D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 46, 705–716 (1986).
pubmed: 3091258 doi: 10.1016/0092-8674(86)90346-6
Ghosh, S., May, M. J. & Kopp, E. B. NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol. 16, 225–260 (1998).
pubmed: 9597130 doi: 10.1146/annurev.immunol.16.1.225
Li, Q. & Verma, I. M. NF-kappaB regulation in the immune system. Nat. Rev. Immunol. 2, 725–734 (2002).
pubmed: 12360211 doi: 10.1038/nri910
Taniguchi, K. & Karin, M. NF-κB, inflammation, immunity and cancer: coming of age. Nat. Rev. Immunol. 18, 309–324 (2018).
pubmed: 29379212 doi: 10.1038/nri.2017.142
Karin, M. Nuclear factor-kappaB in cancer development and progression. Nature 441, 431–436 (2006).
pubmed: 16724054 doi: 10.1038/nature04870
Viatour, P., Merville, M.-P., Bours, V. & Chariot, A. Phosphorylation of NF-kappaB and IkappaB proteins: implications in cancer and inflammation. Trends Biochem. Sci. 30, 43–52 (2005).
pubmed: 15653325 doi: 10.1016/j.tibs.2004.11.009
Karin, M. NF-kappaB as a critical link between inflammation and cancer. Cold Spring Harb. Perspect. Biol. 1, a000141 (2009).
pubmed: 20066113 pmcid: 2773649 doi: 10.1101/cshperspect.a000141
Wu, D. et al. NF-κB expression and outcomes in solid tumors: a systematic review and meta-analysis. Medicine 94, e1687 (2015).
pubmed: 26448015 pmcid: 4616757 doi: 10.1097/MD.0000000000001687
Sarkar, D. K. et al. Role of NF-κB as a prognostic marker in breast cancer: a pilot study in Indian patients. Indian J. Surg. Oncol. 4, 242–247 (2013).
pubmed: 24426730 pmcid: 3771050 doi: 10.1007/s13193-013-0234-y
Ben-Neriah, Y. & Karin, M. Inflammation meets cancer, with NF-κB as the matchmaker. Nat. Immunol. 12, 715–723 (2011).
pubmed: 21772280 doi: 10.1038/ni.2060
Kumar, M. et al. NF-κB regulates mesenchymal transition for the induction of non-small cell lung cancer initiating cells. PLoS ONE 8, e68597 (2013).
pubmed: 23935876 pmcid: 3728367 doi: 10.1371/journal.pone.0068597
Huber, M. A. et al. NF-kappaB is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression. J. Clin. Invest. 114, 569–581 (2004).
pubmed: 15314694 pmcid: 503772 doi: 10.1172/JCI200421358
He, Y., Hara, H. & Núñez, G. Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem. Sci. 41, 1012–1021 (2016).
pubmed: 27669650 pmcid: 5123939 doi: 10.1016/j.tibs.2016.09.002
Martinon, F., Burns, K. & Tschopp, J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol. Cell 10, 417–426 (2002).
pubmed: 12191486 doi: 10.1016/S1097-2765(02)00599-3
Lamkanfi, M. & Dixit, V. M. Mechanisms and functions of inflammasomes. Cell 157, 1013–1022 (2014).
pubmed: 24855941 doi: 10.1016/j.cell.2014.04.007
Si, Y., Liu, L. & Fan, Z. Mechanisms and effects of NLRP3 in digestive cancers. Cell Death Discov. 10, 10 (2024).
pubmed: 38182564 pmcid: 10770122 doi: 10.1038/s41420-023-01783-6
Tarassishin, L., Casper, D. & Lee, S. C. Aberrant expression of interleukin-1β and inflammasome activation in human malignant gliomas. PLoS ONE 9, e103432 (2014).
pubmed: 25054228 pmcid: 4108401 doi: 10.1371/journal.pone.0103432
Bae, J. Y. et al. P2X7 receptor and NLRP3 inflammasome activation in head and neck cancer. Oncotarget 8, 48972–48982 (2017).
pubmed: 28430665 pmcid: 5564741 doi: 10.18632/oncotarget.16903
Veeranki, S. Role of inflammasomes and their regulators in prostate cancer initiation, progression and metastasis. Cell. Mol. Biol. Lett. 18, 355–367 (2013).
pubmed: 23793845 pmcid: 6275599 doi: 10.2478/s11658-013-0095-y
Dunn, J. H., Ellis, L. Z. & Fujita, M. Inflammasomes as molecular mediators of inflammation and cancer: potential role in melanoma. Cancer Lett. 314, 24–33 (2012).
pubmed: 22050907 doi: 10.1016/j.canlet.2011.10.001
Shi, F. et al. Low NLRP3 expression predicts a better prognosis of colorectal cancer. Biosci. Rep. 41, BSR20210280 (2021).
pubmed: 33821998 pmcid: 8055799 doi: 10.1042/BSR20210280
Fan, S. et al. Luteoloside suppresses proliferation and metastasis of hepatocellular carcinoma cells by inhibition of NLRP3 inflammasome. PLoS ONE 9, e89961 (2014).
pubmed: 24587153 pmcid: 3935965 doi: 10.1371/journal.pone.0089961
Warburg, O. Über den Stoffwechsel der Carcinomzelle. Naturwissenschaften 12, 1131–1137 (1924).
doi: 10.1007/BF01504608
Wang, Y. & Patti, G. J. The Warburg effect: a signature of mitochondrial overload. Trends Cell Biol. 33, 1014–1020 (2023).
pubmed: 37117116 doi: 10.1016/j.tcb.2023.03.013
Macheda, M. L., Rogers, S. & Best, J. D. Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J. Cell. Physiol. 202, 654–662 (2005).
pubmed: 15389572 doi: 10.1002/jcp.20166
Deng, D. et al. Crystal structure of the human glucose transporter GLUT1. Nature 510, 121–125 (2014).
pubmed: 24847886 doi: 10.1038/nature13306
Wieman, H. L., Wofford, J. A. & Rathmell, J. C. Cytokine stimulation promotes glucose uptake via phosphatidylinositol-3 kinase/Akt regulation of Glut1 activity and trafficking. Mol. Biol. Cell 18, 1437–1446 (2007).
pubmed: 17301289 pmcid: 1838986 doi: 10.1091/mbc.e06-07-0593
Meng, Y. et al. The progress and development of GLUT1 inhibitors targeting cancer energy metabolism. Future Med. Chem. 11, 2333–2352 (2019).
pubmed: 31581916 doi: 10.4155/fmc-2019-0052
Schwartzenberg-Bar-Yoseph, F., Armoni, M. & Karnieli, E. The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Res. 64, 2627–2633 (2004).
pubmed: 15059920 doi: 10.1158/0008-5472.CAN-03-0846
Zambrano, A., Molt, M., Uribe, E. & Salas, M. Glut 1 in cancer cells and the inhibitory action of resveratrol as a potential therapeutic strategy. Int. J. Mol. Sci. 20, 3374 (2019).
pubmed: 31324056 pmcid: 6651361 doi: 10.3390/ijms20133374
Zhang, B., Xie, Z. & Li, B. The clinicopathologic impacts and prognostic significance of GLUT1 expression in patients with lung cancer: a meta-analysis. Gene 689, 76–83 (2019).
pubmed: 30552981 doi: 10.1016/j.gene.2018.12.006
Amann, T. & Hellerbrand, C. GLUT1 as a therapeutic target in hepatocellular carcinoma. Expert Opin. Ther. Targets 13, 1411–1427 (2009).
pubmed: 19874261 doi: 10.1517/14728220903307509
Wang, J. et al. Glucose transporter GLUT1 expression and clinical outcome in solid tumors: a systematic review and meta-analysis. Oncotarget 8, 16875–16886 (2017).
pubmed: 28187435 pmcid: 5370007 doi: 10.18632/oncotarget.15171
Waitkus, M. S., Diplas, B. H. & Yan, H. Biological role and therapeutic potential of IDH mutations in cancer. Cancer Cell 34, 186–195 (2018).
pubmed: 29805076 pmcid: 6092238 doi: 10.1016/j.ccell.2018.04.011
Turkalp, Z., Karamchandani, J. & Das, S. IDH mutation in glioma: new insights and promises for the future. JAMA Neurol. 71, 1319–1325 (2014).
pubmed: 25155243 doi: 10.1001/jamaneurol.2014.1205
Dang, L., Yen, K. & Attar, E. C. IDH mutations in cancer and progress toward development of targeted therapeutics. Ann. Oncol. 27, 599–608 (2016).
pubmed: 27005468 doi: 10.1093/annonc/mdw013
Capper, D. et al. Characterization of R132H mutation-specific IDH1 antibody binding in brain tumors. Brain Pathol. 20, 245–254 (2010).
pubmed: 19903171 doi: 10.1111/j.1750-3639.2009.00352.x
Andronesi, O. C. et al. Detection of 2-hydroxyglutarate in IDH-mutated glioma patients by in vivo spectral-editing and 2D correlation magnetic resonance spectroscopy. Sci. Transl. Med. 4, 116ra4 (2012).
pubmed: 22238332 pmcid: 3720836 doi: 10.1126/scitranslmed.3002693
Guo, D., Meng, Y., Jiang, X. & Lu, Z. Hexokinases in cancer and other pathologies. Cell Insight 2, 100077 (2023).
pubmed: 37192912 pmcid: 10120283 doi: 10.1016/j.cellin.2023.100077
Ciscato, F., Ferrone, L., Masgras, I., Laquatra, C. & Rasola, A. Hexokinase 2 in cancer: a prima donna playing multiple characters. Int. J. Mol. Sci. 22, 4716 (2021).
pubmed: 33946854 pmcid: 8125560 doi: 10.3390/ijms22094716
Kim, J., Gao, P., Liu, Y.-C., Semenza, G. L. & Dang, C. V. Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1. Mol. Cell. Biol. 27, 7381–7393 (2007).
pubmed: 17785433 pmcid: 2169056 doi: 10.1128/MCB.00440-07
Liu, Y. et al. Prognostic significance of the metabolic marker hexokinase-2 in various solid tumors: a meta-analysis. PLoS ONE 11, e0166230 (2016).
pubmed: 27824926 pmcid: 5100994 doi: 10.1371/journal.pone.0166230
Patra, K. C. et al. Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer. Cancer Cell 24, 213–228 (2013).
pubmed: 23911236 pmcid: 3753022 doi: 10.1016/j.ccr.2013.06.014
Akinleye, A. & Rasool, Z. Immune checkpoint inhibitors of PD-L1 as cancer therapeutics. J. Hematol. Oncol. 12, 92 (2019).
pubmed: 31488176 pmcid: 6729004 doi: 10.1186/s13045-019-0779-5
Keir, M. E., Butte, M. J., Freeman, G. J. & Sharpe, A. H. PD-1 and its ligands in tolerance and immunity. Annu Rev. Immunol. 26, 677–704 (2008).
pubmed: 18173375 pmcid: 10637733 doi: 10.1146/annurev.immunol.26.021607.090331
Ishida, Y., Agata, Y., Shibahara, K. & Honjo, T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 11, 3887–3895 (1992).
pubmed: 1396582 pmcid: 556898 doi: 10.1002/j.1460-2075.1992.tb05481.x
Nishimura, H., Nose, M., Hiai, H., Minato, N. & Honjo, T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 11, 141–151 (1999).
pubmed: 10485649 doi: 10.1016/S1074-7613(00)80089-8
Freeman, G. J. et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med. 192, 1027–1034 (2000).
pubmed: 11015443 pmcid: 2193311 doi: 10.1084/jem.192.7.1027
Dong, H. et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat. Med. 8, 793–800 (2002).
pubmed: 12091876 doi: 10.1038/nm730
Zou, W. & Chen, L. Inhibitory B7-family molecules in the tumour microenvironment. Nat. Rev. Immunol. 8, 467–477 (2008).
pubmed: 18500231 doi: 10.1038/nri2326
Chang, C.-H. et al. The prognostic significance of PD1 and PDL1 gene expression in lung cancer: a meta-analysis. Front. Oncol. 11, 759497 (2021).
pubmed: 34868974 pmcid: 8639141 doi: 10.3389/fonc.2021.759497
Oh, S. Y. et al. Soluble PD-L1 is a predictive and prognostic biomarker in advanced cancer patients who receive immune checkpoint blockade treatment. Sci. Rep. 11, 19712 (2021).
pubmed: 34611279 pmcid: 8492653 doi: 10.1038/s41598-021-99311-y
Müller, T. et al. PD-L1: a novel prognostic biomarker in head and neck squamous cell carcinoma. Oncotarget 8, 52889–52900 (2017).
pubmed: 28881780 pmcid: 5581079 doi: 10.18632/oncotarget.17547
Rosellini, M. et al. Prognostic and predictive biomarkers for immunotherapy in advanced renal cell carcinoma. Nat. Rev. Urol. 20, 133–157 (2023).
pubmed: 36414800 doi: 10.1038/s41585-022-00676-0
Gu, L. et al. PD-L1 and gastric cancer prognosis: a systematic review and meta-analysis. PLoS ONE 12, e0182692 (2017).
pubmed: 28796808 pmcid: 5552131 doi: 10.1371/journal.pone.0182692
Brunet, J. F. et al. A new member of the immunoglobulin superfamily–CTLA-4. Nature 328, 267–270 (1987).
pubmed: 3496540 doi: 10.1038/328267a0
Rotte, A. Combination of CTLA-4 and PD-1 blockers for treatment of cancer. J. Exp. Clin. Cancer Res. 38, 255 (2019).
pubmed: 31196207 pmcid: 6567914 doi: 10.1186/s13046-019-1259-z
Rowshanravan, B., Halliday, N. & Sansom, D. M. CTLA-4: a moving target in immunotherapy. Blood 131, 58–67 (2018).
pubmed: 29118008 doi: 10.1182/blood-2017-06-741033
Hu, P. et al. The prognostic value of cytotoxic T-lymphocyte antigen 4 in cancers: a systematic review and meta-analysis. Sci. Rep. 7, 42913 (2017).
pubmed: 28211499 pmcid: 5314410 doi: 10.1038/srep42913
Mao, H. et al. New Insights of CTLA-4 into its biological function in breast cancer. Curr. Cancer Drug Targets 10, 728–736 (2010).
pubmed: 20578982 doi: 10.2174/156800910793605811
Zhang, C.-Y. et al. Prognostic value of combined analysis of CTLA-4 and PLR in esophageal squamous cell carcinoma (ESCC) patients. Dis. Markers 2019, 1601072 (2019).
pubmed: 31485274 pmcid: 6710793 doi: 10.1155/2019/1601072
Zheng, S. et al. Differentiation therapy: unlocking phenotypic plasticity of hepatocellular carcinoma. Crit. Rev. Oncol. Hematol. 180, 103854 (2022).
pubmed: 36257532 doi: 10.1016/j.critrevonc.2022.103854
Waddington, C. H. The epigenotype. 1942. Int. J. Epidemiol. 41, 10–13 (2012).
pubmed: 22186258 doi: 10.1093/ije/dyr184
Nishiyama, A. & Nakanishi, M. Navigating the DNA methylation landscape of cancer. Trends Genet. 37, 1012–1027 (2021).
pubmed: 34120771 doi: 10.1016/j.tig.2021.05.002
Cheng, Y. et al. Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduct. Target Ther. 4, 62 (2019).
pubmed: 31871779 pmcid: 6915746 doi: 10.1038/s41392-019-0095-0
Meng, H. et al. DNA methylation, its mediators and genome integrity. Int. J. Biol. Sci. 11, 604–617 (2015).
pubmed: 25892967 pmcid: 4400391 doi: 10.7150/ijbs.11218
Koch, A. et al. Analysis of DNA methylation in cancer: location revisited. Nat. Rev. Clin. Oncol. 15, 459–466 (2018).
pubmed: 29666440 doi: 10.1038/s41571-018-0004-4
Baylin, S. B. & Jones, P. A. A decade of exploring the cancer epigenome - biological and translational implications. Nat. Rev. Cancer 11, 726–734 (2011).
pubmed: 21941284 pmcid: 3307543 doi: 10.1038/nrc3130
Dawson, M. A. & Kouzarides, T. Cancer epigenetics: from mechanism to therapy. Cell 150, 12–27 (2012).
pubmed: 22770212 doi: 10.1016/j.cell.2012.06.013
Van Vlodrop, I. J. H. et al. Prognostic significance of Gremlin1 (GREM1) promoter CpG island hypermethylation in clear cell renal cell carcinoma. Am. J. Pathol. 176, 575–584 (2010).
pubmed: 20042676 pmcid: 2808066 doi: 10.2353/ajpath.2010.090442
Kim, M. S. et al. A promoter methylation pattern in the N-methyl-D-aspartate receptor 2B gene predicts poor prognosis in esophageal squamous cell carcinoma. Clin. Cancer Res. 13, 6658–6665 (2007).
pubmed: 18006766 doi: 10.1158/1078-0432.CCR-07-1178
Claus, R. et al. Quantitative DNA methylation analysis identifies a single CpG dinucleotide important for ZAP-70 expression and predictive of prognosis in chronic lymphocytic leukemia. J. Clin. Oncol. 30, 2483–2491 (2012).
pubmed: 22564988 pmcid: 3397783 doi: 10.1200/JCO.2011.39.3090
Yuan, G. et al. Defining optimal cutoff value of MGMT promoter methylation by ROC analysis for clinical setting in glioblastoma patients. J. Neurooncol. 133, 193–201 (2017).
pubmed: 28516344 doi: 10.1007/s11060-017-2433-9
Das, P. M. & Singal, R. DNA methylation and cancer. J. Clin. Oncol. 22, 4632–4642 (2004).
pubmed: 15542813 doi: 10.1200/JCO.2004.07.151
Falkenberg, K. J. & Johnstone, R. W. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat. Rev. Drug Discov. 13, 673–691 (2014).
pubmed: 25131830 doi: 10.1038/nrd4360
Seligson, D. B. et al. Global histone modification patterns predict risk of prostate cancer recurrence. Nature 435, 1262–1266 (2005).
pubmed: 15988529 doi: 10.1038/nature03672
Avvakumov, N. & Côté, J. The MYST family of histone acetyltransferases and their intimate links to cancer. Oncogene 26, 5395–5407 (2007).
pubmed: 17694081 doi: 10.1038/sj.onc.1210608
Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007).
pubmed: 17512414 doi: 10.1016/j.cell.2007.05.009
Heintzman, N. D. et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet. 39, 311–318 (2007).
pubmed: 17277777 doi: 10.1038/ng1966
Ntziachristos, P. et al. Genetic inactivation of the polycomb repressive complex 2 in T cell acute lymphoblastic leukemia. Nat. Med. 18, 298–301 (2012).
pubmed: 22237151 pmcid: 3274628 doi: 10.1038/nm.2651
Johnstone, R. W. & Licht, J. D. Histone deacetylase inhibitors in cancer therapy: is transcription the primary target? Cancer Cell 4, 13–18 (2003).
pubmed: 12892709 doi: 10.1016/S1535-6108(03)00165-X
Sears, C. L. & Garrett, W. S. Microbes, microbiota, and colon cancer. Cell Host Microbe 15, 317–328 (2014).
pubmed: 24629338 pmcid: 4003880 doi: 10.1016/j.chom.2014.02.007
de Martel, C. et al. Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol. 13, 607–615 (2012).
pubmed: 22575588 doi: 10.1016/S1470-2045(12)70137-7
Ferreira, R. M. et al. Gastric microbial community profiling reveals a dysbiotic cancer-associated microbiota. Gut 67, 226–236 (2018).
pubmed: 29102920 doi: 10.1136/gutjnl-2017-314205
Banerjee, S. et al. The ovarian cancer oncobiome. Oncotarget 8, 36225–36245 (2017).
pubmed: 28410234 pmcid: 5482651 doi: 10.18632/oncotarget.16717
Louis, P., Hold, G. L. & Flint, H. J. The gut microbiota, bacterial metabolites and colorectal cancer. Nat. Rev. Microbiol. 12, 661–672 (2014).
pubmed: 25198138 doi: 10.1038/nrmicro3344
Pushalkar, S. et al. The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression. Cancer Discov. 8, 403–416 (2018).
pubmed: 29567829 pmcid: 6225783 doi: 10.1158/2159-8290.CD-17-1134
Sfanos, K. S. et al. A molecular analysis of prokaryotic and viral DNA sequences in prostate tissue from patients with prostate cancer indicates the presence of multiple and diverse microorganisms. Prostate 68, 306–320 (2008).
pubmed: 18163428 doi: 10.1002/pros.20680
Mima, K. et al. The microbiome and hepatobiliary-pancreatic cancers. Cancer Lett. 402, 9–15 (2017).
pubmed: 28527946 doi: 10.1016/j.canlet.2017.05.001
Mao, Q. et al. Interplay between the lung microbiome and lung cancer. Cancer Lett. 415, 40–48 (2018).
pubmed: 29197615 doi: 10.1016/j.canlet.2017.11.036
Urbaniak, C. et al. The microbiota of breast tissue and its association with breast cancer. Appl. Environ. Microbiol. 82, 5039–5048 (2016).
pubmed: 27342554 pmcid: 4968547 doi: 10.1128/AEM.01235-16
Avilés-Jiménez, F. et al. Microbiota studies in the bile duct strongly suggest a role for Helicobacter pylori in extrahepatic cholangiocarcinoma. Clin. Microbiol. Infect. 22, 178.e11–178.e22 (2016).
pubmed: 26493848 doi: 10.1016/j.cmi.2015.10.008
Garrett, W. S. Cancer and the microbiota. Science 348, 80–86 (2015).
pubmed: 25838377 pmcid: 5535753 doi: 10.1126/science.aaa4972
Wang, Y. et al. Crosstalk between autophagy and microbiota in cancer progression. Mol. Cancer 20, 163 (2021).
pubmed: 34895252 pmcid: 8665582 doi: 10.1186/s12943-021-01461-0
Park, E. M. et al. Targeting the gut and tumor microbiota in cancer. Nat. Med. 28, 690–703 (2022).
pubmed: 35440726 doi: 10.1038/s41591-022-01779-2
Di Domenico, E. G., Cavallo, I., Pontone, M., Toma, L. & Ensoli, F. Biofilm producing Salmonella typhi: chronic colonization and development of gallbladder cancer. Int. J. Mol. Sci. 18, 1887 (2017).
pubmed: 28858232 pmcid: 5618536 doi: 10.3390/ijms18091887
Huang, Y. et al. Identification of helicobacter species in human liver samples from patients with primary hepatocellular carcinoma. J. Clin. Pathol. 57, 1273–1277 (2004).
pubmed: 15563667 pmcid: 1770525 doi: 10.1136/jcp.2004.018556
Wang, F., Meng, W., Wang, B. & Qiao, L. Helicobacter pylori-induced gastric inflammation and gastric cancer. Cancer Lett. 345, 196–202 (2014).
pubmed: 23981572 doi: 10.1016/j.canlet.2013.08.016
Helmink, B. A., Khan, M. A. W., Hermann, A., Gopalakrishnan, V. & Wargo, J. A. The microbiome, cancer, and cancer therapy. Nat. Med. 25, 377–388 (2019).
pubmed: 30842679 doi: 10.1038/s41591-019-0377-7
Sun, J. & Kato, I. Gut microbiota, inflammation and colorectal cancer. Genes Dis. 3, 130–143 (2016).
pubmed: 28078319 pmcid: 5221561 doi: 10.1016/j.gendis.2016.03.004
Mangerich, A. et al. Infection-induced colitis in mice causes dynamic and tissue-specific changes in stress response and DNA damage leading to colon cancer. Proc. Natl Acad. Sci. USA 109, E1820–E1829 (2012).
pubmed: 22689960 pmcid: 3390855 doi: 10.1073/pnas.1207829109
Kostic, A. D. et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 14, 207–215 (2013).
pubmed: 23954159 pmcid: 3772512 doi: 10.1016/j.chom.2013.07.007
Hu, D. et al. Cellular senescence and hematological malignancies: from pathogenesis to therapeutics. Pharm. Ther. 223, 107817 (2021).
doi: 10.1016/j.pharmthera.2021.107817
Hernandez-Segura, A., Nehme, J. & Demaria, M. Hallmarks of cellular senescence. Trends Cell Biol. 28, 436–453 (2018).
pubmed: 29477613 doi: 10.1016/j.tcb.2018.02.001
Wang, B., Kohli, J. & Demaria, M. Senescent cells in cancer therapy: friends or foes? Trends Cancer 6, 838–857 (2020).
pubmed: 32482536 doi: 10.1016/j.trecan.2020.05.004
Schmitt, C. A., Wang, B. & Demaria, M. Senescence and cancer — role and therapeutic opportunities. Nat. Rev. Clin. Oncol. 19, 619–636 (2022).
pubmed: 36045302 pmcid: 9428886 doi: 10.1038/s41571-022-00668-4
Birch, J. & Gil, J. Senescence and the SASP: many therapeutic avenues. Genes Dev. 34, 1565–1576 (2020).
pubmed: 33262144 pmcid: 7706700 doi: 10.1101/gad.343129.120
Rao, S. G. & Jackson, J. G. SASP: tumor suppressor or promoter? Yes! Trends Cancer 2, 676–687 (2016).
pubmed: 28741506 doi: 10.1016/j.trecan.2016.10.001
Kansara, M. et al. Immune response to RB1-regulated senescence limits radiation-induced osteosarcoma formation. J. Clin. Invest. 123, 5351–5360 (2013).
pubmed: 24231354 pmcid: 3859382 doi: 10.1172/JCI70559
Lesina, M. et al. RelA regulates CXCL1/CXCR2-dependent oncogene-induced senescence in murine Kras-driven pancreatic carcinogenesis. J. Clin. Invest. 126, 2919–2932 (2016).
pubmed: 27454298 pmcid: 4966329 doi: 10.1172/JCI86477
Chen, Z. et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436, 725–730 (2005).
pubmed: 16079851 pmcid: 1939938 doi: 10.1038/nature03918
Gruenbaum, Y. & Foisner, R. Lamins: nuclear intermediate filament proteins with fundamental functions in nuclear mechanics and genome regulation. Annu. Rev. Biochem. 84, 131–164 (2015).
pubmed: 25747401 doi: 10.1146/annurev-biochem-060614-034115
Freund, A., Laberge, R.-M., Demaria, M. & Campisi, J. Lamin B1 loss is a senescence-associated biomarker. Mol. Biol. Cell 23, 2066–2075 (2012).
pubmed: 22496421 pmcid: 3364172 doi: 10.1091/mbc.e11-10-0884
Shimi, T. et al. The role of nuclear lamin B1 in cell proliferation and senescence. Genes Dev. 25, 2579–2593 (2011).
pubmed: 22155925 pmcid: 3248680 doi: 10.1101/gad.179515.111
Shah, P. P. et al. Lamin B1 depletion in senescent cells triggers large-scale changes in gene expression and the chromatin landscape. Genes Dev. 27, 1787–1799 (2013).
pubmed: 23934658 pmcid: 3759695 doi: 10.1101/gad.223834.113
Qin, H. et al. Pan-cancer analysis identifies LMNB1 as a target to redress Th1/Th2 imbalance and enhance PARP inhibitor response in human cancers. Cancer Cell Int. 22, 101 (2022).
pubmed: 35241075 pmcid: 8896121 doi: 10.1186/s12935-022-02467-4
Yang, Y. et al. Lamin B1 is a potential therapeutic target and prognostic biomarker for hepatocellular carcinoma. Bioengineered 13, 9211–9231 (2022).
pubmed: 35436411 pmcid: 9161935 doi: 10.1080/21655979.2022.2057896
Radspieler, M. M. et al. Lamin-B1 is a senescence-associated biomarker in clear-cell renal cell carcinoma. Oncol. Lett. 18, 2654–2660 (2019).
pubmed: 31402955 pmcid: 6676677
Li, W. et al. Lamin B1 overexpresses in lung adenocarcinoma and promotes proliferation in lung cancer cells via AKT pathway. Onco. Targets Ther. 13, 3129–3139 (2020).
pubmed: 32346296 pmcid: 7167283 doi: 10.2147/OTT.S229997
Yu, D. et al. Exosomes as a new frontier of cancer liquid biopsy. Mol. Cancer 21, 56 (2022).
pubmed: 35180868 pmcid: 8855550 doi: 10.1186/s12943-022-01509-9
Dang, D. K. & Park, B. H. Circulating tumor DNA: current challenges for clinical utility. J. Clin. Invest. 132, e154941 (2022).
pubmed: 35703177 pmcid: 9197509 doi: 10.1172/JCI154941
Bettegowda, C. et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci. Transl. Med. 6, 224ra24 (2014).
pubmed: 24553385 pmcid: 4017867 doi: 10.1126/scitranslmed.3007094
Aucamp, J., Bronkhorst, A. J., Badenhorst, C. P. S. & Pretorius, P. J. The diverse origins of circulating cell-free DNA in the human body: a critical re-evaluation of the literature. Biol. Rev. Camb. Philos. Soc. 93, 1649–1683 (2018).
pubmed: 29654714 doi: 10.1111/brv.12413
Snyder, M. W., Kircher, M., Hill, A. J., Daza, R. M. & Shendure, J. Cell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-of-origin. Cell 164, 57–68 (2016).
pubmed: 26771485 pmcid: 4715266 doi: 10.1016/j.cell.2015.11.050
Cheng, M. L. et al. Circulating tumor DNA in advanced solid tumors: clinical relevance and future directions. CA Cancer J. Clin. 71, 176–190 (2021).
pubmed: 33165928 doi: 10.3322/caac.21650
Higgins, M. J. et al. Detection of tumor PIK3CA status in metastatic breast cancer using peripheral blood. Clin. Cancer Res. 18, 3462–3469 (2012).
pubmed: 22421194 pmcid: 3533370 doi: 10.1158/1078-0432.CCR-11-2696
Magbanua, M. J. M. et al. Circulating tumor DNA and magnetic resonance imaging to predict neoadjuvant chemotherapy response and recurrence risk. NPJ Breast Cancer 7, 32 (2021).
pubmed: 33767190 pmcid: 7994408 doi: 10.1038/s41523-021-00239-3
Pellini, B. & Chaudhuri, A. A. Circulating tumor DNA minimal residual disease detection of non-small-cell lung cancer treated with curative intent. J. Clin. Oncol. 40, 567–575 (2022).
pubmed: 34985936 pmcid: 8853615 doi: 10.1200/JCO.21.01929
Malla, M., Loree, J. M., Kasi, P. M. & Parikh, A. R. Using circulating tumor DNA in colorectal cancer: current and evolving practices. J. Clin. Oncol. 40, 2846–2857 (2022).
pubmed: 35839443 pmcid: 9390824 doi: 10.1200/JCO.21.02615
Oxnard, G. R. et al. Assessment of resistance mechanisms and clinical implications in patients with EGFR T790M-positive lung cancer and acquired resistance to osimertinib. JAMA Oncol. 4, 1527–1534 (2018).
pubmed: 30073261 doi: 10.1001/jamaoncol.2018.2969
Quigley, D. et al. Analysis of circulating cell-free DNA identifies multiclonal heterogeneity of BRCA2 reversion mutations associated with resistance to PARP inhibitors. Cancer Discov. 7, 999–1005 (2017).
pubmed: 28450426 pmcid: 5581695 doi: 10.1158/2159-8290.CD-17-0146
Ma, S. et al. Clinical application and detection techniques of liquid biopsy in gastric cancer. Mol. Cancer 22, 7 (2023).
pubmed: 36627698 pmcid: 9832643 doi: 10.1186/s12943-023-01715-z
Aceto, N., Toner, M., Maheswaran, S. & Haber, D. A. En route to metastasis: circulating tumor cell clusters and epithelial-to-mesenchymal transition. Trends Cancer 1, 44–52 (2015).
pubmed: 28741562 doi: 10.1016/j.trecan.2015.07.006
van de Stolpe, A., Pantel, K., Sleijfer, S., Terstappen, L. W. & den Toonder, J. M. J. Circulating tumor cell isolation and diagnostics: toward routine clinical use. Cancer Res. 71, 5955–5960 (2011).
pubmed: 21896640 doi: 10.1158/0008-5472.CAN-11-1254
Castro-Giner, F. & Aceto, N. Tracking cancer progression: from circulating tumor cells to metastasis. Genome Med. 12, 31 (2020).
pubmed: 32192534 pmcid: 7082968 doi: 10.1186/s13073-020-00728-3
Alix-Panabières, C. & Pantel, K. Circulating tumor cells: liquid biopsy of cancer. Clin. Chem. 59, 110–118 (2013).
pubmed: 23014601 doi: 10.1373/clinchem.2012.194258
Kostopoulos, I. V. et al. Circulating plasma cells in newly diagnosed multiple myeloma: prognostic and more. J. Clin. Oncol. 41, 708–710 (2023).
pubmed: 36179274 doi: 10.1200/JCO.22.01606
Paoletti, C. et al. Comprehensive mutation and copy number profiling in archived circulating breast cancer tumor cells documents heterogeneous resistance mechanisms. Cancer Res. 78, 1110–1122 (2018).
pubmed: 29233927 doi: 10.1158/0008-5472.CAN-17-2686
Boral, D. et al. Molecular characterization of breast cancer CTCs associated with brain metastasis. Nat. Commun. 8, 196 (2017).
pubmed: 28775303 pmcid: 5543046 doi: 10.1038/s41467-017-00196-1
Scher, H. I. et al. Association of AR-V7 on circulating tumor cells as a treatment-specific biomarker with outcomes and survival in castration-resistant prostate cancer. JAMA Oncol. 2, 1441–1449 (2016).
pubmed: 27262168 pmcid: 5206761 doi: 10.1001/jamaoncol.2016.1828
Chemi, F. et al. Pulmonary venous circulating tumor cell dissemination before tumor resection and disease relapse. Nat. Med. 25, 1534–1539 (2019).
pubmed: 31591595 pmcid: 6986897 doi: 10.1038/s41591-019-0593-1
Miyamoto, D. T., Ting, D. T., Toner, M., Maheswaran, S. & Haber, D. A. Single-cell analysis of circulating tumor cells as a window into tumor heterogeneity. Cold Spring Harb. Symp. Quant. Biol. 81, 269–274 (2016).
pubmed: 28389596 doi: 10.1101/sqb.2016.81.031120
Pan, B. T. & Johnstone, R. M. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell 33, 967–978 (1983).
pubmed: 6307529 doi: 10.1016/0092-8674(83)90040-5
Kalluri, R. & LeBleu, V. S. The biology, function, and biomedical applications of exosomes. Science 367, eaau6977 (2020).
pubmed: 32029601 pmcid: 7717626 doi: 10.1126/science.aau6977
Paskeh, M. D. A. et al. Emerging role of exosomes in cancer progression and tumor microenvironment remodeling. J. Hematol. Oncol. 15, 83 (2022).
pubmed: 35765040 pmcid: 9238168 doi: 10.1186/s13045-022-01305-4
Kalluri, R. The biology and function of exosomes in cancer. J. Clin. Invest. 126, 1208–1215 (2016).
pubmed: 27035812 pmcid: 4811149 doi: 10.1172/JCI81135
Dai, J. et al. Exosomes: key players in cancer and potential therapeutic strategy. Signal Transduct. Target Ther. 5, 145 (2020).
pubmed: 32759948 pmcid: 7406508 doi: 10.1038/s41392-020-00261-0
Cui, S., Cheng, Z., Qin, W. & Jiang, L. Exosomes as a liquid biopsy for lung cancer. Lung Cancer 116, 46–54 (2018).
pubmed: 29413050 doi: 10.1016/j.lungcan.2017.12.012
Guo, W. et al. Liquid biopsy analysis of lipometabolic exosomes in pancreatic cancer. Cytokine Growth Factor Rev. 73, 69–77 (2023).
pubmed: 37684117 doi: 10.1016/j.cytogfr.2023.07.006
Fu, M. et al. Exosomes in gastric cancer: roles, mechanisms, and applications. Mol. Cancer 18, 41 (2019).
pubmed: 30876419 pmcid: 6419325 doi: 10.1186/s12943-019-1001-7
Yang, S. et al. Detection of mutant KRAS and TP53 DNA in circulating exosomes from healthy individuals and patients with pancreatic cancer. Cancer Biol. Ther. 18, 158–165 (2017).
pubmed: 28121262 pmcid: 5389423 doi: 10.1080/15384047.2017.1281499
Kahlert, C. et al. Identification of double-stranded genomic DNA spanning all chromosomes with mutated KRAS and p53 DNA in the serum exosomes of patients with pancreatic cancer. J. Biol. Chem. 289, 3869–3875 (2014).
pubmed: 24398677 pmcid: 3924256 doi: 10.1074/jbc.C113.532267
Salehi, M. & Sharifi, M. Exosomal miRNAs as novel cancer biomarkers: challenges and opportunities. J. Cell. Physiol. 233, 6370–6380 (2018).
pubmed: 29323722 doi: 10.1002/jcp.26481
Thind, A. & Wilson, C. Exosomal miRNAs as cancer biomarkers and therapeutic targets. Extracell. Vesicles 5, 31292 (2016).
doi: 10.3402/jev.v5.31292
Bhagirath, D. et al. microRNA-1246 is an exosomal biomarker for aggressive prostate cancer. Cancer Res. 78, 1833–1844 (2018).
pubmed: 29437039 pmcid: 5890910 doi: 10.1158/0008-5472.CAN-17-2069
Zhou, W. et al. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell 25, 501–515 (2014).
pubmed: 24735924 pmcid: 4016197 doi: 10.1016/j.ccr.2014.03.007
Kucharzewska, P. et al. Exosomes reflect the hypoxic status of glioma cells and mediate hypoxia-dependent activation of vascular cells during tumor development. Proc. Natl Acad. Sci. USA 110, 7312–7317 (2013).
pubmed: 23589885 pmcid: 3645587 doi: 10.1073/pnas.1220998110
Yokoi, A. et al. Malignant extracellular vesicles carrying MMP1 mRNA facilitate peritoneal dissemination in ovarian cancer. Nat. Commun. 8, 14470 (2017).
pubmed: 28262727 pmcid: 5343481 doi: 10.1038/ncomms14470
Peinado, H. et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat. Med. 18, 883–891 (2012).
pubmed: 22635005 pmcid: 3645291 doi: 10.1038/nm.2753
Costa-Silva, B. et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat. Cell Biol. 17, 816–826 (2015).
pubmed: 25985394 pmcid: 5769922 doi: 10.1038/ncb3169
Zhang, H. et al. Exosome-delivered EGFR regulates liver microenvironment to promote gastric cancer liver metastasis. Nat. Commun. 8, 15016 (2017).
pubmed: 28393839 pmcid: 5394240 doi: 10.1038/ncomms15016
Le, M. T. N. et al. miR-200-containing extracellular vesicles promote breast cancer cell metastasis. J. Clin. Invest. 124, 5109–5128 (2014).
pubmed: 25401471 pmcid: 4348969 doi: 10.1172/JCI75695
Hu, Y. et al. Fibroblast-derived exosomes contribute to chemoresistance through priming cancer stem cells in colorectal cancer. PLoS ONE 10, e0125625 (2015).
pubmed: 25938772 pmcid: 4418721 doi: 10.1371/journal.pone.0125625
Chen, W. et al. Exosomes from drug-resistant breast cancer cells transmit chemoresistance by a horizontal transfer of microRNAs. PLoS ONE 9, e95240 (2014).
pubmed: 24740415 pmcid: 3989268 doi: 10.1371/journal.pone.0095240
Au Yeung, C. L. et al. Exosomal transfer of stroma-derived miR21 confers paclitaxel resistance in ovarian cancer cells through targeting APAF1. Nat. Commun. 7, 11150 (2016).
pubmed: 27021436 pmcid: 4820618 doi: 10.1038/ncomms11150
Binenbaum, Y. et al. Transfer of miRNA in macrophage-derived exosomes induces drug resistance in pancreatic adenocarcinoma. Cancer Res. 78, 5287–5299 (2018).
pubmed: 30042153 doi: 10.1158/0008-5472.CAN-18-0124
Zhou, Y., Zhang, Y., Gong, H., Luo, S. & Cui, Y. The role of exosomes and their applications in cancer. Int. J. Mol. Sci. 22, 12204 (2021).
pubmed: 34830085 pmcid: 8622108 doi: 10.3390/ijms222212204
Wu, Q., Qian, W., Sun, X. & Jiang, S. Small-molecule inhibitors, immune checkpoint inhibitors, and more: FDA-approved novel therapeutic drugs for solid tumors from 1991 to 2021. J. Hematol. Oncol. 15, 143 (2022).
pubmed: 36209184 pmcid: 9548212 doi: 10.1186/s13045-022-01362-9
Li, G., Qin, Y., Xie, C., Wu, Y.-L. & Chen, X. Trends in oncology drug innovation in China. Nat. Rev. Drug Discov. 20, 15–16 (2021).
pubmed: 33154536 doi: 10.1038/d41573-020-00195-w
Cohen, P., Cross, D. & Jänne, P. A. Kinase drug discovery 20 years after imatinib: progress and future directions. Nat. Rev. Drug Discov. 20, 551–569 (2021).
pubmed: 34002056 pmcid: 8127496 doi: 10.1038/s41573-021-00195-4
Patricelli, M. P. et al. Selective inhibition of oncogenic KRAS output with small molecules targeting the inactive state. Cancer Discov. 6, 316–329 (2016).
pubmed: 26739882 doi: 10.1158/2159-8290.CD-15-1105
Parikh, K. et al. Drugging KRAS: current perspectives and state-of-art review. J. Hematol. Oncol. 15, 152 (2022).
pubmed: 36284306 pmcid: 9597994 doi: 10.1186/s13045-022-01375-4
LoRusso, P. M. & Sebolt-Leopold, J. S. One step at a time — clinical evidence that KRAS is indeed druggable. N. Engl. J. Med. 383, 1277–1278 (2020).
pubmed: 32955175 doi: 10.1056/NEJMe2026372
Keeton, A. B., Salter, E. A. & Piazza, G. A. The RAS-effector interaction as a drug target. Cancer Res. 77, 221–226 (2017).
pubmed: 28062402 pmcid: 5243175 doi: 10.1158/0008-5472.CAN-16-0938
Canon, J. et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature 575, 217–223 (2019).
pubmed: 31666701 doi: 10.1038/s41586-019-1694-1
Ostrem, J. M., Peters, U., Sos, M. L., Wells, J. A. & Shokat, K. M. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature 503, 548–551 (2013).
pubmed: 24256730 pmcid: 4274051 doi: 10.1038/nature12796
Skoulidis, F. et al. Sotorasib for lung cancers with KRAS p.G12C mutation. N. Engl. J. Med. 384, 2371–2381 (2021).
pubmed: 34096690 pmcid: 9116274 doi: 10.1056/NEJMoa2103695
Hong, D. S. et al. KRAS(G12C) inhibition with sotorasib in advanced solid tumors. N. Engl. J. Med. 383, 1207–1217 (2020).
pubmed: 32955176 pmcid: 7571518 doi: 10.1056/NEJMoa1917239
de Langen, A. J. et al. Sotorasib versus docetaxel for previously treated non-small-cell lung cancer with KRAS(G12C) mutation: a randomised, open-label, phase 3 trial. Lancet 401, 733–746 (2023).
pubmed: 36764316 doi: 10.1016/S0140-6736(23)00221-0
Fakih, M. G. et al. Sotorasib for previously treated colorectal cancers with KRAS(G12C) mutation (CodeBreaK100): a prespecified analysis of a single-arm, phase 2 trial. Lancet Oncol. 23, 115–124 (2022).
pubmed: 34919824 doi: 10.1016/S1470-2045(21)00605-7
Hallin, J. et al. The KRAS(G12C) inhibitor MRTX849 provides insight toward therapeutic susceptibility of KRAS-mutant cancers in mouse models and patients. Cancer Discov. 10, 54–71 (2020).
pubmed: 31658955 doi: 10.1158/2159-8290.CD-19-1167
Sabari, J. K. et al. Activity of adagrasib (MRTX849) in brain metastases: preclinical models and clinical data from patients with KRASG12C-mutant non-small cell lung cancer. Clin. Cancer Res. 28, 3318–3328 (2022).
pubmed: 35404402 pmcid: 9662862 doi: 10.1158/1078-0432.CCR-22-0383
Weiss, J. et al. LBA6 KRYSTAL-1: adagrasib (MRTX849) as monotherapy or combined with cetuximab (Cetux) in patients (Pts) with colorectal cancer (CRC) harboring a KRASG12C mutation. Ann. Oncol. 32, S1294 (2021).
doi: 10.1016/j.annonc.2021.08.2093
Yaeger, R. & Solit, D. B. Overcoming adaptive resistance to KRAS inhibitors through vertical pathway targeting. Clin. Cancer Res. 26, 1538–1540 (2020).
pubmed: 32001483 pmcid: 7453631 doi: 10.1158/1078-0432.CCR-19-4060
Singh, A. et al. A gene expression signature associated with “K-Ras addiction” reveals regulators of EMT and tumor cell survival. Cancer Cell 15, 489–500 (2009).
pubmed: 19477428 pmcid: 2743093 doi: 10.1016/j.ccr.2009.03.022
Muzumdar, M. D. et al. Survival of pancreatic cancer cells lacking KRAS function. Nat. Commun. 8, 1090 (2017).
pubmed: 29061961 pmcid: 5653666 doi: 10.1038/s41467-017-00942-5
Tanaka, N. et al. Clinical acquired resistance to KRAS(G12C) inhibition through a novel KRAS switch-II pocket mutation and polyclonal alterations converging on RAS-MAPK reactivation. Cancer Discov. 11, 1913–1922 (2021).
pubmed: 33824136 pmcid: 8338755 doi: 10.1158/2159-8290.CD-21-0365
Amodio, V. et al. EGFR blockade reverts resistance to KRAS(G12C) inhibition in colorectal cancer. Cancer Discov. 10, 1129–1139 (2020).
pubmed: 32430388 pmcid: 7416460 doi: 10.1158/2159-8290.CD-20-0187
Tsai, Y. S. et al. Rapid idiosyncratic mechanisms of clinical resistance to KRAS G12C inhibition. J. Clin. Invest. 132, e155523 (2022).
pubmed: 34990404 pmcid: 8843735 doi: 10.1172/JCI155523
Wang, X. et al. Identification of MRTX1133, a noncovalent, potent, and selective KRAS(G12D) inhibitor. J. Med. Chem. 65, 3123–3133 (2022).
pubmed: 34889605 doi: 10.1021/acs.jmedchem.1c01688
Hallin, J. et al. Anti-tumor efficacy of a potent and selective non-covalent KRAS(G12D) inhibitor. Nat. Med. 28, 2171–2182 (2022).
pubmed: 36216931 doi: 10.1038/s41591-022-02007-7
Ryan, M. B. & Corcoran, R. B. Therapeutic strategies to target RAS-mutant cancers. Nat. Rev. Clin. Oncol. 15, 709–720 (2018).
pubmed: 30275515 doi: 10.1038/s41571-018-0105-0
Welsch, M. E. et al. Multivalent small-molecule Pan-RAS inhibitors. Cell 168, 878–889.e29 (2017).
pubmed: 28235199 pmcid: 5362268 doi: 10.1016/j.cell.2017.02.006
Hong, S. H. et al. A Sos proteomimetic as a pan-Ras inhibitor. Proc. Natl Acad. Sci. USA 118, e2101027118 (2021).
pubmed: 33926964 pmcid: 8106295 doi: 10.1073/pnas.2101027118
Athuluri-Divakar, S. K. et al. A small molecule RAS-mimetic disrupts RAS association with effector proteins to block signaling. Cell 165, 643–655 (2016).
pubmed: 27104980 pmcid: 5006944 doi: 10.1016/j.cell.2016.03.045
Ross, S. J. et al. Targeting KRAS-dependent tumors with AZD4785, a high-affinity therapeutic antisense oligonucleotide inhibitor of KRAS. Sci. Transl. Med. 9, eaal5253 (2017).
pubmed: 28615361 doi: 10.1126/scitranslmed.aal5253
Spencer-Smith, R. et al. Inhibition of RAS function through targeting an allosteric regulatory site. Nat. Chem. Biol. 13, 62–68 (2017).
pubmed: 27820802 doi: 10.1038/nchembio.2231
Bond, M. J., Chu, L., Nalawansha, D. A., Li, K. & Crews, C. M. Targeted degradation of oncogenic KRAS(G12C) by VHL-recruiting PROTACs. ACS Cent. Sci. 6, 1367–1375 (2020).
pubmed: 32875077 pmcid: 7453568 doi: 10.1021/acscentsci.0c00411
Papke, B. & Der, C. J. Drugging RAS: know the enemy. Science 355, 1158–1163 (2017).
pubmed: 28302824 doi: 10.1126/science.aam7622
Kamerkar, S. et al. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature 546, 498–503 (2017).
pubmed: 28607485 pmcid: 5538883 doi: 10.1038/nature22341
Hou, P. & Wang, Y. A. Conquering oncogenic KRAS and its bypass mechanisms. Theranostics 12, 5691–5709 (2022).
pubmed: 35966590 pmcid: 9373815 doi: 10.7150/thno.71260
Karp, J. E. & Lancet, J. E. Tipifarnib in the treatment of newly diagnosed acute myelogenous leukemia. Biologics 2, 491–500 (2008).
pubmed: 19707379 pmcid: 2721391
Ho, A. L. et al. Tipifarnib in head and neck squamous cell carcinoma with HRAS mutations. J. Clin. Oncol. 39, 1856–1864 (2021).
pubmed: 33750196 pmcid: 8189627 doi: 10.1200/JCO.20.02903
Lee, H. W. et al. A phase II trial of tipifarnib for patients with previously treated, metastatic urothelial carcinoma harboring HRAS mutations. Clin. Cancer Res. 26, 5113–5119 (2020).
pubmed: 32636318 doi: 10.1158/1078-0432.CCR-20-1246
Hanna, G. J. et al. Tipifarnib in recurrent, metastatic HRAS-mutant salivary gland cancer. Cancer 126, 3972–3981 (2020).
pubmed: 32557577 doi: 10.1002/cncr.33036
Untch, B. R. et al. Tipifarnib inhibits HRAS-driven dedifferentiated thyroid cancers. Cancer Res. 78, 4642–4657 (2018).
pubmed: 29760048 pmcid: 6095730 doi: 10.1158/0008-5472.CAN-17-1925
Dhillon, S. Lonafarnib: first approval. Drugs 81, 283–289 (2021).
pubmed: 33590450 pmcid: 7985116 doi: 10.1007/s40265-020-01464-z
Bustinza-Linares, E., Kurzrock, R. & Tsimberidou, A. M. Salirasib in the treatment of pancreatic cancer. Future Oncol. 6, 885–891 (2010).
pubmed: 20528225 doi: 10.2217/fon.10.71
Yue, W., Wang, J., Li, Y., Fan, P. & Santen, R. J. Farnesylthiosalicylic acid blocks mammalian target of rapamycin signaling in breast cancer cells. Int. J. Cancer 117, 746–754 (2005).
pubmed: 15957161 doi: 10.1002/ijc.21222
Goldberg, L. & Kloog, Y. A Ras inhibitor tilts the balance between Rac and Rho and blocks phosphatidylinositol 3-kinase-dependent glioblastoma cell migration. Cancer Res. 66, 11709–11717 (2006).
pubmed: 17178866 doi: 10.1158/0008-5472.CAN-06-1878
Blum, R., Jacob-Hirsch, J., Amariglio, N., Rechavi, G. & Kloog, Y. Ras inhibition in glioblastoma down-regulates hypoxia-inducible factor-1alpha, causing glycolysis shutdown and cell death. Cancer Res. 65, 999–1006 (2005).
pubmed: 15705901 doi: 10.1158/0008-5472.999.65.3
Halaschek-Wiener, J. et al. A novel Ras antagonist regulates both oncogenic Ras and the tumor suppressor p53 in colon cancer cells. Mol. Med. 6, 693–704 (2000).
pubmed: 11055588 pmcid: 1949977 doi: 10.1007/BF03402049
Halaschek-Wiener, J., Kloog, Y., Wacheck, V. & Jansen, B. Farnesyl thiosalicylic acid chemosensitizes human melanoma in vivo. J. Invest. Dermatol. 120, 1–7 (2003).
doi: 10.1046/j.1523-1747.2003.12009.x
Beiner, M. E. et al. Ras antagonist inhibits growth and chemosensitizes human epithelial ovarian cancer cells. Int. J. Gynecol. Cancer 16, 200–206 (2006).
pubmed: 16515591 doi: 10.1136/ijgc-00009577-200602001-00032
Stärkel, P. et al. Ras inhibition in hepatocarcinoma by S-trans-trans-farnesylthiosalicyclic acid: Association of its tumor preventive effect with cell proliferation, cell cycle events, and angiogenesis. Mol. Carcinog. 51, 816–825 (2012).
pubmed: 21882255 doi: 10.1002/mc.20849
Gana-Weisz, M. et al. The Ras inhibitor S-trans,trans-farnesylthiosalicylic acid chemosensitizes human tumor cells without causing resistance. Clin. Cancer Res. 8, 555–565 (2002).
pubmed: 11839677
Riely, G. J. et al. A phase II trial of salirasib in patients with lung adenocarcinomas with KRAS mutations. J. Thorac. Oncol. 6, 1435–1437 (2011).
pubmed: 21847063 doi: 10.1097/JTO.0b013e318223c099
Chandra, A. et al. The GDI-like solubilizing factor PDEδ sustains the spatial organization and signalling of Ras family proteins. Nat. Cell Biol. 14, 148–158 (2011).
pubmed: 22179043 doi: 10.1038/ncb2394
Zimmermann, G. et al. Small molecule inhibition of the KRAS-PDEδ interaction impairs oncogenic KRAS signalling. Nature 497, 638–642 (2013).
pubmed: 23698361 doi: 10.1038/nature12205
Papke, B. et al. Identification of pyrazolopyridazinones as PDEδ inhibitors. Nat. Commun. 7, 11360 (2016).
pubmed: 27094677 pmcid: 4843002 doi: 10.1038/ncomms11360
Cheng, J., Li, Y., Wang, X., Dong, G. & Sheng, C. Discovery of novel PDEδ degraders for the treatment of KRAS mutant colorectal cancer. J. Med. Chem. 63, 7892–7905 (2020).
pubmed: 32603594 doi: 10.1021/acs.jmedchem.0c00929
Sun, Q. et al. Discovery of small molecules that bind to K-Ras and inhibit Sos-mediated activation. Angew. Chem. Int. Ed. Engl. 51, 6140–6143 (2012).
pubmed: 22566140 pmcid: 3620661 doi: 10.1002/anie.201201358
Leshchiner, E. S. et al. Direct inhibition of oncogenic KRAS by hydrocarbon-stapled SOS1 helices. Proc. Natl Acad. Sci. USA 112, 1761–1766 (2015).
pubmed: 25624485 pmcid: 4330742 doi: 10.1073/pnas.1413185112
Hillig, R. C. et al. Discovery of potent SOS1 inhibitors that block RAS activation via disruption of the RAS–SOS1 interaction. Proc. Natl Acad. Sci. USA 116, 2551–2560 (2019).
pubmed: 30683722 pmcid: 6377443 doi: 10.1073/pnas.1812963116
Chen, T. et al. Inhibition of son of sevenless homologue 1 (SOS1): promising therapeutic treatment for KRAS-mutant cancers. Eur. J. Med. Chem. 261, 115828 (2023).
pubmed: 37778239 doi: 10.1016/j.ejmech.2023.115828
Hofmann, M. H. et al. Bi-3406, a potent and selective sos1–kras interaction inhibitor, is effective in kras-driven cancers through combined mek inhibition. Cancer Discov. 11, 142–157 (2021).
pubmed: 32816843 doi: 10.1158/2159-8290.CD-20-0142
Zhou, Z. et al. Discovery of a potent, cooperative, and selective SOS1 PROTAC ZZ151 with in vivo antitumor efficacy in KRAS-mutant cancers. J. Med. Chem. 66, 4197–4214 (2023).
pubmed: 36897932 doi: 10.1021/acs.jmedchem.3c00075
Ruess, D. A. et al. Mutant KRAS-driven cancers depend on PTPN11/SHP2 phosphatase. Nat. Med. 24, 954–960 (2018).
pubmed: 29808009 doi: 10.1038/s41591-018-0024-8
Liu, C. et al. Combinations with allosteric SHP2 inhibitor TNO155 to block receptor tyrosine kinase signaling. Clin. Cancer Res. 27, 342–354 (2021).
pubmed: 33046519 doi: 10.1158/1078-0432.CCR-20-2718
Lamarche, M. J. et al. Identification of TNO155, an allosteric SHP2 inhibitor for the treatment of cancer. J. Med. Chem. 63, 13578–13594 (2020).
pubmed: 32910655 doi: 10.1021/acs.jmedchem.0c01170
Chen, Y. N. P. et al. Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases. Nature 535, 148–152 (2016).
pubmed: 27362227 doi: 10.1038/nature18621
De Santis, M. C., Gulluni, F., Campa, C. C., Martini, M. & Hirsch, E. Targeting PI3K signaling in cancer: Challenges and advances. Biochim. Biophys. Acta Rev. Cancer 1871, 361–366 (2019).
pubmed: 30946868 doi: 10.1016/j.bbcan.2019.03.003
Stephen, A. G., Esposito, D., Bagni, R. K. & McCormick, F. Dragging ras back in the ring. Cancer Cell 25, 272–281 (2014).
pubmed: 24651010 doi: 10.1016/j.ccr.2014.02.017
Meng, D. et al. Development of PI3K inhibitors: advances in clinical trials and new strategies (Review). Pharmacol. Res. 173, 105900 (2021).
pubmed: 34547385 doi: 10.1016/j.phrs.2021.105900
Liu, N. et al. BAY 80-6946 is a highly selective intravenous pI3K inhibitor with potent p110α and p110δ activities in tumor cell lines and xenograft models. Mol. Cancer Ther. 12, 2319–2330 (2013).
pubmed: 24170767 doi: 10.1158/1535-7163.MCT-12-0993-T
Kojima, T. et al. Phase II study of BKM120 in patients with advanced esophageal squamous cell carcinoma (EPOC1303). Esophagus 19, 702–710 (2022).
pubmed: 35904643 pmcid: 9436835 doi: 10.1007/s10388-022-00928-3
De Gooijer, M. C. et al. Buparlisib is a brain penetrable pan-PI3K inhibitor. Sci. Rep. 8, 10784 (2018).
Song, K. W. et al. RTK-dependent inducible degradation of mutant PI3Kα drives GDC-0077 (Inavolisib) efficacy. Cancer Discov. 12, 204–219 (2022).
pubmed: 34544753 doi: 10.1158/2159-8290.CD-21-0072
Mateo, J. et al. A first-time-in-human study of GSK2636771, a phosphoinositide 3 kinase beta-selective inhibitor, in patients with advanced solid tumors. Clin. Cancer Res. 23, 5981–5992 (2017).
pubmed: 28645941 doi: 10.1158/1078-0432.CCR-17-0725
Barlaam, B. et al. Discovery of (R)-8-(1-(3,5-difluorophenylamino)ethyl)-N,N-dimethyl-2-morpholino-4-oxo-4H-chromene-6-carboxamide (AZD8186): a potent and selective inhibitor of PI3Kβ and PI3Kδ for the treatment of PTEN-deficient cancers. J. Med. Chem. 58, 943–962 (2015).
pubmed: 25514658 doi: 10.1021/jm501629p
Yu, M. et al. Development and safety of PI3K inhibitors in cancer. Arch. Toxicol. 97, 635–650 (2023).
pubmed: 36773078 pmcid: 9968701 doi: 10.1007/s00204-023-03440-4
Dhillon, S. & Keam, S. J. Umbralisib: first approval. Drugs 81, 857–866 (2021).
pubmed: 33797740 doi: 10.1007/s40265-021-01504-2
Roskoski, R. J. Properties of FDA-approved small molecule phosphatidylinositol 3-kinase inhibitors prescribed for the treatment of malignancies. Pharmacol. Res. 168, 105579 (2021).
pubmed: 33774181 doi: 10.1016/j.phrs.2021.105579
Rodon, J., Dienstmann, R., Serra, V. & Tabernero, J. Development of PI3K inhibitors: lessons learned from early clinical trials. Nat. Rev. Clin. Oncol. 10, 143–153 (2013).
pubmed: 23400000 doi: 10.1038/nrclinonc.2013.10
Addie, M. et al. Discovery of 4-amino-N-[(1 S)-1-(4-chlorophenyl)-3-hydroxypropyl]-1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperidine-4-carboxamide (AZD5363), an orally bioavailable, potent inhibitor of Akt kinases. J. Med. Chem. 56, 2059–2073 (2013).
pubmed: 23394218 doi: 10.1021/jm301762v
Lin, J. et al. Targeting activated Akt with GDC-0068, a novel selective Akt inhibitor that is efficacious in multiple tumor models. Clin. Cancer Res. 19, 1760–1772 (2013).
pubmed: 23287563 doi: 10.1158/1078-0432.CCR-12-3072
Toson, B., Fortes, I. S., Roesler, R. & Andrade, S. F. Targeting Akt/PKB in pediatric tumors: a review from preclinical to clinical trials. Pharm. Res. 183, 106403 (2022).
doi: 10.1016/j.phrs.2022.106403
Chen, Y. & Zhou, X. Research progress of mTOR inhibitors. Eur. J. Med. Chem. 208, 112820 (2020).
pubmed: 32966896 doi: 10.1016/j.ejmech.2020.112820
Coppin, C. Everolimus: the first approved product for patients with advanced renal cell cancer after sunitinib and/or sorafenib. Biologics 4, 91–101 (2010).
pubmed: 20531964 pmcid: 2880340
Raphael, J. et al. Everolimus in advanced breast cancer: a systematic review and meta-analysis. Target Oncol. 15, 723–732 (2020).
pubmed: 33151471 doi: 10.1007/s11523-020-00770-6
Kwitkowski, V. E. et al. FDA approval summary: temsirolimus as treatment for advanced renal cell carcinoma. Oncologist 15, 428–435 (2010).
pubmed: 20332142 pmcid: 3227966 doi: 10.1634/theoncologist.2009-0178
Dancey, J. MTOR signaling and drug development in cancer. Nat. Rev. Clin. Oncol. 7, 209–219 (2010).
pubmed: 20234352 doi: 10.1038/nrclinonc.2010.21
Davies, H. et al. Mutations of the BRAF gene in human cancer. Nature 417, 949–954 (2002).
pubmed: 12068308 doi: 10.1038/nature00766
Sullivan, R. J. et al. First-in-class ERK1/2 inhibitor ulixertinib (BVD-523) in patients with MAPK mutant advanced solid tumors: results of a phase I dose-escalation and expansion study. Cancer Discov. 8, 184–195 (2018).
pubmed: 29247021 doi: 10.1158/2159-8290.CD-17-1119
Callahan, M. K. et al. Progression of RAS-mutant leukemia during RAF inhibitor treatment. N. Engl. J. Med. 367, 2316–2321 (2012).
pubmed: 23134356 pmcid: 3627494 doi: 10.1056/NEJMoa1208958
Degirmenci, U., Yap, J., Sim, Y. R. M., Qin, S. & Hu, J. Drug resistance in targeted cancer therapies with RAF inhibitors. Cancer Drug Resist. 4, 665–683 (2021).
pubmed: 35582307 pmcid: 9094075
Peng, S. B. et al. Inhibition of RAF isoforms and active dimers by LY3009120 leads to anti-tumor activities in RAS or BRAF mutant cancers. Cancer Cell 28, 384–398 (2015).
pubmed: 26343583 doi: 10.1016/j.ccell.2015.08.002
Monaco, K. A. et al. LXH254, a potent and selective ARAF-Sparing inhibitor of BRAF and CRAF for the treatment of MAPK-Driven tumors. Clin. Cancer Res. 27, 2061–2073 (2021).
pubmed: 33355204 doi: 10.1158/1078-0432.CCR-20-2563
Sullivan, R. J. et al. A phase I study of LY3009120, a pan-RAF inhibitor, in patients with advanced or metastatic cancer. Mol. Cancer Ther. 19, 460–467 (2020).
pubmed: 31645440 doi: 10.1158/1535-7163.MCT-19-0681
Zhang, C. et al. RAF inhibitors that evade paradoxical MAPK pathway activation. Nature 526, 583–586 (2015).
pubmed: 26466569 doi: 10.1038/nature14982
Moschos, S. J. et al. Development of MK-8353, an orally administered ERK1/2 inhibitor, in patients with advanced solid tumors. JCI Insight 3, e92352 (2018).
pubmed: 29467321 pmcid: 5916243 doi: 10.1172/jci.insight.92352
Morris, E. J. et al. Discovery of a novel ERK inhibitor with activity in models of acquired resistance to BRAF and MEK inhibitors. Cancer Discov. 3, 742–750 (2013).
pubmed: 23614898 doi: 10.1158/2159-8290.CD-13-0070
Poulikakos, P. I. & Solit, D. B. Resistance to MEK inhibitors: should we co-target upstream? Sci. Signal 4, pe16 (2011).
pubmed: 21447797 doi: 10.1126/scisignal.2001948
Engelman, J. A. et al. Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat. Med. 14, 1351–1356 (2008).
pubmed: 19029981 pmcid: 2683415 doi: 10.1038/nm.1890
Posch, C. et al. Combined targeting of MEK and PI3K/mTOR effector pathways is necessary to effectively inhibit NRAS mutant melanoma in vitro and in vivo. Proc. Natl Acad. Sci. USA 110, 4015–4020 (2013).
pubmed: 23431193 pmcid: 3593920 doi: 10.1073/pnas.1216013110
Junttila, M. R. et al. Modeling targeted inhibition of MEK and PI3 kinase in human pancreatic cancer. Mol. Cancer Ther. 14, 40–47 (2015).
pubmed: 25376606 doi: 10.1158/1535-7163.MCT-14-0030
She, Q. B. et al. 4E-BP1 is a key effector of the oncogenic activation of the AKT and ERK signaling pathways that integrates their function in tumors. Cancer Cell 18, 39–51 (2010).
pubmed: 20609351 pmcid: 3286650 doi: 10.1016/j.ccr.2010.05.023
Mughal, M. J., Bhadresha, K. & Kwok, H. F. CDK inhibitors from past to present: a new wave of cancer therapy. Semin. Cancer Biol. 88, 106–122 (2023).
pubmed: 36565895 doi: 10.1016/j.semcancer.2022.12.006
Wang, S. & Chen, F.-E. Small-molecule MDM2 inhibitors in clinical trials for cancer therapy. Eur. J. Med. Chem. 236, 114334 (2022).
pubmed: 35429910 doi: 10.1016/j.ejmech.2022.114334
Ingham, M. & Schwartz, G. K. Cell-cycle therapeutics come of age. J. Clin. Oncol. 35, 2949–2959 (2017).
pubmed: 28580868 pmcid: 6075824 doi: 10.1200/JCO.2016.69.0032
Goel, S., Bergholz, J. S. & Zhao, J. J. Targeting CDK4 and CDK6 in cancer. Nat. Rev. Cancer 22, 356–372 (2022).
pubmed: 35304604 pmcid: 9149100 doi: 10.1038/s41568-022-00456-3
Fassl, A., Geng, Y. & Sicinski, P. CDK4 and CDK6 kinases: from basic science to cancer therapy. Science 375, eabc1495 (2022).
pubmed: 35025636 pmcid: 9048628 doi: 10.1126/science.abc1495
Dhillon, S. Palbociclib: first global approval. Drugs 75, 543–551 (2015).
pubmed: 25792301 doi: 10.1007/s40265-015-0379-9
Corona, S. P. & Generali, D. Abemaciclib: a CDK4/6 inhibitor for the treatment of HR + /HER2- advanced breast cancer. Drug Des. Devel. Ther. 12, 321–330 (2018).
pubmed: 29497278 pmcid: 5818877 doi: 10.2147/DDDT.S137783
Hortobagyi, G. N. et al. Ribociclib as first-line therapy for HR-positive, advanced breast cancer. N. Engl. J. Med. 375, 1738–1748 (2016).
pubmed: 27717303 doi: 10.1056/NEJMoa1609709
Wedam, S. et al. FDA approval summary: palbociclib for male patients with metastatic breast cancer. Clin. Cancer Res. 26, 1208–1212 (2020).
pubmed: 31649043 doi: 10.1158/1078-0432.CCR-19-2580
Maurer, C., Martel, S., Zardavas, D. & Ignatiadis, M. New agents for endocrine resistance in breast cancer. Breast 34, 1–11 (2017).
pubmed: 28448864 doi: 10.1016/j.breast.2017.04.007
Finn, R. S. et al. Overall survival results from the randomized phase 2 study of palbociclib in combination with letrozole versus letrozole alone for first-line treatment of ER + /HER2- advanced breast cancer (PALOMA-1, TRIO-18). Breast Cancer Res. Treat. 183, 419–428 (2020).
pubmed: 32683565 pmcid: 7383036 doi: 10.1007/s10549-020-05755-7
Barroso-Sousa, R., Shapiro, G. I. & Tolaney, S. M. Clinical development of the CDK4/6 inhibitors ribociclib and abemaciclib in breast cancer. Breast Care 11, 167–173 (2016).
pubmed: 27493615 pmcid: 4960359 doi: 10.1159/000447284
Tripathy, D. et al. Ribociclib plus endocrine therapy for premenopausal women with hormone-receptor-positive, advanced breast cancer (MONALEESA-7): a randomised phase 3 trial. Lancet Oncol. 19, 904–915 (2018).
pubmed: 29804902 doi: 10.1016/S1470-2045(18)30292-4
Fujiwara, Y. et al. Phase 1 study of abemaciclib, an inhibitor of CDK 4 and 6, as a single agent for Japanese patients with advanced cancer. Cancer Chemother. Pharmacol. 78, 281–288 (2016).
pubmed: 27312735 doi: 10.1007/s00280-016-3085-8
Torres-Guzmán, R. et al. Preclinical characterization of abemaciclib in hormone receptor positive breast cancer. Oncotarget 8, 69493–69507 (2017).
pubmed: 29050219 pmcid: 5642494 doi: 10.18632/oncotarget.17778
Palumbo, A., Lau, G. & Saraceni, M. Abemaciclib: the newest CDK4/6 inhibitor for the treatment of breast cancer. Ann. Pharmacother. 53, 178–185 (2019).
pubmed: 30099886 doi: 10.1177/1060028018795146
Patnaik, A. et al. Efficacy and safety of abemaciclib, an inhibitor of CDK4 and CDK6, for patients with breast cancer, non-small cell lung cancer, and other solid tumors. Cancer Discov. 6, 740–753 (2016).
pubmed: 27217383 doi: 10.1158/2159-8290.CD-16-0095
Sledge, G. W. et al. MONARCH 2: abemaciclib in combination with fulvestrant in women with HR + /HER2-advanced breast cancer who had progressed while receiving endocrine therapy. J. Clin. Oncol. 35, 2875–2884 (2017).
pubmed: 28580882 doi: 10.1200/JCO.2017.73.7585
Dickler, M. N. et al. MONARCH 1, a phase II study of abemaciclib, a CDK4 and CDK6 inhibitor, as a single agent, in patients with refractory HR+/HER2− metastatic breast cancer. Clin. Cancer Res. 24, 5485–5485 (2018).
Goetz, M. P. et al. MONARCH 3: abemaciclib as initial therapy for advanced breast cancer. J. Clin. Oncol. 35, 3638–3646 (2017).
pubmed: 28968163 doi: 10.1200/JCO.2017.75.6155
Dhillon, S. Trilaciclib: first approval. Drugs 81, 867–874 (2021).
pubmed: 33861388 doi: 10.1007/s40265-021-01508-y
Hu, W., Wang, L., Luo, J., Zhang, J. & Li, N. The potent novel CDK4/6 inhibitor TQB3616 in hormone receptor positive breast cancer: preclinical characterization with in vitro and human tumor xenograft models. Breast Cancer 15, 899–912 (2023).
pubmed: 38090281 pmcid: 10715022
Liao, X. et al. SPH3643: a novel cyclin-dependent kinase 4/6 inhibitor with good anticancer efficacy and strong blood-brain barrier permeability. Cancer Sci. 111, 1761–1773 (2020).
pubmed: 32103527 pmcid: 7226180 doi: 10.1111/cas.14367
Zhang, P. et al. A phase 1 study of dalpiciclib, a cyclin-dependent kinase 4/6 inhibitor in Chinese patients with advanced breast cancer. Biomark. Res. 9, 24 (2021).
pubmed: 33845905 pmcid: 8042970 doi: 10.1186/s40364-021-00271-2
Sedlacek, H. et al. Flavopiridol (L86 8275; NSC 649890), a new kinase inhibitor for tumor therapy. Int. J. Oncol. 9, 1143–1168 (1996).
pubmed: 21541623
Murphy, C. G. & Dickler, M. N. The role of CDK4/6 inhibition in breast cancer. Oncologist 20, 483–490 (2015).
pubmed: 25876993 pmcid: 4425391 doi: 10.1634/theoncologist.2014-0443
Kussie, P. H. et al. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274, 948–953 (1996).
pubmed: 8875929 doi: 10.1126/science.274.5289.948
Konopleva, M. et al. MDM2 inhibition: an important step forward in cancer therapy. Leukemia 34, 2858–2874 (2020).
pubmed: 32651541 doi: 10.1038/s41375-020-0949-z
Vassilev, L. T. et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303, 844–848 (2004).
pubmed: 14704432 doi: 10.1126/science.1092472
Andreeff, M. et al. Results of the phase I trial of RG7112, a small-molecule MDM2 antagonist in leukemia. Clin. Cancer Res. 22, 868–876 (2016).
pubmed: 26459177 doi: 10.1158/1078-0432.CCR-15-0481
Ding, Q. et al. Discovery of RG7388, a potent and selective p53-MDM2 inhibitor in clinical development. J. Med. Chem. 56, 5979–5983 (2013).
pubmed: 23808545 doi: 10.1021/jm400487c
Erba, H. P. et al. Phase 1b study of the MDM2 inhibitor AMG 232 with or without trametinib in relapsed/refractory acute myeloid leukemia. Blood Adv. 3, 1939–1949 (2019).
pubmed: 31253596 pmcid: 6616264 doi: 10.1182/bloodadvances.2019030916
Wang, S. et al. SAR405838: an optimized inhibitor of MDM2-p53 interaction that induces complete and durable tumor regression. Cancer Res. 74, 5855–5865 (2014).
pubmed: 25145672 pmcid: 4247201 doi: 10.1158/0008-5472.CAN-14-0799
Aguilar, A. et al. Discovery of 4-((3’R,4’S,5’R)-6″-chloro-4’-(3-chloro-2-fluorophenyl)-1’-ethyl-2″-oxodispiro[cyclohexane-1,2’-pyrrolidine-3’,3″-indoline]-5’-carboxamido)bicyclo[2.2.2]octane-1-carboxylic acid (AA-115/APG-115): a potent and orally active murine double minute 2 (MDM2) inhibitor in clinical development. J. Med. Chem. 60, 2819–2839 (2017).
Holzer, P. et al. Discovery of a dihydroisoquinolinone derivative (NVP-CGM097): a highly potent and selective MDM2 inhibitor undergoing phase 1 clinical trials in p53wt tumors. J. Med. Chem. 58, 6348–6358 (2015).
pubmed: 26181851 doi: 10.1021/acs.jmedchem.5b00810
Stein, E. M. et al. Results from a first-in-human phase I study of siremadlin (HDM201) in patients with advanced wild-type TP53 solid tumors and acute leukemia. Clin. Cancer Res. 28, 870–881 (2022).
pubmed: 34862243 doi: 10.1158/1078-0432.CCR-21-1295
Wagner, A. J. et al. Phase I trial of the human double minute 2 inhibitor MK-8242 in patients with advanced solid tumors. J. Clin. Oncol. 35, 1304–1311 (2017).
pubmed: 28240971 pmcid: 5946729 doi: 10.1200/JCO.2016.70.7117
Ravandi, F. et al. A phase I trial of the human double minute 2 inhibitor (MK-8242) in patients with refractory/recurrent acute myelogenous leukemia (AML). Leuk. Res. 48, 92–100 (2016).
pubmed: 27544076 pmcid: 5408350 doi: 10.1016/j.leukres.2016.07.004
Senapati, J. et al. A phase I study of milademetan (DS3032b) in combination with low dose cytarabine with or without venetoclax in acute myeloid leukemia: clinical safety, efficacy, and correlative analysis. Blood Cancer J. 13, 101 (2023).
pubmed: 37386016 pmcid: 10310786 doi: 10.1038/s41408-023-00871-1
Fang, Y., Liao, G. & Yu, B. Small-molecule MDM2/X inhibitors and PROTAC degraders for cancer therapy: advances and perspectives. Acta Pharm. Sin. B 10, 1253–1278 (2020).
pubmed: 32874827 pmcid: 7452049 doi: 10.1016/j.apsb.2020.01.003
Jackson, M. R. et al. Radiolabeled oligonucleotides targeting the RNA subunit of telomerase inhibit telomerase and induce DNA damage in telomerase-positive cancer cells. Cancer Res. 79, 4627–4637 (2019).
pubmed: 31311806 pmcid: 7611324 doi: 10.1158/0008-5472.CAN-18-3594
Guterres, A. N. & Villanueva, J. Targeting telomerase for cancer therapy. Oncogene 39, 5811–5824 (2020).
pubmed: 32733068 pmcid: 7678952 doi: 10.1038/s41388-020-01405-w
Lai, T. P. et al. A method for measuring the distribution of the shortest telomeres in cells and tissues. Nat. Commun. 8, 1356 (2017).
pubmed: 29116081 pmcid: 5676791 doi: 10.1038/s41467-017-01291-z
Joseph, I. et al. The telomerase inhibitor imetelstat depletes cancer stem cells in breast and pancreatic cancer cell lines. Cancer Res. 70, 9494–9504 (2010).
pubmed: 21062983 doi: 10.1158/0008-5472.CAN-10-0233
Dikmen, Z. G. et al. In vivo inhibition of lung cancer by GRN163L: a novel human telomerase inhibitor. Cancer Res. 65, 7866–7873 (2005).
pubmed: 16140956 doi: 10.1158/0008-5472.CAN-05-1215
Marian, C. O., Wright, W. E. & Shay, J. W. The effects of telomerase inhibition on prostate tumor-initiating cells. Int. J. Cancer 127, 321–331 (2010).
pubmed: 19908230 doi: 10.1002/ijc.25043
Burchett, K. M., Yan, Y. & Ouellette, M. M. Telomerase inhibitor imetelstat (GRN163L) limits the lifespan of human pancreatic cancer cells. PLoS ONE 9, e85155 (2014).
pubmed: 24409321 pmcid: 3883701 doi: 10.1371/journal.pone.0085155
Hu, Y., Bobb, D., He, J., Hill, D. A. & Dome, J. S. The HSP90 inhibitor alvespimycin enhances the potency of telomerase inhibition by imetelstat in human osteosarcoma. Cancer Biol. Ther. 16, 949–957 (2015).
pubmed: 25920748 pmcid: 4622625 doi: 10.1080/15384047.2015.1040964
Marian, C. O. et al. The telomerase antagonist, imetelstat, efficiently targets glioblastoma tumor-initiating cells leading to decreased proliferation and tumor growth. Clin. Cancer Res. 16, 154–163 (2010).
pubmed: 20048334 pmcid: 2883447 doi: 10.1158/1078-0432.CCR-09-2850
Vonderheide, R. H. Telomerase as a universal tumor-associated antigen for cancer immunotherapy. Oncogene 21, 674–679 (2002).
pubmed: 11850795 doi: 10.1038/sj.onc.1205074
Ruden, M. & Puri, N. Novel anticancer therapeutics targeting telomerase. Cancer Treat. Rev. 39, 444–456 (2013).
pubmed: 22841437 doi: 10.1016/j.ctrv.2012.06.007
Kyte, J. A. Cancer vaccination with telomerase peptide GV1001. Expert Opin. Investig. Drugs 18, 687–694 (2009).
pubmed: 19388882 doi: 10.1517/13543780902897631
Hemann, M. T. & Greider, C. W. Wild-derived inbred mouse strains have short telomeres. Nucleic Acids Res. 28, 4474–4478 (2000).
pubmed: 11071935 pmcid: 113886 doi: 10.1093/nar/28.22.4474
Greenberg, R. A., Allsopp, R. C., Chin, L., Morin, G. B. & DePinho, R. A. Expression of mouse telomerase reverse transcriptase during development, differentiation and proliferation. Oncogene 16, 1723–1730 (1998).
pubmed: 9582020 doi: 10.1038/sj.onc.1201933
Sherwood, L. M., Parris, E. E. & Folkman, J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285, 1182–1186 (1971).
Gasparini, G., Longo, R., Toi, M. & Ferrara, N. Angiogenic inhibitors: a new therapeutic strategy in oncology. Nat. Clin. Pract. Oncol. 2, 562–577 (2005).
pubmed: 16270097 doi: 10.1038/ncponc0342
Wilke, H. et al. Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): a double-blind, randomised phase 3 trial. Lancet Oncol. 15, 1224–1235 (2014).
pubmed: 25240821 doi: 10.1016/S1470-2045(14)70420-6
Itatani, Y., Kawada, K., Yamamoto, T. & Sakai, Y. Resistance to anti-angiogenic therapy in cancer-alterations to anti-VEGF pathway. Int. J. Mol. Sci. 19, 1–18 (2018).
doi: 10.3390/ijms19041232
Kelly, R. J., Darnell, C. & Rixe, O. Target inhibition in antiangiogenic therapy a wide spectrum of selectivity and specificity. Cancer J. 16, 635–642 (2010).
pubmed: 21131797 doi: 10.1097/PPO.0b013e3181ff37cf
de Oliveira Dias, J. R., de Andrade, G. C., Novais, E. A., Farah, M. E. & Rodrigues, E. B. Fusion proteins for treatment of retinal diseases: aflibercept, ziv-aflibercept, and conbercept. Int. J. Retin. Vitr. 2, 3 (2016).
doi: 10.1186/s40942-016-0026-y
Gotink, K. J. & Verheul, H. M. W. Anti-angiogenic tyrosine kinase inhibitors: what is their mechanism of action? Angiogenesis 13, 1–14 (2010).
pubmed: 20012482 doi: 10.1007/s10456-009-9160-6
Akce, M., El-Rayes, B. F. & Bekaii-Saab, T. S. Frontline therapy for advanced hepatocellular carcinoma: an update. Ther. Adv. Gastroenterol. 15, 17562848221086126 (2022).
doi: 10.1177/17562848221086126
Cheng, A.-L. et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol. 10, 25–34 (2009).
pubmed: 19095497 doi: 10.1016/S1470-2045(08)70285-7
Zhao, Y., Zhang, Y.-N., Wang, K.-T. & Chen, L. Lenvatinib for hepatocellular carcinoma: from preclinical mechanisms to anti-cancer therapy. Biochim Biophys. Acta Rev. Cancer 1874, 188391 (2020).
pubmed: 32659252 doi: 10.1016/j.bbcan.2020.188391
Matsuki, M. et al. Targeting of tumor growth and angiogenesis underlies the enhanced antitumor activity of lenvatinib in combination with everolimus. Cancer Sci. 108, 763–771 (2017).
pubmed: 28107584 pmcid: 5406533 doi: 10.1111/cas.13169
Yamamoto, Y. et al. Lenvatinib, an angiogenesis inhibitor targeting VEGFR/FGFR, shows broad antitumor activity in human tumor xenograft models associated with microvessel density and pericyte coverage. Vasc. Cell 6, 18 (2014).
pubmed: 25197551 pmcid: 4156793 doi: 10.1186/2045-824X-6-18
Matsui, J. et al. E7080, a novel inhibitor that targets multiple kinases, has potent antitumor activities against stem cell factor producing human small cell lung cancer H146, based on angiogenesis inhibition. Int. J. Cancer 122, 664–671 (2008).
pubmed: 17943726 doi: 10.1002/ijc.23131
Matsui, J. et al. Multi-kinase inhibitor E7080 suppresses lymph node and lung metastases of human mammary breast tumor MDA-MB-231 via inhibition of vascular endothelial growth factor-receptor (VEGF-R) 2 and VEGF-R3 kinase. Clin. Cancer Res. 14, 5459–5465 (2008).
pubmed: 18765537 doi: 10.1158/1078-0432.CCR-07-5270
Ogasawara, S. et al. Antiproliferative effect of lenvatinib on human liver cancer cell lines in vitro and in vivo. Anticancer Res. 39, 5973–5982 (2019).
pubmed: 31704822 doi: 10.21873/anticanres.13802
Song, Y. et al. Anti-angiogenic agents in combination with immune checkpoint inhibitors: a promising strategy for cancer treatment. Front. Immunol. 11, 1–17 (2020).
doi: 10.3389/fimmu.2020.01956
Zhang, Y. et al. Maintenance of antiangiogenic and antitumor effects by orally active low-dose capecitabine for long-term cancer therapy. Proc. Natl Acad. Sci. USA 114, E5226–E5235 (2017).
pubmed: 28607065 pmcid: 5495268
Babina, I. S. & Turner, N. C. Advances and challenges in targeting FGFR signalling in cancer. Nat. Rev. Cancer 17, 318–332 (2017).
pubmed: 28303906 doi: 10.1038/nrc.2017.8
Hallinan, N. et al. Targeting the fibroblast growth factor receptor family in cancer. Cancer Treat. Rev. 46, 51–62 (2016).
pubmed: 27109926 doi: 10.1016/j.ctrv.2016.03.015
André, F. et al. Targeting FGFR with dovitinib (TKI258): Preclinical and clinical data in breast cancer. Clin. Cancer Res. 19, 3693–3702 (2013).
pubmed: 23658459 doi: 10.1158/1078-0432.CCR-13-0190
Angevin, E. et al. Phase I study of dovitinib (TKI258), an oral FGFR, VEGFR, and PDGFR inhibitor, in advanced or metastatic renal cell carcinoma. Clin. Cancer Res. 19, 1257–1268 (2013).
pubmed: 23339124 doi: 10.1158/1078-0432.CCR-12-2885
Okamoto, I. et al. Phase I safety, pharmacokinetic, and biomarker study of BIBF 1120, an oral triple tyrosine kinase inhibitor in patients with advanced solid tumors. Mol. Cancer Ther. 9, 2825–2833 (2010).
pubmed: 20688946 doi: 10.1158/1535-7163.MCT-10-0379
Soria, J.-C. et al. Phase I/IIa study evaluating the safety, efficacy, pharmacokinetics, and pharmacodynamics of lucitanib in advanced solid tumors. Ann. Oncol. 25, 2244–2251 (2014).
pubmed: 25193991 doi: 10.1093/annonc/mdu390
Tan, F. H., Putoczki, T. L., Stylli, S. S. & Luwor, R. B. Ponatinib: a novel multi-tyrosine kinase inhibitor against human malignancies. Onco. Targets Ther. 12, 635–645 (2019).
pubmed: 30705592 pmcid: 6343508 doi: 10.2147/OTT.S189391
Kang, C. Infigratinib: first approval. Drugs 81, 1355–1360 (2021).
pubmed: 34279850 pmcid: 8610935 doi: 10.1007/s40265-021-01567-1
Markham, A. Erdafitinib: first global approval. Drugs 79, 1017–1021 (2019).
pubmed: 31161538 doi: 10.1007/s40265-019-01142-9
Syed, Y. Y. Futibatinib: first approval. Drugs 82, 1737–1743 (2022).
pubmed: 36441501 doi: 10.1007/s40265-022-01806-z
Gandhy, S. U. et al. FDA approval summary: futibatinib for unresectable advanced or metastatic, chemotherapy refractory intrahepatic cholangiocarcinoma with FGFR2 fusions or other rearrangements. Clin. Cancer Res. 29, 4027–4031 (2023).
pubmed: 37289037 pmcid: 10592512 doi: 10.1158/1078-0432.CCR-23-1042
Liang, G., Chen, G., Wei, X., Zhao, Y. & Li, X. Small molecule inhibition of fibroblast growth factor receptors in cancer. Cytokine Growth Factor Rev. 24, 467–475 (2013).
pubmed: 23830577 doi: 10.1016/j.cytogfr.2013.05.002
Roberts, W. G. et al. Antiangiogenic and antitumor activity of a selective PDGFR tyrosine kinase inhibitor, CP-673,451. Cancer Res 65, 957–966 (2005).
pubmed: 15705896 doi: 10.1158/0008-5472.957.65.3
Wang, Q. et al. Discovery of 4-((N-(2-(dimethylamino)ethyl)acrylamido)methyl)-N-(4-methyl-3-((4-(pyridin-3-yl)pyrimidin-2-yl)amino)phenyl)benzamide (CHMFL-PDGFR-159) as a highly selective type II PDGFRα kinase inhibitor for PDGFRα driving chronic eosinophilic leukemia. Eur. J. Med. Chem. 150, 366–384 (2018).
pubmed: 29544149 doi: 10.1016/j.ejmech.2018.03.003
Papadopoulos, N. & Lennartsson, J. The PDGF/PDGFR pathway as a drug target. Mol. Asp. Med. 62, 75–88 (2018).
doi: 10.1016/j.mam.2017.11.007
Ferrari, S. M. et al. Sunitinib in the treatment of thyroid cancer. Curr. Med. Chem. 26, 963–972 (2019).
pubmed: 28990511 doi: 10.2174/0929867324666171006165942
Schmid, T. A. & Gore, M. E. Sunitinib in the treatment of metastatic renal cell carcinoma. Ther. Adv. Urol. 8, 348–371 (2016).
pubmed: 27904651 pmcid: 5117167 doi: 10.1177/1756287216663979
He, W. et al. Artesunate regulates neurite outgrowth inhibitor protein B receptor to overcome resistance to sorafenib in hepatocellular carcinoma cells. Front. Pharmacol. 12, 615889 (2021).
pubmed: 33716742 pmcid: 7946852 doi: 10.3389/fphar.2021.615889
Mehta, M. et al. Regorafenib sensitizes human breast cancer cells to radiation by inhibiting multiple kinases and inducing DNA damage. Int. J. Radiat. Biol. 97, 1109–1120 (2021).
pubmed: 32052681 doi: 10.1080/09553002.2020.1730012
Arai, H. et al. Molecular insight of regorafenib treatment for colorectal cancer. Cancer Treat. Rev. 81, 101912 (2019).
pubmed: 31715423 pmcid: 7491975 doi: 10.1016/j.ctrv.2019.101912
Kantarjian, H. M. et al. Long-term outcomes with frontline nilotinib versus imatinib in newly diagnosed chronic myeloid leukemia in chronic phase: ENESTnd 10-year analysis. Leukemia 35, 440–453 (2021).
pubmed: 33414482 pmcid: 7862065 doi: 10.1038/s41375-020-01111-2
Naqvi, K. et al. Long-term follow-up of lower dose dasatinib (50 mg daily) as frontline therapy in newly diagnosed chronic-phase chronic myeloid leukemia. Cancer 126, 67–75 (2020).
pubmed: 31553487 doi: 10.1002/cncr.32504
Stone, R. M. et al. Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation. N. Engl. J. Med. 377, 454–464 (2017).
pubmed: 28644114 pmcid: 5754190 doi: 10.1056/NEJMoa1614359
Fischer, T. et al. Phase IIB trial of oral midostaurin (PKC412), the FMS-like tyrosine kinase 3 receptor (FLT3) and multi-targeted kinase inhibitor, in patients with acute myeloid leukemia and high-risk myelodysplastic syndrome with either wild-type or mutated FLT3. J. Clin. Oncol. 28, 4339–4345 (2010).
pubmed: 20733134 pmcid: 4135183 doi: 10.1200/JCO.2010.28.9678
Roskoski, R. J. Properties of FDA-approved small molecule protein kinase inhibitors: a 2022 update. Pharmacol. Res. 175, 106037 (2022).
pubmed: 34921994 doi: 10.1016/j.phrs.2021.106037
Soleimani, M., Nappi, L. & Kollmannsberger, C. Avelumab and axitinib combination therapy for the treatment of advanced renal cell carcinoma. Future Oncol. 16, 3021–3034 (2020).
pubmed: 32856478 doi: 10.2217/fon-2020-0586
Grünwald, V. et al. Randomized comparison of pazopanib and doxorubicin as first-line treatment in patients with metastatic soft tissue sarcoma age 60 years or older: results of a German Intergroup Study. J. Clin. Oncol. 38, 3555–3564 (2020).
pubmed: 32840417 doi: 10.1200/JCO.20.00714
Lowery, C. D. et al. Olaratumab exerts antitumor activity in preclinical models of pediatric bone and soft tissue tumors through inhibition of platelet-derived growth factor receptor α. Clin. Cancer Res. 24, 847–857 (2018).
pubmed: 29191969 doi: 10.1158/1078-0432.CCR-17-1258
Wang, F. et al. Gint4.T-modified DNA tetrahedrons loaded with doxorubicin inhibits glioma cell proliferation by targeting PDGFRβ. Nanoscale Res. Lett. 15, 150 (2020).
pubmed: 32691170 pmcid: 7371771 doi: 10.1186/s11671-020-03377-y
Camorani, S. et al. Targeted imaging and inhibition of triple-negative breast cancer metastases by a PDGFRβ aptamer. Theranostics 8, 5178–5199 (2018).
pubmed: 30429893 pmcid: 6217067 doi: 10.7150/thno.27798
Yoshida, S. et al. Extrahepatic platelet-derived growth factor-β, delivered by platelets, promotes activation of hepatic stellate cells and biliary fibrosis in mice. Gastroenterology 147, 1378–1392 (2014).
pubmed: 25173753 doi: 10.1053/j.gastro.2014.08.038
Zeitelhofer, M. et al. Preclinical toxicological assessment of a novel monoclonal antibody targeting human platelet-derived growth factor CC (PDGF-CC) in PDGF-CChum mice. PLoS ONE 13, e0200649 (2018).
pubmed: 30021009 pmcid: 6051635 doi: 10.1371/journal.pone.0200649
Falcon, B. L. et al. Increased vascular delivery and efficacy of chemotherapy after inhibition of platelet-derived growth factor-B. Am. J. Pathol. 178, 2920–2930 (2011).
pubmed: 21641409 pmcid: 3124291 doi: 10.1016/j.ajpath.2011.02.019
Karashima, T. et al. Blockade of the vascular endothelial growth factor-receptor 2 pathway inhibits the growth of human renal cell carcinoma, RBM1-IT4, in the kidney but not in the bone of nude mice. Int. J. Oncol. 30, 937–945 (2007).
pubmed: 17332933
Leenders, W. P. J. et al. Antiangiogenic therapy of cerebral melanoma metastases results in sustained tumor progression via vessel co-option. Clin. Cancer Res. 10, 6222–6230 (2004).
pubmed: 15448011 doi: 10.1158/1078-0432.CCR-04-0823
Motzer, R. J. et al. Activity of SU11248, a multitargeted inhibitor of vascular endothelial growth factor receptor and platelet-derived growth factor receptor, in patients with metastatic renal cell carcinoma. J. Clin. Oncol. 24, 16–24 (2006).
pubmed: 16330672 doi: 10.1200/JCO.2005.02.2574
Batchelor, T. T. et al. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 11, 83–95 (2007).
pubmed: 17222792 pmcid: 2748664 doi: 10.1016/j.ccr.2006.11.021
Yu, J. L., Rak, J. W., Coomber, B. L., Hicklin, D. J. & Kerbel, R. S. Effect of p53 status on tumor response to antiangiogenic therapy. Science 295, 1526–1528 (2002).
pubmed: 11859195 doi: 10.1126/science.1068327
Whitmarsh-Everiss, T. & Laraia, L. Small molecule probes for targeting autophagy. Nat. Chem. Biol. 17, 653–664 (2021).
pubmed: 34035513 doi: 10.1038/s41589-021-00768-9
Galluzzi, L., Bravo-San Pedro, J. M., Levine, B., Green, D. R. & Kroemer, G. Pharmacological modulation of autophagy: Therapeutic potential and persisting obstacles. Nat. Rev. Drug Discov. 16, 487–511 (2017).
pubmed: 28529316 pmcid: 5713640 doi: 10.1038/nrd.2017.22
Gwinn, D. M. et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 30, 214–226 (2008).
pubmed: 18439900 pmcid: 2674027 doi: 10.1016/j.molcel.2008.03.003
Sabatini, D. M., Erdjument-Bromage, H., Lui, M., Tempst, P. & Snyder, S. H. RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell 78, 35–43 (1994).
pubmed: 7518356 doi: 10.1016/0092-8674(94)90570-3
Chresta, C. M. et al. AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity. Cancer Res. 70, 288–298 (2010).
pubmed: 20028854 doi: 10.1158/0008-5472.CAN-09-1751
Sarkar, S. et al. Small molecules enhance autophagy and reduce toxicity in Huntington’s disease models. Nat. Chem. Biol. 3, 331–338 (2007).
pubmed: 17486044 pmcid: 2635561 doi: 10.1038/nchembio883
Kuo, S. Y. et al. Small-molecule enhancers of autophagy modulate cellular disease phenotypes suggested by human genetics. Proc. Natl Acad. Sci. USA 112, E4281–E4287 (2015).
pubmed: 26195741 pmcid: 4534235 doi: 10.1073/pnas.1512289112
Lim, C.-Y. et al. ER-lysosome contacts enable cholesterol sensing by mTORC1 and drive aberrant growth signalling in Niemann-Pick type C. Nat. Cell Biol. 21, 1206–1218 (2019).
pubmed: 31548609 pmcid: 6936960 doi: 10.1038/s41556-019-0391-5
Burgett, A. W. G. et al. Natural products reveal cancer cell dependence on oxysterol-binding proteins. Nat. Chem. Biol. 7, 639–647 (2011).
pubmed: 21822274 pmcid: 3158287 doi: 10.1038/nchembio.625
Scotto Rosato, A. et al. TRPML1 links lysosomal calcium to autophagosome biogenesis through the activation of the CaMKKβ/VPS34 pathway. Nat. Commun. 10, 5630 (2019).
pubmed: 31822666 pmcid: 6904751 doi: 10.1038/s41467-019-13572-w
Robke, L. et al. Phenotypic identification of a novel autophagy inhibitor chemotype targeting lipid kinase VPS34. Angew. Chem. Int. Ed. Engl. 56, 8153–8157 (2017).
pubmed: 28544137 doi: 10.1002/anie.201703738
Foley, D. J. et al. Phenotyping reveals targets of a pseudo-natural-product autophagy inhibitor. Angew. Chem. Int. Ed. Engl. 59, 12470–12476 (2020).
pubmed: 32108411 pmcid: 7383971 doi: 10.1002/anie.202000364
Petherick, K. J. et al. Pharmacological inhibition of ULK1 kinase blocks mammalian target of rapamycin (mTOR)-dependent autophagy. J. Biol. Chem. 290, 11376–11383 (2015).
pubmed: 25833948 pmcid: 4416842 doi: 10.1074/jbc.C114.627778
Egan, D. F. et al. Small molecule inhibition of the autophagy kinase ULK1 and identification of ULK1 substrates. Mol. Cell 59, 285–297 (2015).
pubmed: 26118643 pmcid: 4530630 doi: 10.1016/j.molcel.2015.05.031
Bosc, D. et al. A new quinoline-based chemical probe inhibits the autophagy-related cysteine protease ATG4B. Sci. Rep. 8, 11653 (2018).
pubmed: 30076329 pmcid: 6076261 doi: 10.1038/s41598-018-29900-x
Samie, M. et al. A TRP channel in the lysosome regulates large particle phagocytosis via focal exocytosis. Dev. Cell 26, 511–524 (2013).
pubmed: 23993788 pmcid: 3794471 doi: 10.1016/j.devcel.2013.08.003
Njomen, E. & Tepe, J. J. Regulation of autophagic flux by the 20 S proteasome. Cell Chem. Biol. 26, 1283–1294.e5 (2019).
pubmed: 31327703 pmcid: 6754308 doi: 10.1016/j.chembiol.2019.07.002
Xie, X.-S. et al. Salicylihalamide A inhibits the V0 sector of the V-ATPase through a mechanism distinct from bafilomycin A1. J. Biol. Chem. 279, 19755–19763 (2004).
pubmed: 14998996 doi: 10.1074/jbc.M313796200
Boyd, M. R. et al. Discovery of a novel antitumor benzolactone enamide class that selectively inhibits mammalian vacuolar-type (H + )-ATPases. J. Pharmacol. Exp. Ther. 297, 114–120 (2001).
pubmed: 11259534
McAfee, Q. et al. Autophagy inhibitor Lys05 has single-agent antitumor activity and reproduces the phenotype of a genetic autophagy deficiency. Proc. Natl Acad. Sci. USA 109, 8253–8258 (2012).
pubmed: 22566612 pmcid: 3361415 doi: 10.1073/pnas.1118193109
Goodall, M. L. et al. Development of potent autophagy inhibitors that sensitize oncogenic BRAF V600E mutant melanoma tumor cells to vemurafenib. Autophagy 10, 1120–1136 (2014).
pubmed: 24879157 pmcid: 4091172 doi: 10.4161/auto.28594
Ferreira, P. M. P. et al. Chloroquine and hydroxychloroquine in antitumor therapies based on autophagy-related mechanisms. Pharmacol. Res. 168, 105582 (2021).
pubmed: 33775862 doi: 10.1016/j.phrs.2021.105582
Solomon, V. R. & Lee, H. Chloroquine and its analogs: a new promise of an old drug for effective and safe cancer therapies. Eur. J. Pharm. 625, 220–233 (2009).
doi: 10.1016/j.ejphar.2009.06.063
Silva, V. R. et al. Challenges and therapeutic opportunities of autophagy in cancer therapy. Cancers 12, 3461 (2020).
pubmed: 33233671 pmcid: 7699739 doi: 10.3390/cancers12113461
Ashrafizadeh, M. et al. Targeting autophagy in prostate cancer: preclinical and clinical evidence for therapeutic response. J. Exp. Clin. Cancer Res 41, 105 (2022).
pubmed: 35317831 pmcid: 8939209 doi: 10.1186/s13046-022-02293-6
Morel, E. et al. Autophagy: a druggable process. Annu. Rev. Pharmacol. Toxicol. 57, 375–398 (2017).
pubmed: 28061686 doi: 10.1146/annurev-pharmtox-010716-104936
Galluzzi, L. & Green, D. R. Autophagy-independent functions of the autophagy machinery. Cell 177, 1682–1699 (2019).
pubmed: 31199916 pmcid: 7173070 doi: 10.1016/j.cell.2019.05.026
Ebrahim, A. S. et al. PNT2258, a novel deoxyribonucleic acid inhibitor, induces cell cycle arrest and apoptosis via a distinct mechanism of action: a new class of drug for non-Hodgkin’s lymphoma. Oncotarget 7, 42374–42384 (2016).
pubmed: 27283896 pmcid: 5173141 doi: 10.18632/oncotarget.9872
Tse, C. et al. ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res. 68, 3421–3428 (2008).
pubmed: 18451170 doi: 10.1158/0008-5472.CAN-07-5836
Chen, J. et al. The Bcl-2/Bcl-X L/Bcl-w inhibitor, navitoclax, enhances the activity of chemotherapeutic agents in vitro and in vivo. Mol. Cancer Ther. 10, 2340–2349 (2011).
pubmed: 21914853 doi: 10.1158/1535-7163.MCT-11-0415
Lakhani, N. J. et al. First-in-human study of palcitoclax (APG-1252), a novel dual Bcl-2/Bcl-xL inhibitor, demonstrated advantages in platelet safety while maintaining anticancer effect in U.S. patients with metastatic solid tumors. J. Clin. Oncol. 38, 3509 (2020).
doi: 10.1200/JCO.2020.38.15_suppl.3509
Brinkmann, K., Ng, A. P., de Graaf, C. A. & Strasser, A. What can we learn from mice lacking pro-survival BCL-2 proteins to advance BH3 mimetic drugs for cancer therapy? Cell Death Differ. 29, 1079–1093 (2022).
pubmed: 35388168 pmcid: 9177562 doi: 10.1038/s41418-022-00987-0
Del Gaizo Moore, V. et al. Chronic lymphocytic leukemia requires BCL2 to sequester prodeath BIM, explaining sensitivity to BCL2 antagonist ABT-737. J. Clin. Invest. 117, 112–121 (2007).
pubmed: 17200714 pmcid: 1716201 doi: 10.1172/JCI28281
Cory, S. & Adams, J. M. Killing cancer cells by flipping the Bcl-2/Bax switch. Cancer Cell 8, 5–6 (2005).
pubmed: 16023593 doi: 10.1016/j.ccr.2005.06.012
Arulananda, S. et al. A novel BH3-mimetic, AZD0466, targeting BCL-XL and BCL-2 is effective in pre-clinical models of malignant pleural mesothelioma. Cell Death Discov. 7, 122 (2021).
pubmed: 34050131 pmcid: 8163735 doi: 10.1038/s41420-021-00505-0
Roberts, A. W., Wei, A. H. & Huang, D. C. S. BCL2 and MCL1 inhibitors for hematologic malignancies. Blood 138, 1120–1136 (2021).
pubmed: 34320168 doi: 10.1182/blood.2020006785
Zhu, R. et al. FLT3 tyrosine kinase inhibitors synergize with BCL-2 inhibition to eliminate FLT3/ITD acute leukemia cells through BIM activation. Signal Transduct. Target. Ther. 6, 186 (2021).
pubmed: 34024909 pmcid: 8141515 doi: 10.1038/s41392-021-00578-4
Roberts, A. W. et al. Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia. N. Engl. J. Med. 374, 311–322 (2016).
pubmed: 26639348 doi: 10.1056/NEJMoa1513257
Casara, P. et al. S55746 is a novel orally active BCL-2 selective and potent inhibitor that impairs hematological tumor growth. Oncotarget 9, 20075–20088 (2018).
pubmed: 29732004 pmcid: 5929447 doi: 10.18632/oncotarget.24744
Deng, J. et al. Lisaftoclax (APG-2575) is a novel BCL-2 inhibitor with robust antitumor activity in preclinical models of hematologic malignancy. Clin. Cancer Res. 28, 5455–5468 (2022).
pubmed: 36048524 doi: 10.1158/1078-0432.CCR-21-4037
Xin, M. et al. Small-molecule Bax agonists for cancer therapy. Nat. Commun. 5, 4935 (2014).
Reyna, D. E. et al. Direct activation of BAX by BTSA1 overcomes apoptosis resistance in acute myeloid leukemia. Cancer Cell 32, 490–505.e10 (2017).
pubmed: 29017059 pmcid: 5793879 doi: 10.1016/j.ccell.2017.09.001
Zang, X., Song, J., Li, Y. & Han, Y. Targeting necroptosis as an alternative strategy in tumor treatment: From drugs to nanoparticles. J. Control. Release 349, 213–226 (2022).
pubmed: 35793737 doi: 10.1016/j.jconrel.2022.06.060
Degterev, A. et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat. Chem. Biol. 1, 112–119 (2005).
pubmed: 16408008 doi: 10.1038/nchembio711
Degterev, A. et al. Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat. Chem. Biol. 4, 313–321 (2008).
pubmed: 18408713 pmcid: 5434866 doi: 10.1038/nchembio.83
Takahashi, N. et al. Necrostatin-1 analogues: critical issues on the specificity, activity and in vivo use in experimental disease models. Cell Death Dis. 3, e437 (2012).
pubmed: 23190609 pmcid: 3542611 doi: 10.1038/cddis.2012.176
Cao, L. & Mu, W. Necrostatin-1 and necroptosis inhibition: pathophysiology and therapeutic implications. Pharm. Res 163, 105297 (2021).
doi: 10.1016/j.phrs.2020.105297
Deeraksa, A. et al. Plk1 is upregulated in androgen-insensitive prostate cancer cells and its inhibition leads to necroptosis. Oncogene 32, 2973–2983 (2013).
pubmed: 22890325 doi: 10.1038/onc.2012.309
Fulda, S. Therapeutic exploitation of necroptosis for cancer therapy. Semin. Cell Dev. Biol. 35, 51–56 (2014).
pubmed: 25065969 doi: 10.1016/j.semcdb.2014.07.002
Han, W. et al. Shikonin circumvents cancer drug resistance by induction of a necroptotic death. Mol. Cancer Ther. 6, 1641–1649 (2007).
pubmed: 17513612 doi: 10.1158/1535-7163.MCT-06-0511
Huang, C. et al. Shikonin kills glioma cells through necroptosis mediated by RIP-1. PLoS ONE 8, e66326 (2013).
pubmed: 23840441 pmcid: 3695975 doi: 10.1371/journal.pone.0066326
Fu, Z. et al. The anti-tumor effect of shikonin on osteosarcoma by inducing RIP1 and RIP3 dependent necroptosis. BMC Cancer 13, 580 (2013).
Xuan, Y. & Hu, X. Naturally-occurring shikonin analogues–a class of necroptotic inducers that circumvent cancer drug resistance. Cancer Lett. 274, 233–242 (2009).
pubmed: 19027226 doi: 10.1016/j.canlet.2008.09.029
Basit, F., Cristofanon, S. & Fulda, S. Obatoclax (GX15-070) triggers necroptosis by promoting the assembly of the necrosome on autophagosomal membranes. Cell Death Differ. 20, 1161–1173 (2013).
pubmed: 23744296 pmcid: 3741498 doi: 10.1038/cdd.2013.45
Rizzi, F. et al. Polyphenon E®, a standardized green tea extract, induces endoplasmic reticulum stress, leading to death of immortalized PNT1a cells by anoikis and tumorigenic PC3 by necroptosis. Carcinogenesis 35, 828–839 (2014).
pubmed: 24343359 doi: 10.1093/carcin/bgt481
Zhou, B. et al. Bioactive staurosporine derivatives from the Streptomyces sp. NB-A13. Bioorg. Chem. 82, 33–40 (2019).
pubmed: 30268972 doi: 10.1016/j.bioorg.2018.09.016
Dunai, Z. A. et al. Staurosporine induces necroptotic cell death under caspase-compromised conditions in U937 cells. PLoS ONE 7, e41945 (2012).
pubmed: 22860037 pmcid: 3409216 doi: 10.1371/journal.pone.0041945
Saddoughi, S. A. et al. Sphingosine analogue drug FTY720 targets I2PP2A/SET and mediates lung tumour suppression via activation of PP2A-RIPK1-dependent necroptosis. EMBO Mol. Med. 5, 105–121 (2013).
pubmed: 23180565 doi: 10.1002/emmm.201201283
Zhang, L., Wang, H., Ding, K. & Xu, J. FTY720 induces autophagy-related apoptosis and necroptosis in human glioblastoma cells. Toxicol. Lett. 236, 43–59 (2015).
pubmed: 25939952 doi: 10.1016/j.toxlet.2015.04.015
Pasupuleti, N., Leon, L., Carraway, K. L. & Gorin, F. 5-Benzylglycinyl-amiloride kills proliferating and nonproliferating malignant glioma cells through caspase- independent necroptosis mediated by apoptosis-inducing factor. J. Pharmacol. Exp. Ther. 344, 600–615 (2013).
pubmed: 23241369 pmcid: 3583503 doi: 10.1124/jpet.112.200519
Zec, M. et al. Novel selenosemicarbazone metal complexes exert anti-tumor effect via alternative, caspase-independent necroptotic cell death. Med. Chem. 10, 759–771 (2014).
pubmed: 24678785 doi: 10.2174/1573406410666140327122009
Tufo, G. et al. The protein disulfide isomerases PDIA4 and PDIA6 mediate resistance to cisplatin-induced cell death in lung adenocarcinoma. Cell Death Differ. 21, 685–695 (2014).
pubmed: 24464223 pmcid: 3978299 doi: 10.1038/cdd.2013.193
Jouan-Lanhouet, S. et al. TRAIL induces necroptosis involving RIPK1/RIPK3-dependent PARP-1 activation. Cell Death Differ. 19, 2003–2014 (2012).
pubmed: 22814620 pmcid: 3504714 doi: 10.1038/cdd.2012.90
Pantel, K., Brakenhoff, R. H. & Brandt, B. Detection, clinical relevance and specific biological properties of disseminating tumour cells. Nat. Rev. Cancer 8, 329–340 (2008).
pubmed: 18404148 doi: 10.1038/nrc2375
Winer, A., Adams, S. & Mignatti, P. Matrix metalloproteinase inhibitors in cancer therapy: turning past failures into future successes. Mol. Cancer Ther. 17, 1147–1155 (2018).
pubmed: 29735645 pmcid: 5984693 doi: 10.1158/1535-7163.MCT-17-0646
Zucker, S., Cao, J. & Chen, W. T. Critical appraisal of the use of matrix metalloproteinase inhibitors in cancer treatment. Oncogene 19, 6642–6650 (2000).
pubmed: 11426650 doi: 10.1038/sj.onc.1204097
Gautam, J. et al. Down-regulation of cathepsin S and matrix metalloproteinase-9 via Src, a non-receptor tyrosine kinase, suppresses triple-negative breast cancer growth and metastasis. Exp. Mol. Med. 50, 1–14 (2018).
pubmed: 30185799 doi: 10.1038/s12276-018-0135-9
Macaulay, V. M. et al. Phase I study of intrapleural batimastat (BB-94), a matrix metalloproteinase inhibitor, in the treatment of malignant pleural effusions. Clin. Cancer Res. 5, 513–520 (1999).
pubmed: 10100701
Gatto, C. et al. BAY 12-9566, a novel inhibitor of matrix metalloproteinases with antiangiogenic activity. Clin. Cancer Res. 5, 3603–3607 (1999).
pubmed: 10589777
Baidya, S. K., Amin, S. A. & Jha, T. Outline of gelatinase inhibitors as anti-cancer agents: a patent mini-review for 2010-present. Eur. J. Med. Chem. 213, 113044 (2021).
pubmed: 33279289 doi: 10.1016/j.ejmech.2020.113044
Hirte, H. et al. A phase III randomized trial of BAY 12-9566 (tanomastat) as maintenance therapy in patients with advanced ovarian cancer responsive to primary surgery and paclitaxel/platinum containing chemotherapy: a National Cancer Institute of Canada Clinical Trials. Gynecol. Oncol. 102, 300–308 (2006).
pubmed: 16442153 doi: 10.1016/j.ygyno.2005.12.020
Rudek, M. A. et al. Phase I clinical trial of oral COL-3, a matrix metalloproteinase inhibitor, in patients with refractory metastatic cancer. J. Clin. Oncol. 19, 584–592 (2001).
pubmed: 11208854 doi: 10.1200/JCO.2001.19.2.584
Mao, J.-W., He, X.-M., Tang, H.-Y. & Wang, Y.-D. Protective role of metalloproteinase inhibitor (AE-941) on ulcerative colitis in rats. World J. Gastroenterol. 18, 7063–7069 (2012).
pubmed: 23323009 pmcid: 3531695 doi: 10.3748/wjg.v18.i47.7063
Deryugina, E. I., Ratnikov, B. I. & Strongin, A. Y. Prinomastat, a hydroxamate inhibitor of matrix metalloproteinases, has a complex effect on migration of breast carcinoma cells. Int. J. cancer 104, 533–541 (2003).
pubmed: 12594807 doi: 10.1002/ijc.10977
Rizvi, N. A. et al. A phase I study of oral BMS-275291, a novel nonhydroxamate sheddase-sparing matrix metalloproteinase inhibitor, in patients with advanced or metastatic cancer. Clin. Cancer Res. 10, 1963–1970 (2004).
pubmed: 15041713 doi: 10.1158/1078-0432.CCR-1183-02
Syed, S. et al. A phase I and pharmacokinetic study of Col-3 (Metastat), an oral tetracycline derivative with potent matrix metalloproteinase and antitumor properties. Clin. Cancer Res. 10, 6512–6521 (2004).
pubmed: 15475438 doi: 10.1158/1078-0432.CCR-04-0804
Maurya, S. K., Poddar, N., Tandon, P. & Yadav, A. K. In Pathophysiological Aspects of Proteases (eds Chakraborti, S. & Dhalla, N. S.) Ch.10 (Springer, 2017).
Parikh, P. K. & Ghate, M. D. Recent advances in the discovery of small molecule c-Met Kinase inhibitors. Eur. J. Med Chem. 143, 1103–1138 (2018).
pubmed: 29157685 doi: 10.1016/j.ejmech.2017.08.044
Markham, A. Tepotinib: first approval. Drugs 80, 829–833 (2020).
pubmed: 32361823 doi: 10.1007/s40265-020-01317-9
Mathieu, L. N. et al. FDA approval summary: capmatinib and tepotinib for the treatment of metastatic NSCLC harboring MET exon 14 skipping mutations or alterations. Clin. Cancer Res. 28, 249–254 (2022).
pubmed: 34344795 doi: 10.1158/1078-0432.CCR-21-1566
Dhillon, S. Capmatinib: first approval. Drugs 80, 1125–1131 (2020).
pubmed: 32557339 doi: 10.1007/s40265-020-01347-3
Zou, H. Y. et al. Sensitivity of selected human tumor models to PF-04217903, a novel selective c-Met kinase inhibitor. Mol. Cancer Ther. 11, 1036–1047 (2012).
pubmed: 22389468 doi: 10.1158/1535-7163.MCT-11-0839
Yakes, F. M. et al. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol. Cancer Ther. 10, 2298–2308 (2011).
pubmed: 21926191 doi: 10.1158/1535-7163.MCT-11-0264
Smith, D. C. et al. Cabozantinib in patients with advanced prostate cancer: results of a phase II randomized discontinuation trial. J. Clin. Oncol. 31, 412–419 (2013).
pubmed: 23169517 doi: 10.1200/JCO.2012.45.0494
Choueiri, T. K. et al. Cabozantinib versus everolimus in advanced renal-cell carcinoma. N. Engl. J. Med. 373, 1814–1823 (2015).
pubmed: 26406150 pmcid: 5024539 doi: 10.1056/NEJMoa1510016
Choueiri, T. K. et al. Cabozantinib versus everolimus in advanced renal cell carcinoma (METEOR): final results from a randomised, open-label, phase 3 trial. Lancet Oncol. 17, 917–927 (2016).
pubmed: 27279544 doi: 10.1016/S1470-2045(16)30107-3
Eder, J. P., Vande Woude, G. F., Boerner, S. A. & Lorusso, P. M. Novel therapeutic inhibitors of the c-Met signaling pathway in cancer. Clin. Cancer Res. 15, 2207–2214 (2009).
pubmed: 19318488 doi: 10.1158/1078-0432.CCR-08-1306
Eathiraj, S. et al. Discovery of a novel mode of protein kinase inhibition characterized by the mechanism of inhibition of human mesenchymal-epithelial transition factor (c-Met) protein autophosphorylation by ARQ 197. J. Biol. Chem. 286, 20666–20676 (2011).
pubmed: 21454604 pmcid: 3121448 doi: 10.1074/jbc.M110.213801
Zhao, S. et al. Selective inhibitor of the c-Met receptor tyrosine kinase in advanced hepatocellular carcinoma: no beneficial effect with the use of tivantinib? Front. Immunol. 12, 731527 (2021).
pubmed: 34804015 pmcid: 8600564 doi: 10.3389/fimmu.2021.731527
Merchant, M. et al. Monovalent antibody design and mechanism of action of onartuzumab, a MET antagonist with anti-tumor activity as a therapeutic agent. Proc. Natl Acad. Sci. USA 110, E2987–E2996 (2013).
pubmed: 23882082 pmcid: 3740879 doi: 10.1073/pnas.1302725110
Kim, K.-H. & Kim, H. Progress of antibody-based inhibitors of the HGF-cMET axis in cancer therapy. Exp. Mol. Med. 49, e307 (2017).
pubmed: 28336955 pmcid: 5382561 doi: 10.1038/emm.2017.17
Liu, L. et al. LY2875358, a neutralizing and internalizing anti-MET bivalent antibody, inhibits HGF-dependent and HGF-independent MET activation and tumor growth. Clin. Cancer Res. 20, 6059–6070 (2014).
pubmed: 25231402 doi: 10.1158/1078-0432.CCR-14-0543
Patnaik, A. et al. A phase I study of LY3164530, a bispecific antibody targeting MET and EGFR, in patients with advanced or metastatic cancer. Cancer Chemother. Pharmacol. 82, 407–418 (2018).
pubmed: 29926131 pmcid: 6105165 doi: 10.1007/s00280-018-3623-7
Park, K. et al. Amivantamab in EGFR exon 20 insertion-mutated non-small-cell lung cancer progressing on platinum chemotherapy: initial results from the CHRYSALIS phase I study. J. Clin. Oncol. 39, 3391–3402 (2021).
pubmed: 34339292 pmcid: 8791812 doi: 10.1200/JCO.21.00662
Moores, S. L. et al. A novel bispecific antibody targeting EGFR and cMet is effective against EGFR inhibitor-resistant lung tumors. Cancer Res. 76, 3942–3953 (2016).
pubmed: 27216193 doi: 10.1158/0008-5472.CAN-15-2833
Lee, J. M. et al. Cbl-independent degradation of Met: ways to avoid agonism of bivalent met-targeting antibody. Oncogene 33, 34–43 (2014).
pubmed: 23208509 doi: 10.1038/onc.2012.551
Lee, B.-S. et al. Met degradation by SAIT301, a Met monoclonal antibody, reduces the invasion and migration of nasopharyngeal cancer cells via inhibition of EGR-1 expression. Cell Death Dis. 5, e1159 (2014).
pubmed: 24722284 pmcid: 5424102 doi: 10.1038/cddis.2014.119
Lee, J. et al. Phase I trial of anti-MET monoclonal antibody in MET-overexpressed refractory cancer. Clin. Colorectal Cancer 17, 140–146 (2018).
pubmed: 29551559 doi: 10.1016/j.clcc.2018.01.005
Hultberg, A. et al. Depleting MET-expressing tumor cells by ADCC provides a therapeutic advantage over inhibiting HGF/MET signaling. Cancer Res. 75, 3373–3383 (2015).
pubmed: 26141862 doi: 10.1158/0008-5472.CAN-15-0356
Petrelli, A. et al. Ab-induced ectodomain shedding mediates hepatocyte growth factor receptor down-regulation and hampers biological activity. Proc. Natl Acad. Sci. USA 103, 5090–5095 (2006).
pubmed: 16547140 pmcid: 1458799 doi: 10.1073/pnas.0508156103
Pacchiana, G. et al. Monovalency unleashes the full therapeutic potential of the DN-30 anti-Met antibody. J. Biol. Chem. 285, 36149–36157 (2010).
pubmed: 20833723 pmcid: 2975237 doi: 10.1074/jbc.M110.134031
Burgess, T. L. et al. Biochemical characterization of AMG 102: a neutralizing, fully human monoclonal antibody to human and nonhuman primate hepatocyte growth factor. Mol. Cancer Ther. 9, 400–409 (2010).
pubmed: 20124448 doi: 10.1158/1535-7163.MCT-09-0824
Yap, T. A. & De Bono, J. S. Targeting the HGF/c-met axis: state of play. Mol. Cancer Ther. 9, 1077–1079 (2010).
pubmed: 20442310 doi: 10.1158/1535-7163.MCT-10-0122
Tarhini, A. A. et al. Phase 1/2 study of rilotumumab (AMG 102), a hepatocyte growth factor inhibitor, and erlotinib in patients with advanced non-small cell lung cancer. Cancer 123, 2936–2944 (2017).
pubmed: 28472537 doi: 10.1002/cncr.30717
Fiedler, U. et al. Potency of bortezomib in combination with MP0250, a bispecific VEGF- and HGF-targeting darpin, in a preclinical multiple myeloma model. J. Clin. Oncol. 32, e19574–e19574 (2014).
doi: 10.1200/jco.2014.32.15_suppl.e19574
Date, K., Matsumoto, K., Shimura, H., Tanaka, M. & Nakamura, T. HGF/NK4 is a specific antagonist for pleiotrophic actions of hepatocyte growth factor. FEBS Lett. 420, 1–6 (1997).
pubmed: 9450538 doi: 10.1016/S0014-5793(97)01475-0
Mizuno, S. & Nakamura, T. HGF-MET cascade, a key target for inhibiting cancer metastasis: the impact of NK4 discovery on cancer biology and therapeutics. Int. J. Mol. Sci. 14, 888–919 (2013).
pubmed: 23296269 pmcid: 3565297 doi: 10.3390/ijms14010888
Matsumoto, K. & Nakamura, T. Mechanisms and significance of bifunctional NK4 in cancer treatment. Biochem. Biophys. Res. Commun. 333, 316–327 (2005).
pubmed: 15950947 doi: 10.1016/j.bbrc.2005.05.131
Matsumoto, K. & Nakamura, T. NK4 (HGF-antagonist/angiogenesis inhibitor) in cancer biology and therapeutics. Cancer Sci. 94, 321–327 (2003).
pubmed: 12824898 doi: 10.1111/j.1349-7006.2003.tb01440.x
Rivas, S., Marín, A., Samtani, S., González-Feliú, E. & Armisén, R. MET signaling pathways, resistance mechanisms, and opportunities for target therapies. Int. J. Mol. Sci. 23, 13898 (2022).
pubmed: 36430388 pmcid: 9697723 doi: 10.3390/ijms232213898
Dias, M. P., Moser, S. C., Ganesan, S. & Jonkers, J. Understanding and overcoming resistance to PARP inhibitors in cancer therapy. Nat. Rev. Clin. Oncol. 18, 773–791 (2021).
pubmed: 34285417 doi: 10.1038/s41571-021-00532-x
Tutt, A. N. J. et al. Adjuvant olaparib for patients with BRCA1- or BRCA2-mutated breast cancer. N. Engl. J. Med. 384, 2394–2405 (2021).
pubmed: 34081848 pmcid: 9126186 doi: 10.1056/NEJMoa2105215
Ledermann, J. et al. Olaparib maintenance therapy in platinum-sensitive relapsed ovarian cancer. N. Engl. J. Med. 366, 1382–1392 (2012).
pubmed: 22452356 doi: 10.1056/NEJMoa1105535
Moore, K. et al. Maintenance olaparib in patients with newly diagnosed advanced ovarian cancer. N. Engl. J. Med. 379, 2495–2505 (2018).
pubmed: 30345884 doi: 10.1056/NEJMoa1810858
Kristeleit, R. et al. Rucaparib versus standard-of-care chemotherapy in patients with relapsed ovarian cancer and a deleterious BRCA1 or BRCA2 mutation (ARIEL4): an international, open-label, randomised, phase 3 trial. Lancet Oncol. 23, 465–478 (2022).
pubmed: 35298906 doi: 10.1016/S1470-2045(22)00122-X
Robson, M. et al. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N. Engl. J. Med. 377, 523–533 (2017).
pubmed: 28578601 doi: 10.1056/NEJMoa1706450
Litton, J. K. et al. Talazoparib in patients with advanced breast cancer and a germline BRCA mutation. N. Engl. J. Med. 379, 753–763 (2018).
pubmed: 30110579 pmcid: 10600918 doi: 10.1056/NEJMoa1802905
Golan, T. et al. Maintenance olaparib for germline BRCA-mutated metastatic pancreatic cancer. N. Engl. J. Med. 381, 317–327 (2019).
pubmed: 31157963 pmcid: 6810605 doi: 10.1056/NEJMoa1903387
Abida, W. et al. Rucaparib in men with metastatic castration-resistant prostate cancer harboring a BRCA1 or BRCA2 gene alteration. J. Clin. Oncol. 38, 3763–3772 (2020).
pubmed: 32795228 pmcid: 7655021 doi: 10.1200/JCO.20.01035
Riches, L. C. et al. Pharmacology of the ATM inhibitor AZD0156: potentiation of irradiation and olaparib responses preclinically. Mol. Cancer Ther. 19, 13–25 (2020).
pubmed: 31534013 doi: 10.1158/1535-7163.MCT-18-1394
Durant, S. T. et al. The brain-penetrant clinical ATM inhibitor AZD1390 radiosensitizes and improves survival of preclinical brain tumor models. Sci. Adv. 4, eaat1719 (2018).
pubmed: 29938225 pmcid: 6010333 doi: 10.1126/sciadv.aat1719
Tew, B. Y. et al. ATM-inhibitor AZD1390 is a radiosensitizer for breast cancer CNS metastasis. Clin. Cancer Res. 29, 4492–4503 (2023).
pubmed: 37585496 pmcid: 10618650 doi: 10.1158/1078-0432.CCR-23-0290
Fuchss, T. et al. Abstract 3500: highly potent and selective ATM kinase inhibitor M4076: a clinical candidate drug with strong anti-tumor activity in combination therapies. Cancer Res. 79, 3500 (2019).
doi: 10.1158/1538-7445.AM2019-3500
Zimmermann, A. et al. A new class of selective ATM inhibitors as combination partners of DNA double-strand break inducing cancer therapies. Mol. Cancer Ther. 21, 859–870 (2022).
pubmed: 35405736 pmcid: 9381122 doi: 10.1158/1535-7163.MCT-21-0934
Hickson, I. et al. Identification and characterization of a novel and specific inhibitor of the ataxia-telangiectasia mutated kinase ATM. Cancer Res. 64, 9152–9159 (2004).
pubmed: 15604286 doi: 10.1158/0008-5472.CAN-04-2727
Bryant, H. E. & Helleday, T. Inhibition of poly (ADP-ribose) polymerase activates ATM which is required for subsequent homologous recombination repair. Nucleic Acids Res. 34, 1685–1691 (2006).
pubmed: 16556909 pmcid: 1410911 doi: 10.1093/nar/gkl108
Toledo, L. I. et al. A cell-based screen identifies ATR inhibitors with synthetic lethal properties for cancer-associated mutations. Nat. Struct. Mol. Biol. 18, 721–727 (2011).
pubmed: 21552262 pmcid: 4869831 doi: 10.1038/nsmb.2076
Boudny, M. & Trbusek, M. ATR-CHK1 pathway as a therapeutic target for acute and chronic leukemias. Cancer Treat. Rev. 88, 102026 (2020).
pubmed: 32592909 doi: 10.1016/j.ctrv.2020.102026
Middleton, M. R. et al. Phase 1 study of the ATR inhibitor berzosertib (formerly M6620, VX-970) combined with gemcitabine ± cisplatin in patients with advanced solid tumours. Br. J. Cancer 125, 510–519 (2021).
pubmed: 34040175 pmcid: 8368196 doi: 10.1038/s41416-021-01405-x
Wengner, A. M. et al. The novel ATR inhibitor BAY 1895344 is efficacious as monotherapy and combined with DNA damage-inducing or repair-compromising therapies in preclinical cancer models. Mol. Cancer Ther. 19, 26–38 (2020).
pubmed: 31582533 doi: 10.1158/1535-7163.MCT-19-0019
Kim, H. et al. Targeting the ATR/CHK1 axis with PARP inhibition results in tumor regression in BRCA-mutant ovarian cancer models. Clin. Cancer Res. 23, 3097–3108 (2017).
pubmed: 27993965 doi: 10.1158/1078-0432.CCR-16-2273
Brooks, K. et al. A potent Chk1 inhibitor is selectively cytotoxic in melanomas with high levels of replicative stress. Oncogene 32, 788–796 (2013).
pubmed: 22391562 doi: 10.1038/onc.2012.72
Massey, A. J. et al. mTORC1 and DNA-PKcs as novel molecular determinants of sensitivity to Chk1 inhibition. Mol. Oncol. 10, 101–112 (2016).
pubmed: 26471831 doi: 10.1016/j.molonc.2015.08.004
Qiu, Z., Oleinick, N. L. & Zhang, J. ATR/CHK1 inhibitors and cancer therapy. Radiol. Oncol. 126, 450–464 (2018).
doi: 10.1016/j.radonc.2017.09.043
Scagliotti, G. et al. Phase II evaluation of LY2603618, a first-generation CHK1 inhibitor, in combination with pemetrexed in patients with advanced or metastatic non-small cell lung cancer. Invest. N. Drugs 34, 625–635 (2016).
doi: 10.1007/s10637-016-0368-1
Wehler, T. et al. A randomized, phase 2 evaluation of the CHK1 inhibitor, LY2603618, administered in combination with pemetrexed and cisplatin in patients with advanced nonsquamous non-small cell lung cancer. Lung Cancer 108, 212–216 (2017).
pubmed: 28625637 doi: 10.1016/j.lungcan.2017.03.001
Li, Q. et al. A new wave of innovations within the DNA damage response. Signal Transduct. Target. Ther. 8, 338 (2023).
pubmed: 37679326 pmcid: 10485079 doi: 10.1038/s41392-023-01548-8
King, C. et al. LY2606368 causes replication catastrophe and antitumor effects through CHK1-dependent mechanisms. Mol. Cancer Ther. 14, 2004–2013 (2015).
pubmed: 26141948 doi: 10.1158/1535-7163.MCT-14-1037
Kristeleit, R. et al. A phase 1/2 trial of SRA737 (a Chk1 inhibitor) administered orally in patients with advanced cancer. Br. J. Cancer 129, 38–45 (2023).
pubmed: 37120671 pmcid: 10307885 doi: 10.1038/s41416-023-02279-x
Sausville, E. et al. Phase I dose-escalation study of AZD7762, a checkpoint kinase inhibitor, in combination with gemcitabine in US patients with advanced solid tumors. Cancer Chemother. Pharmacol. 73, 539–549 (2014).
pubmed: 24448638 pmcid: 4486055 doi: 10.1007/s00280-014-2380-5
Zhao, H. et al. Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct. Target Ther. 6, 263 (2021).
pubmed: 34248142 pmcid: 8273155 doi: 10.1038/s41392-021-00658-5
Crusz, S. M. & Balkwill, F. R. Inflammation and cancer: advances and new agents. Nat. Rev. Clin. Oncol. 12, 584–596 (2015).
pubmed: 26122183 doi: 10.1038/nrclinonc.2015.105
Jendrossek, V. Targeting apoptosis pathways by celecoxib in cancer. Cancer Lett. 332, 313–324 (2013).
pubmed: 21345578 doi: 10.1016/j.canlet.2011.01.012
Boudreau, D. M., Yu, O. & Johnson, J. Statin use and cancer risk: a comprehensive review. Expert Opin. Drug Saf. 9, 603–621 (2010).
pubmed: 20377474 pmcid: 2910322 doi: 10.1517/14740331003662620
Dinarello, C. A. Anti-inflammatory agents: present and future. Cell 140, 935–950 (2010).
pubmed: 20303881 pmcid: 3752337 doi: 10.1016/j.cell.2010.02.043
Deisseroth, A. et al. FDA approval: siltuximab for the treatment of patients with multicentric Castleman disease. Clin. Cancer Res. 21, 950–954 (2015).
pubmed: 25601959 doi: 10.1158/1078-0432.CCR-14-1678
Park, H., Lee, S., Lee, J., Moon, H. & Ro, S. W. Exploring the JAK/STAT signaling pathway in hepatocellular carcinoma: unraveling signaling complexity and therapeutic implications. Int. J. Mol. Sci. 24, 13764 (2023).
pubmed: 37762066 pmcid: 10531214 doi: 10.3390/ijms241813764
Quintás-Cardama, A. et al. Preclinical characterization of the selective JAK1/2 inhibitor INCB018424: therapeutic implications for the treatment of myeloproliferative neoplasms. Blood 115, 3109–3117 (2010).
pubmed: 20130243 pmcid: 3953826 doi: 10.1182/blood-2009-04-214957
William, A. D. et al. Discovery of the macrocycle 11-(2-pyrrolidin-1-yl-ethoxy)-14,19-dioxa-5,7,26-triaza-tetracyclo[19.3.1.1(2,6).1(8,12)]heptacosa-1(25),2(26),3,5,8,10,12(27),16,21,23-decaene (SB1518), a potent Janus kinase 2/fms-like tyrosine kinase-3 (JAK2/FLT3) inhibitor. J. Med. Chem. 54, 4638–4658 (2011).
pubmed: 21604762 doi: 10.1021/jm200326p
FARBER, S. & DIAMOND, L. K. Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid. N. Engl. J. Med. 238, 787–793 (1948).
pubmed: 18860765 doi: 10.1056/NEJM194806032382301
Stine, Z. E., Schug, Z. T., Salvino, J. M. & Dang, C. V. Targeting cancer metabolism in the era of precision oncology. Nat. Rev. Drug Discov. 21, 141–162 (2022).
pubmed: 34862480 doi: 10.1038/s41573-021-00339-6
Martinez-Outschoorn, U. E., Peiris-Pagés, M., Pestell, R. G., Sotgia, F. & Lisanti, M. P. Cancer metabolism: a therapeutic perspective. Nat. Rev. Clin. Oncol. 14, 11–31 (2017).
pubmed: 27141887 doi: 10.1038/nrclinonc.2016.60
Siebeneicher, H. et al. Identification and optimization of the first highly selective GLUT1 inhibitor BAY-876. ChemMedChem 11, 2261–2271 (2016).
pubmed: 27552707 pmcid: 5095872 doi: 10.1002/cmdc.201600276
Jin, J., Byun, J.-K., Choi, Y.-K. & Park, K.-G. Targeting glutamine metabolism as a therapeutic strategy for cancer. Exp. Mol. Med. 55, 706–715 (2023).
pubmed: 37009798 pmcid: 10167356 doi: 10.1038/s12276-023-00971-9
Varghese, S. et al. The glutaminase inhibitor CB-839 (Telaglenastat) enhances the antimelanoma activity of T-cell-mediated immunotherapies. Mol. Cancer Ther. 20, 500–511 (2021).
pubmed: 33361272 doi: 10.1158/1535-7163.MCT-20-0430
Kremer, D. M. & Lyssiotis, C. A. Targeting allosteric regulation of cancer metabolism. Nat. Chem. Biol. 18, 441–450 (2022).
pubmed: 35484254 doi: 10.1038/s41589-022-00997-6
Leone, R. D. et al. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science 366, 1013–1021 (2019).
pubmed: 31699883 pmcid: 7023461 doi: 10.1126/science.aav2588
Camarda, R. et al. Inhibition of fatty acid oxidation as a therapy for MYC-overexpressing triple-negative breast cancer. Nat. Med. 22, 427–432 (2016).
pubmed: 26950360 pmcid: 4892846 doi: 10.1038/nm.4055
Ray, K. K. et al. Safety and efficacy of bempedoic acid to reduce LDL cholesterol. N. Engl. J. Med. 380, 1022–1032 (2019).
pubmed: 30865796 doi: 10.1056/NEJMoa1803917
Wei, J. et al. An allosteric mechanism for potent inhibition of human ATP-citrate lyase. Nature 568, 566–570 (2019).
pubmed: 30944472 doi: 10.1038/s41586-019-1094-6
Sainero-Alcolado, L., Liaño-Pons, J., Ruiz-Pérez, M. V. & Arsenian-Henriksson, M. Targeting mitochondrial metabolism for precision medicine in cancer. Cell Death Differ. 29, 1304–1317 (2022).
pubmed: 35831624 pmcid: 9287557 doi: 10.1038/s41418-022-01022-y
Yan, H. et al. IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med. 360, 765–773 (2009).
pubmed: 19228619 pmcid: 2820383 doi: 10.1056/NEJMoa0808710
Yen, K. et al. AG-221, a first-in-class therapy targeting acute myeloid leukemia harboring oncogenic IDH2 mutations. Cancer Discov. 7, 478–493 (2017).
pubmed: 28193778 doi: 10.1158/2159-8290.CD-16-1034
Molina, J. R. et al. An inhibitor of oxidative phosphorylation exploits cancer vulnerability. Nat. Med. 24, 1036–1046 (2018).
pubmed: 29892070 doi: 10.1038/s41591-018-0052-4
Ducker, G. S. & Rabinowitz, J. D. One-carbon metabolism in health and disease. Cell Metab. 25, 27–42 (2017).
pubmed: 27641100 doi: 10.1016/j.cmet.2016.08.009
Locasale, J. W. Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat. Rev. Cancer 13, 572–583 (2013).
pubmed: 23822983 pmcid: 3806315 doi: 10.1038/nrc3557
Ju, H.-Q. et al. Modulation of redox homeostasis by inhibition of MTHFD2 in colorectal cancer: mechanisms and therapeutic implications. J. Natl Cancer Inst. 111, 584–596 (2019).
pubmed: 30534944 doi: 10.1093/jnci/djy160
Zhou, X. et al. Discovery of novel inhibitors of human phosphoglycerate dehydrogenase by activity-directed combinatorial chemical synthesis strategy. Bioorg. Chem. 115, 105159 (2021).
pubmed: 34298241 doi: 10.1016/j.bioorg.2021.105159
García-Cañaveras, J. C. et al. SHMT inhibition is effective and synergizes with methotrexate in T-cell acute lymphoblastic leukemia. Leukemia 35, 377–388 (2021).
pubmed: 32382081 doi: 10.1038/s41375-020-0845-6
Scaletti, E., Jemth, A.-S., Helleday, T. & Stenmark, P. Structural basis of inhibition of the human serine hydroxymethyltransferase SHMT2 by antifolate drugs. FEBS Lett. 593, 1863–1873 (2019).
pubmed: 31127856 doi: 10.1002/1873-3468.13455
Li, C. et al. Design, synthesis, and biological evaluation of a novel series of teriflunomide derivatives as potent human dihydroorotate dehydrogenase inhibitors for malignancy treatment. J. Med. Chem. 64, 18175–18192 (2021).
pubmed: 34905371 doi: 10.1021/acs.jmedchem.1c01711
Kanarek, N., Petrova, B. & Sabatini, D. M. Dietary modifications for enhanced cancer therapy. Nature 579, 507–517 (2020).
pubmed: 32214253 doi: 10.1038/s41586-020-2124-0
Caffa, I. et al. Fasting-mimicking diet and hormone therapy induce breast cancer regression. Nature 583, 620–624 (2020).
pubmed: 32669709 pmcid: 7881940 doi: 10.1038/s41586-020-2502-7
Martínez-Garay, C. & Djouder, N. Dietary interventions and precision nutrition in cancer therapy. Trends Mol. Med. 29, 489–511 (2023).
pubmed: 37263858 doi: 10.1016/j.molmed.2023.04.004
Taylor, S. R., Falcone, J. N., Cantley, L. C. & Goncalves, M. D. Developing dietary interventions as therapy for cancer. Nat. Rev. Cancer 22, 452–466 (2022).
pubmed: 35614234 doi: 10.1038/s41568-022-00485-y
Leach, D. R., Krummel, M. F. & Allison, J. P. Enhancement of antitumor immunity by CTLA-4 blockade. Science 271, 1734–1736 (1996).
pubmed: 8596936 doi: 10.1126/science.271.5256.1734
Wang, D.-R., Wu, X.-L. & Sun, Y.-L. Therapeutic targets and biomarkers of tumor immunotherapy: response versus non-response. Signal Transduct. Target. Ther. 7, 331 (2022).
pubmed: 36123348 pmcid: 9485144 doi: 10.1038/s41392-022-01136-2
Doroshow, D. B. et al. PD-L1 as a biomarker of response to immune-checkpoint inhibitors. Nat. Rev. Clin. Oncol. 18, 345–362 (2021).
pubmed: 33580222 doi: 10.1038/s41571-021-00473-5
Pérez-Ruiz, E. et al. Cancer immunotherapy resistance based on immune checkpoints inhibitors: Targets, biomarkers, and remedies. Drug Resist. Updat. 53, 100718 (2020).
pubmed: 32736034 doi: 10.1016/j.drup.2020.100718
Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).
pubmed: 20525992 pmcid: 3549297 doi: 10.1056/NEJMoa1003466
Zinn, S. et al. Advances in antibody-based therapy in oncology. Nat. cancer 4, 165–180 (2023).
pubmed: 36806801 doi: 10.1038/s43018-023-00516-z
Wang, K. et al. Overall survival of patients with hepatocellular carcinoma treated with sintilimab and disease outcome after treatment discontinuation. BMC Cancer 23, 1017 (2023).
pubmed: 37867191 pmcid: 10591394 doi: 10.1186/s12885-023-11485-y
André, T. et al. Antitumor activity and safety of dostarlimab monotherapy in patients with mismatch repair deficient solid tumors: a nonrandomized controlled trial. JAMA Netw. Open 6, e2341165 (2023).
pubmed: 37917058 pmcid: 10623195 doi: 10.1001/jamanetworkopen.2023.41165
Antonia, S. J. et al. Overall survival with durvalumab after chemoradiotherapy in stage III NSCLC. N. Engl. J. Med. 379, 2342–2350 (2018).
pubmed: 30280658 doi: 10.1056/NEJMoa1809697
Grivas, P. et al. Avelumab first-line maintenance treatment for advanced urothelial carcinoma: review of evidence to guide clinical practice. ESMO Open 8, 102050 (2023).
pubmed: 37976999 pmcid: 10685024 doi: 10.1016/j.esmoop.2023.102050
Cotton, A. D., Nguyen, D. P., Gramespacher, J. A., Seiple, I. B. & Wells, J. A. Development of antibody-based PROTACs for the degradation of the cell-surface immune checkpoint protein PD-L1. J. Am. Chem. Soc. 143, 593–598 (2021).
pubmed: 33395526 pmcid: 8154509 doi: 10.1021/jacs.0c10008
Li, S. et al. PROTACs: novel tools for improving immunotherapy in cancer. Cancer Lett. 560, 216128 (2023).
pubmed: 36933781 doi: 10.1016/j.canlet.2023.216128
Girardi, D. M. et al. Cabozantinib plus nivolumab phase I expansion study in patients with metastatic urothelial carcinoma refractory to immune checkpoint inhibitor therapy. Clin. Cancer Res. 28, 1353–1362 (2022).
pubmed: 35031545 pmcid: 9365339 doi: 10.1158/1078-0432.CCR-21-3726
Harding, J. J. et al. Blocking TIM-3 in treatment-refractory advanced solid tumors: a phase Ia/b study of LY3321367 with or without an anti-PD-L1 antibody. Clin. Cancer Res. 27, 2168–2178 (2021).
pubmed: 33514524 doi: 10.1158/1078-0432.CCR-20-4405
Addala, V. et al. Computational immunogenomic approaches to predict response to cancer immunotherapies. Nat. Rev. Clin. Oncol. 21, 28–46 (2023).
pubmed: 37907723 doi: 10.1038/s41571-023-00830-6
Powles, T. et al. Pembrolizumab plus axitinib versus sunitinib monotherapy as first-line treatment of advanced renal cell carcinoma (KEYNOTE-426): extended follow-up from a randomised, open-label, phase 3 trial. Lancet Oncol. 21, 1563–1573 (2020).
pubmed: 33284113 doi: 10.1016/S1470-2045(20)30436-8
De Thé, H. Differentiation therapy revisited. Nat. Rev. Cancer 18, 117–127 (2018).
pubmed: 29192213 doi: 10.1038/nrc.2017.103
Bates, S. E. Epigenetic therapies for cancer. N. Engl. J. Med. 383, 650–663 (2020).
pubmed: 32786190 doi: 10.1056/NEJMra1805035
Michalak, E. M., Burr, M. L., Bannister, A. J. & Dawson, M. A. The roles of DNA, RNA and histone methylation in ageing and cancer. Nat. Rev. Mol. Cell Biol. 20, 573–589 (2019).
pubmed: 31270442 doi: 10.1038/s41580-019-0143-1
Chen, C. et al. DNA methylation: from cancer biology to clinical perspectives. Front. Biosci. 27, 326 (2022).
doi: 10.31083/j.fbl2712326
Ma, J. & Ge, Z. Comparison between decitabine and azacitidine for patients with acute myeloid leukemia and higher-risk myelodysplastic syndrome: a systematic review and network meta-analysis. Front. Pharmacol. 12, 701690 (2021).
pubmed: 34483903 pmcid: 8416074 doi: 10.3389/fphar.2021.701690
Kantarjian, H. M. et al. Guadecitabine (SGI-110) in treatment-naive patients with acute myeloid leukaemia: phase 2 results from a multicentre, randomised, phase 1/2 trial. Lancet Oncol. 18, 1317–1326 (2017).
pubmed: 28844816 pmcid: 5925750 doi: 10.1016/S1470-2045(17)30576-4
Lim, B. et al. The preclinical efficacy of the novel hypomethylating agent NTX-301 as a monotherapy and in combination with venetoclax in acute myeloid leukemia. Blood Cancer J. 12, 57 (2022).
pubmed: 35410412 pmcid: 9001641 doi: 10.1038/s41408-022-00664-y
Pappalardi, M. B. et al. Discovery of a first-in-class reversible DNMT1-selective inhibitor with improved tolerability and efficacy in acute myeloid leukemia. Nat. Cancer 2, 1002–1017 (2021).
pubmed: 34790902 pmcid: 8594913 doi: 10.1038/s43018-021-00249-x
Plummer, R. et al. Phase I study of MG98, an oligonucleotide antisense inhibitor of human DNA methyltransferase 1, given as a 7-day infusion in patients with advanced solid tumors. Clin. Cancer Res. 15, 3177–3183 (2009).
pubmed: 19383817 doi: 10.1158/1078-0432.CCR-08-2859
Ramaiah, M. J., Tangutur, A. D. & Manyam, R. R. Epigenetic modulation and understanding of HDAC inhibitors in cancer therapy. Life Sci. 277, 119504 (2021).
pubmed: 33872660 doi: 10.1016/j.lfs.2021.119504
Marks, P. A. & Breslow, R. Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug. Nat. Biotechnol. 25, 84–90 (2007).
pubmed: 17211407 doi: 10.1038/nbt1272
Sun, Y. et al. Therapeutic potential of tucidinostat, a subtype-selective HDAC inhibitor, in cancer treatment. Front. Pharmacol. 13, 932914 (2022).
pubmed: 36120308 pmcid: 9481063 doi: 10.3389/fphar.2022.932914
Roche, J. & Bertrand, P. Inside HDACs with more selective HDAC inhibitors. Eur. J. Med. Chem. 121, 451–483 (2016).
pubmed: 27318122 doi: 10.1016/j.ejmech.2016.05.047
Yue, K. et al. Comparison of three zinc binding groups for HDAC inhibitors - A potency, selectivity and enzymatic kinetics study. Bioorg. Med. Chem. Lett. 70, 128797 (2022).
pubmed: 35580726 doi: 10.1016/j.bmcl.2022.128797
Su, M., Gong, X. & Liu, F. An update on the emerging approaches for histone deacetylase (HDAC) inhibitor drug discovery and future perspectives. Expert Opin. Drug Discov. 16, 745–761 (2021).
pubmed: 33530771 doi: 10.1080/17460441.2021.1877656
Connolly, R. M., Rudek, M. A. & Piekarz, R. Entinostat: a promising treatment option for patients with advanced breast cancer. Future Oncol. 13, 1137–1148 (2017).
pubmed: 28326839 pmcid: 5618943 doi: 10.2217/fon-2016-0526
Davalos, V. & Esteller, M. Cancer epigenetics in clinical practice. CA Cancer J. Clin. 73, 376–424 (2023).
pubmed: 36512337 doi: 10.3322/caac.21765
Hoy, S. M. Tazemetostat: first approval. Drugs 80, 513–521 (2020).
pubmed: 32166598 doi: 10.1007/s40265-020-01288-x
Zauderer, M. G. et al. EZH2 inhibitor tazemetostat in patients with relapsed or refractory, BAP1-inactivated malignant pleural mesothelioma: a multicentre, open-label, phase 2 study. Lancet Oncol. 23, 758–767 (2022).
pubmed: 35588752 doi: 10.1016/S1470-2045(22)00277-7
McCabe, M. T. et al. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature 492, 108–112 (2012).
pubmed: 23051747 doi: 10.1038/nature11606
Vaswani, R. G. et al. Identification of (R)-N-((4-methoxy-6-methyl-2-oxo-1,2-dihydropyridin-3-yl)methyl)-2-methyl-1-(1-(1-(2,2,2-trifluoroethyl)piperidin-4-yl)ethyl)-1H-indole-3-carboxamide (CPI-1205), a potent and selective inhibitor of histone methyltransferase EZH2, suitable for phase I clinical trials for B-cell lymphomas. J. Med. Chem. 59, 9928–9941 (2016).
pubmed: 27739677 pmcid: 5451150 doi: 10.1021/acs.jmedchem.6b01315
Nguyen, A. T., Taranova, O., He, J. & Zhang, Y. DOT1L, the H3K79 methyltransferase, is required for MLL-AF9-mediated leukemogenesis. Blood 117, 6912–6922 (2011).
pubmed: 21521783 pmcid: 3128482 doi: 10.1182/blood-2011-02-334359
Stein, E. M. et al. The DOT1L inhibitor pinometostat reduces H3K79 methylation and has modest clinical activity in adult acute leukemia. Blood 131, 2661–2669 (2018).
pubmed: 29724899 pmcid: 6265654 doi: 10.1182/blood-2017-12-818948
Waters, N. J. et al. Exploring drug delivery for the DOT1L inhibitor pinometostat (EPZ-5676): Subcutaneous administration as an alternative to continuous IV infusion, in the pursuit of an epigenetic target. J. Control. Release 220, 758–765 (2015).
pubmed: 26385168 doi: 10.1016/j.jconrel.2015.09.023
Wang, N., Ma, T. & Yu, B. Targeting epigenetic regulators to overcome drug resistance in cancers. Signal Transduct. Target. Ther. 8, 69 (2023).
pubmed: 36797239 pmcid: 9935618 doi: 10.1038/s41392-023-01341-7
Salamero, O. et al. First-in-human phase I study of Iadademstat (ORY-1001): a first-in-class lysine-specific histone demethylase 1 A inhibitor, in relapsed or refractory acute myeloid leukemia. J. Clin. Oncol. 38, 4260–4273 (2020).
pubmed: 33052756 pmcid: 7768337 doi: 10.1200/JCO.19.03250
Stathis, A. & Bertoni, F. BET proteins as targets for anticancer treatment. Cancer Discov. 8, 24–36 (2018).
pubmed: 29263030 doi: 10.1158/2159-8290.CD-17-0605
Doroshow, D. B., Eder, J. P. & LoRusso, P. M. BET inhibitors: a novel epigenetic approach. Ann. Oncol. 28, 1776–1787 (2017).
pubmed: 28838216 doi: 10.1093/annonc/mdx157
Pirozzi, C. J. & Yan, H. The implications of IDH mutations for cancer development and therapy. Nat. Rev. Clin. Oncol. 18, 645–661 (2021).
pubmed: 34131315 doi: 10.1038/s41571-021-00521-0
Xu, W. et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell 19, 17–30 (2011).
pubmed: 21251613 pmcid: 3229304 doi: 10.1016/j.ccr.2010.12.014
DiNardo, C. D. et al. Durable remissions with ivosidenib in IDH1-mutated relapsed or refractory AML. N. Engl. J. Med. 378, 2386–2398 (2018).
pubmed: 29860938 doi: 10.1056/NEJMoa1716984
Montesinos, P. et al. Ivosidenib and azacitidine in IDH1-mutated acute myeloid leukemia. N. Engl. J. Med. 386, 1519–1531 (2022).
pubmed: 35443108 doi: 10.1056/NEJMoa2117344
Zhu, A. X. et al. Final overall survival efficacy results of ivosidenib for patients with advanced cholangiocarcinoma with IDH1 mutation: the phase 3 randomized clinical ClarIDHy trial. JAMA Oncol. 7, 1669–1677 (2021).
pubmed: 34554208 doi: 10.1001/jamaoncol.2021.3836
Platten, M. et al. A vaccine targeting mutant IDH1 in newly diagnosed glioma. Nature 592, 463–468 (2021).
pubmed: 33762734 pmcid: 8046668 doi: 10.1038/s41586-021-03363-z
Danne, C., Rolhion, N. & Sokol, H. Recipient factors in faecal microbiota transplantation: one stool does not fit all. Nat. Rev. Gastroenterol. Hepatol. 18, 503–513 (2021).
pubmed: 33907321 doi: 10.1038/s41575-021-00441-5
Dizman, N. et al. Nivolumab plus ipilimumab with or without live bacterial supplementation in metastatic renal cell carcinoma: a randomized phase 1 trial. Nat. Med. 28, 704–712 (2022).
pubmed: 35228755 pmcid: 9018425 doi: 10.1038/s41591-022-01694-6
da Silva Duarte, V. et al. Chemoprevention of DMH-induced early colon carcinogenesis in male BALB/c mice by administration of Lactobacillus paracasei DTA81. Microorganisms 8, 1994 (2020).
pubmed: 33327620 pmcid: 7765108 doi: 10.3390/microorganisms8121994
Yang, J.-C., Lu, C.-W. & Lin, C.-J. Treatment of Helicobacter pylori infection: current status and future concepts. World J. Gastroenterol. 20, 5283–5293 (2014).
pubmed: 24833858 pmcid: 4017043 doi: 10.3748/wjg.v20.i18.5283
Vítor, J. M. B. & Vale, F. F. Alternative therapies for Helicobacter pylori: probiotics and phytomedicine. FEMS Immunol. Med Microbiol 63, 153–164 (2011).
pubmed: 22077218 doi: 10.1111/j.1574-695X.2011.00865.x
Haria, M., Bryson, H. M. & Goa, K. L. Itraconazole. A reappraisal of its pharmacological properties and therapeutic use in the management of superficial fungal infections. Drugs 51, 585–620 (1996).
pubmed: 8706596 doi: 10.2165/00003495-199651040-00006
Piérard, G. E., Arrese, J. E. & Piérard-Franchimont, C. Itraconazole. Expert Opin. Pharmacother. 1, 287–304 (2000).
pubmed: 11249550 doi: 10.1517/14656566.1.2.287
Ban, L. et al. Anti-fungal drug itraconazole exerts anti-cancer effects in oral squamous cell carcinoma via suppressing Hedgehog pathway. Life Sci. 254, 117695 (2020).
Deng, H. et al. Itraconazole inhibits the Hedgehog signaling pathway thereby inducing autophagy-mediated apoptosis of colon cancer cells. Cell Death Dis. 11, 539 (2020).
pubmed: 32681018 pmcid: 7367825 doi: 10.1038/s41419-020-02742-0
Wang, L., Lankhorst, L. & Bernards, R. Exploiting senescence for the treatment of cancer. Nat. Rev. Cancer 22, 340–355 (2022).
pubmed: 35241831 doi: 10.1038/s41568-022-00450-9
Prasanna, P. G. et al. Therapy-induced senescence: opportunities to improve anticancer therapy. J. Natl Cancer Inst. 113, 1285–1298 (2021).
pubmed: 33792717 pmcid: 8486333 doi: 10.1093/jnci/djab064
Gorgoulis, V. et al. Cellular senescence: defining a path forward. Cell 179, 813–827 (2019).
pubmed: 31675495 doi: 10.1016/j.cell.2019.10.005
Freeman-Cook, K. D. et al. Discovery of PF-06873600, a CDK2/4/6 inhibitor for the treatment of cancer. J. Med. Chem. 64, 9056–9077 (2021).
pubmed: 34110834 doi: 10.1021/acs.jmedchem.1c00159
Wang, C. et al. Inducing and exploiting vulnerabilities for the treatment of liver cancer. Nature 574, 268–272 (2019).
pubmed: 31578521 pmcid: 6858884 doi: 10.1038/s41586-019-1607-3
Waksal, J. A., Bruedigam, C., Komrokji, R. S., Jamieson, C. H. M. & Mascarenhas, J. O. Telomerase-targeted therapies in myeloid malignancies. Blood Adv. 7, 4302–4314 (2023).
pubmed: 37216228 pmcid: 10424149 doi: 10.1182/bloodadvances.2023009903
Kaletsch, A. et al. Effects of novel HDAC inhibitors on urothelial carcinoma cells. Clin. Epigenetics 10, 100 (2018).
pubmed: 30064501 pmcid: 6069857 doi: 10.1186/s13148-018-0531-y
Tuttle, R. et al. Novel senescence associated gene, YPEL3, is repressed by estrogen in ER+ mammary tumor cells and required for tamoxifen-induced cellular senescence. Int. J. Cancer 130, 2291–2299 (2012).
pubmed: 21671470 doi: 10.1002/ijc.26239
Rosemblit, C. et al. Oncodriver inhibition and CD4(+) Th1 cytokines cooperate through Stat1 activation to induce tumor senescence and apoptosis in HER2+ and triple negative breast cancer: implications for combining immune and targeted therapies. Oncotarget 9, 23058–23077 (2018).
pubmed: 29796172 pmcid: 5955413 doi: 10.18632/oncotarget.25208
Zhu, Y. et al. Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors. Aging Cell 15, 428–435 (2016).
pubmed: 26711051 pmcid: 4854923 doi: 10.1111/acel.12445
Bousset, L. & Gil, J. Targeting senescence as an anticancer therapy. Mol. Oncol. 16, 3855–3880 (2022).
pubmed: 36065138 pmcid: 9627790 doi: 10.1002/1878-0261.13312
Wakita, M. et al. A BET family protein degrader provokes senolysis by targeting NHEJ and autophagy in senescent cells. Nat. Commun. 11, 1935 (2020).
pubmed: 32321921 pmcid: 7176673 doi: 10.1038/s41467-020-15719-6
Amor, C. et al. Senolytic CAR T cells reverse senescence-associated pathologies. Nature 583, 127–132 (2020).
pubmed: 32555459 pmcid: 7583560 doi: 10.1038/s41586-020-2403-9
Huang, W., Hickson, L. J., Eirin, A., Kirkland, J. L. & Lerman, L. O. Cellular senescence: the good, the bad and the unknown. Nat. Rev. Nephrol. 18, 611–627 (2022).
pubmed: 35922662 pmcid: 9362342 doi: 10.1038/s41581-022-00601-z
Laberge, R.-M. et al. MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat. Cell Biol. 17, 1049–1061 (2015).
pubmed: 26147250 pmcid: 4691706 doi: 10.1038/ncb3195
Wang, R. et al. Rapamycin inhibits the secretory phenotype of senescent cells by a Nrf2-independent mechanism. Aging Cell 16, 564–574 (2017).
pubmed: 28371119 pmcid: 5418203 doi: 10.1111/acel.12587
Vargas, A. J. & Harris, C. C. Biomarker development in the precision medicine era: lung cancer as a case study. Nat. Rev. Cancer 16, 525–537 (2016).
pubmed: 27388699 pmcid: 6662593 doi: 10.1038/nrc.2016.56
Sveen, A., Kopetz, S. & Lothe, R. A. Biomarker-guided therapy for colorectal cancer: strength in complexity. Nat. Rev. Clin. Oncol. 17, 11–32 (2020).
pubmed: 31289352 doi: 10.1038/s41571-019-0241-1

Auteurs

Yue Zhou (Y)

Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.

Lei Tao (L)

Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.

Jiahao Qiu (J)

Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.

Jing Xu (J)

Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.

Xinyu Yang (X)

West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.

Yu Zhang (Y)

West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
School of Medicine, Tibet University, Lhasa, 850000, China.

Xinyu Tian (X)

Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.

Xinqi Guan (X)

Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.

Xiaobo Cen (X)

Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.

Yinglan Zhao (Y)

Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China. zhaoyinglan@scu.edu.cn.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH