Tumor biomarkers for diagnosis, prognosis and targeted therapy.
Journal
Signal transduction and targeted therapy
ISSN: 2059-3635
Titre abrégé: Signal Transduct Target Ther
Pays: England
ID NLM: 101676423
Informations de publication
Date de publication:
20 May 2024
20 May 2024
Historique:
received:
05
06
2023
accepted:
02
04
2024
revised:
07
03
2024
medline:
20
5
2024
pubmed:
20
5
2024
entrez:
19
5
2024
Statut:
epublish
Résumé
Tumor biomarkers, the substances which are produced by tumors or the body's responses to tumors during tumorigenesis and progression, have been demonstrated to possess critical and encouraging value in screening and early diagnosis, prognosis prediction, recurrence detection, and therapeutic efficacy monitoring of cancers. Over the past decades, continuous progress has been made in exploring and discovering novel, sensitive, specific, and accurate tumor biomarkers, which has significantly promoted personalized medicine and improved the outcomes of cancer patients, especially advances in molecular biology technologies developed for the detection of tumor biomarkers. Herein, we summarize the discovery and development of tumor biomarkers, including the history of tumor biomarkers, the conventional and innovative technologies used for biomarker discovery and detection, the classification of tumor biomarkers based on tissue origins, and the application of tumor biomarkers in clinical cancer management. In particular, we highlight the recent advancements in biomarker-based anticancer-targeted therapies which are emerging as breakthroughs and promising cancer therapeutic strategies. We also discuss limitations and challenges that need to be addressed and provide insights and perspectives to turn challenges into opportunities in this field. Collectively, the discovery and application of multiple tumor biomarkers emphasized in this review may provide guidance on improved precision medicine, broaden horizons in future research directions, and expedite the clinical classification of cancer patients according to their molecular biomarkers rather than organs of origin.
Identifiants
pubmed: 38763973
doi: 10.1038/s41392-024-01823-2
pii: 10.1038/s41392-024-01823-2
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
132Informations de copyright
© 2024. The Author(s).
Références
Schmitt, C. A., Wang, B. & Demaria, M. Senescence and cancer - role and therapeutic opportunities. Nat. Rev. Clin. Oncol. 19, 619–636 (2022).
pubmed: 36045302
pmcid: 9428886
doi: 10.1038/s41571-022-00668-4
Wu, L. & Qu, X. Cancer biomarker detection: recent achievements and challenges. Chem. Soc. Rev. 44, 2963–2997 (2015).
pubmed: 25739971
doi: 10.1039/C4CS00370E
Sewpersad, S. & Pillay, T. S. Historical perspectives in clinical pathology: Bence Jones protein - early urine chemistry and the impact on modern day diagnostics. J. Clin. Pathol. 74, 212–215 (2021).
pubmed: 32471887
doi: 10.1136/jclinpath-2020-206675
Gupta, N., Sharma, A. & Sharma, A. Emerging biomarkers in multiple myeloma: a review. Clin. Chim. Acta 503, 45–53 (2020).
pubmed: 31901479
doi: 10.1016/j.cca.2019.12.026
Talwar, G. P., Gupta, J. C. & Shankar, N. V. Immunological approaches against human chorionic gonadotropin for control of fertility and therapy of advanced-stage cancers expressing hCG/subunits. Am. J. Reprod. Immunol. 66, 26–39 (2011).
pubmed: 21501278
doi: 10.1111/j.1600-0897.2011.01002.x
Grenache, D. G. Progress in understanding the use of human chorionic gonadotropin as a tumor marker. Clin. Chem. Lab Med. 58, 323–325 (2020).
pubmed: 31926077
doi: 10.1515/cclm-2019-1288
Markert, C. L. & Møller, F. Multiple forms of enzymes: tissue, ontogenetic, and species specific patterns. Proc. Natl Acad. Sci. USA 45, 753–763 (1959).
pubmed: 16590440
pmcid: 222630
doi: 10.1073/pnas.45.5.753
Jurisic, V., Radenkovic, S. & Konjevic, G. The actual role of LDH as tumor marker, biochemical and clinical aspects. Adv. Exp. Med. Biol. 867, 115–124 (2015).
pubmed: 26530363
doi: 10.1007/978-94-017-7215-0_8
Meador, C. K. et al. Cause of Cushing’s syndrome in patients with tumors arising from ‘nonendocrine’ tissue. J. Clin. Endocrinol. Metab. 22, 693–703 (1962).
pubmed: 14471915
doi: 10.1210/jcem-22-7-693
Khramkova, N. I. & Abelev, G. I. Antigenic structure of mouse hepatomas. II. Preparation of monospecific antibodies to the organospecific liver antigens. Neoplasma 10, 121–126 (1963).
pubmed: 14032418
Hu, X., Chen, R., Wei, Q. & Xu, X. The landscape of alpha fetoprotein in hepatocellular carcinoma: where are we? Int. J. Biol. Sci. 18, 536–551 (2022).
pubmed: 35002508
pmcid: 8741863
doi: 10.7150/ijbs.64537
Primus, F. J., Freeman, J. W. & Goldenberg, D. M. Immunological heterogeneity of carcinoembryonic antigen: purification from meconium of an antigen related to carcinoembryonic antigen. Cancer Res. 43, 679–685 (1983).
pubmed: 6401222
Grunnet, M. & Sorensen, J. B. Carcinoembryonic antigen (CEA) as tumor marker in lung cancer. Lung Cancer. 76, 138–143 (2012).
Jia, L. et al. Soluble POSTN is a novel biomarker complementing CA153 and CEA for breast cancer diagnosis and metastasis prediction. BMC Cancer 22, 760 (2022).
pubmed: 35831854
pmcid: 9281047
doi: 10.1186/s12885-022-09864-y
Lertkhachonsuk, A. A. et al. Serum CA19-9, CA-125 and CEA as tumor markers for mucinous ovarian tumors. J. Obstet. Gynaecol. Res. 46, 2287–2291 (2020).
pubmed: 32830422
pmcid: 7693209
doi: 10.1111/jog.14427
Das, V., Kalita, J. & Pal, M. Predictive and prognostic biomarkers in colorectal cancer: a systematic review of recent advances and challenges. Biomed. Pharmacother. 87, 8–19 (2017).
pubmed: 28040600
doi: 10.1016/j.biopha.2016.12.064
Watson, J. D. & Crick, F. H. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171, 737–738 (1953).
pubmed: 13054692
doi: 10.1038/171737a0
Oren, M. p53: not just a tumor suppressor. J. Mol. Cell Biol. 11, 539–543 (2019).
pubmed: 31291648
pmcid: 6736137
doi: 10.1093/jmcb/mjz070
Lane, D. P. & Crawford, L. V. T antigen is bound to a host protein in SV40-transformed cells. Nature 278, 261–263 (1979).
pubmed: 218111
doi: 10.1038/278261a0
Finlay, C. A., Hinds, P. W. & Levine, A. J. The p53 proto-oncogene can act as a suppressor of transformation. Cell 57, 1083–1093 (1989).
pubmed: 2525423
doi: 10.1016/0092-8674(89)90045-7
Levine, A. J. p53: 800 million years of evolution and 40 years of discovery. Nat. Rev. Cancer 20, 471–480 (2020).
pubmed: 32404993
doi: 10.1038/s41568-020-0262-1
Malumbres, M. & Barbacid, M. RAS oncogenes: the first 30 years. Nat. Rev. Cancer 3, 459–465 (2003).
pubmed: 12778136
doi: 10.1038/nrc1097
Downward, J. Signal transduction. prelude to an anniversary for the RAS oncogene. Science 314, 433–434 (2006).
pubmed: 17053139
doi: 10.1126/science.1134727
FDA approves first KRAS inhibitor: Sotorasib. Cancer Discov. 11, OF4 (2021).
Slack, R. S. & Miller, F. D. Retinoblastoma gene in mouse neural development. Dev. Genet. 18, 81–91 (1996).
pubmed: 8742837
doi: 10.1002/(SICI)1520-6408(1996)18:1<81::AID-DVG9>3.0.CO;2-Y
Belczacka, I. et al. Proteomics biomarkers for solid tumors: current status and future prospects. Mass Spectrom. Rev. 38, 49–78 (2019).
pubmed: 29889308
doi: 10.1002/mas.21572
Merrick, B. A., London, R. E., Bushel, P. R., Grissom, S. F. & Paules, R. S. Platforms for biomarker analysis using high-throughput approaches in genomics, transcriptomics, proteomics, metabolomics, and bioinformatics. IARC Sci. Publ. 121–142 (2011).
Qi, S. et al. High-resolution metabolomic biomarkers for lung cancer diagnosis and prognosis. Sci. Rep. 11, 11805 (2021).
pubmed: 34083687
pmcid: 8175557
doi: 10.1038/s41598-021-91276-2
Rabaan, A. A. et al. Application of CRISPR/Cas9 technology in cancer treatment: a future direction. Curr. Oncol. 30, 1954–1976 (2023).
pubmed: 36826113
pmcid: 9955208
doi: 10.3390/curroncol30020152
Hosseini, S. A. et al. CRISPR/Cas9 as precision and high-throughput genetic engineering tools in gastrointestinal cancer research and therapy. Int. J. Biol. Macromol. 223, 732–754 (2022).
pubmed: 36372102
doi: 10.1016/j.ijbiomac.2022.11.018
Parola, C., Neumeier, D. & Reddy, S. T. Integrating high-throughput screening and sequencing for monoclonal antibody discovery and engineering. Immunology. 153, 31–41 (2018).
Wurdinger, T., In ‘t Veld, S. G. J. G. & Best, M. G. Platelet RNA as pan-tumor biomarker for cancer detection. Cancer Res. 80, 1371–1373 (2020).
pubmed: 32075797
doi: 10.1158/0008-5472.CAN-19-3684
Song, P. et al. Limitations and opportunities of technologies for the analysis of cell-free DNA in cancer diagnostics. Nat. Biomed. Eng. 6, 232–245 (2022).
pubmed: 35102279
pmcid: 9336539
doi: 10.1038/s41551-021-00837-3
Zou, J. & Wang, E. Cancer biomarker discovery for precision medicine: new progress. Curr. Med. Chem. 26, 7655–7671 (2019).
pubmed: 30027846
doi: 10.2174/0929867325666180718164712
Ladabaum, U., Dominitz, J. A., Kahi, C. & Schoen, R. E. Strategies for colorectal cancer screening. Gastroenterology 158, 418–432 (2020).
pubmed: 31394083
doi: 10.1053/j.gastro.2019.06.043
Ayoub, W. S. et al. Current status of hepatocellular carcinoma detection: screening strategies and novel biomarkers. Ther. Adv. Med. Oncol. 11, 1758835919869120 (2019).
pubmed: 31523283
pmcid: 6732860
doi: 10.1177/1758835919869120
Yamashita, K. & Watanabe, M. Clinical significance of tumor markers and an emerging perspective on colorectal cancer. Cancer Sci. 100, 195–199 (2009).
pubmed: 19200256
doi: 10.1111/j.1349-7006.2008.01022.x
Sharma, S. Tumor markers in clinical practice: general principles and guidelines. Indian J. Med. Paediatr. Oncol. 30, 1–8 (2009).
pubmed: 20668599
pmcid: 2902207
doi: 10.4103/0971-5851.56328
Verma, M., Patel, P. & Verma, M. Biomarkers in prostate cancer epidemiology. Cancers 3, 3773–3798 (2011).
pubmed: 24213111
pmcid: 3763396
doi: 10.3390/cancers3043773
Petrelli, F. et al. Prognostic role of lactate dehydrogenase in solid tumors: a systematic review and meta-analysis of 76 studies. Acta Oncol. 54, 961–970 (2015).
pubmed: 25984930
doi: 10.3109/0284186X.2015.1043026
Zhang, C. et al. Overview of microRNAs as diagnostic and prognostic biomarkers for high-incidence cancers in 2021. Int. J. Mol. Sci. 23, 11389 (2022).
pubmed: 36232692
pmcid: 9570028
doi: 10.3390/ijms231911389
Ghazimoradi, M. H., Karimpour-Fard, N. & Babashah, S. The promising role of non-coding RNAs as biomarkers and therapeutic targets for leukemia. Genes 14, 131 (2023).
pubmed: 36672872
pmcid: 9859176
doi: 10.3390/genes14010131
Dai, J.-H., Tan, X.-R., Qiao, H. & Liu, N. Emerging clinical relevance of microbiome in cancer: promising biomarkers and therapeutic targets. Protein Cell https://doi.org/10.1093/procel/pwad052 (2023).
Wang, H., Wang, Y., Zhang, D. & Li, P. Circulating nucleosomes as potential biomarkers for cancer diagnosis and treatment monitoring. Int. J. Biol. Macromol. 262, 130005 (2024).
pubmed: 38331061
doi: 10.1016/j.ijbiomac.2024.130005
Wen, X., Pu, H., Liu, Q., Guo, Z. & Luo, D. Circulating tumor DNA-A novel biomarker of tumor progression and its favorable detection techniques. Cancers 14, 6025 (2022).
pubmed: 36551512
pmcid: 9775401
doi: 10.3390/cancers14246025
Lin, D. et al. Circulating tumor cells: biology and clinical significance. Signal Transduct. Target. Ther. 6, 404 (2021).
pubmed: 34803167
pmcid: 8606574
doi: 10.1038/s41392-021-00817-8
Kwong, G. A. et al. Synthetic biomarkers: a twenty-first century path to early cancer detection. Nat. Rev. Cancer 21, 655–668 (2021).
pubmed: 34489588
pmcid: 8791024
doi: 10.1038/s41568-021-00389-3
Calabrese, F. et al. Are there new biomarkers in tissue and liquid biopsies for the early detection of non-small cell lung cancer? J. Clin. Med. 8, 414 (2019).
pubmed: 30917582
pmcid: 6463117
doi: 10.3390/jcm8030414
Bresalier, R. S. et al. Biomarkers for early detection of colorectal cancer: the early detection research network, a framework for clinical translation. Cancer Epidemiol. Biomark. Prev. 29, 2431–2440 (2020).
doi: 10.1158/1055-9965.EPI-20-0234
Ye, Q., Ling, S., Zheng, S. & Xu, X. Liquid biopsy in hepatocellular carcinoma: circulating tumor cells and circulating tumor DNA. Mol. Cancer 18, 114 (2019).
pubmed: 31269959
pmcid: 6607541
doi: 10.1186/s12943-019-1043-x
Hirata, I. Evaluation of the usefulness of the simultaneous assay of fecal hemoglobin (Hb) and transferrin (Tf) in colorectal cancer screening - for the establishment of the Hb and Tf two-step cutoff assay (HTTC assay). Diagnosis 7, 133–139 (2020).
pubmed: 31472060
doi: 10.1515/dx-2019-0049
Sukumar, J., Gast, K., Quiroga, D., Lustberg, M. & Williams, N. Triple-negative breast cancer: promising prognostic biomarkers currently in development. Expert Rev. Anticancer Ther. 21, 135–148 (2021).
pubmed: 33198517
pmcid: 8174647
doi: 10.1080/14737140.2021.1840984
Yi, M. et al. Biomarkers for predicting efficacy of PD-1/PD-L1 inhibitors. Mol. Cancer 17, 129 (2018).
pubmed: 30139382
pmcid: 6107958
doi: 10.1186/s12943-018-0864-3
Moradi, A., Srinivasan, S., Clements, J. & Batra, J. Beyond the biomarker role: prostate-specific antigen (PSA) in the prostate cancer microenvironment. Cancer Metastasis Rev. 38, 333–346 (2019).
pubmed: 31659564
doi: 10.1007/s10555-019-09815-3
Kim, D. H. et al. The relationships between perioperative CEA, CA 19-9, and CA 72-4 and recurrence in gastric cancer patients after curative radical gastrectomy. J. Surg. Oncol. 104, 585–591 (2011).
pubmed: 21695697
doi: 10.1002/jso.21919
Choi, S. R. et al. Role of serum tumor markers in monitoring for recurrence of gastric cancer following radical gastrectomy. Dig. Dis. Sci. 51, 2081–2086 (2006).
pubmed: 17009116
doi: 10.1007/s10620-006-9166-5
Lu, P. et al. Methylated septin 9 as a promising biomarker in the diagnosis and recurrence monitoring of colorectal cancer. Dis. Markers 2022, 7087885 (2022).
pubmed: 35818587
pmcid: 9271001
doi: 10.1155/2022/7087885
Moding, E. J., Nabet, B. Y., Alizadeh, A. A. & Diehn, M. Detecting liquid remnants of solid tumors: circulating tumor DNA minimal residual disease. Cancer Discov. 11, 2968–2986 (2021).
pubmed: 34785539
pmcid: 8976700
doi: 10.1158/2159-8290.CD-21-0634
Zhang, J. et al. Single-cell transcriptome-based multilayer network biomarker for predicting prognosis and therapeutic response of gliomas. Brief. Bioinform. 21, 1080–1097 (2020).
pubmed: 31329830
doi: 10.1093/bib/bbz040
Goldsmith, S. J. Radioimmunoassay: review of basic principles. Semin. Nucl. Med. 5, 125–152 (1975).
pubmed: 164695
doi: 10.1016/S0001-2998(75)80028-6
Grange, R. D., Thompson, J. P., Lambert, D. G. & Mahajan, R. P. Radioimmunoassay, enzyme and non-enzyme-based immunoassays. Br. J. Anaesth. 112, 213–216 (2014).
pubmed: 24431350
doi: 10.1093/bja/aet293
Hosoki, H., Mori, M., Takahara, J. & Daito, M. Measurement of serum cortisol with 125I-cortisol radioimmunoassay. Horumon Rinsho 23, 721–729 (1975).
Hack, C. E. et al. A modified competitive inhibition radioimmunoassay for the detection of C3a. Use of 125I-C3 instead of 125I-C3a. J. Immunol. Methods 108, 77–84 (1988).
pubmed: 3258341
doi: 10.1016/0022-1759(88)90405-X
Langone, J. J. 125I-Labeled protein A: reactivity with IgG and use as a tracer in radioimmunoassay. Methods Enzymol. 70, 356–375 (1980).
pubmed: 7421598
doi: 10.1016/S0076-6879(80)70064-2
Kim, J.-H., Lee, S.-Y. & Lee, S.-K. Development of novel lab-on-a-chip platform for high-throughput radioimmunoassay. Appl. Radiat. Isot. 168, 109526 (2021).
pubmed: 33316629
doi: 10.1016/j.apradiso.2020.109526
Darwish, I. A. Immunoassay methods and their applications in pharmaceutical analysis: basic methodology and recent advances. Int. J. Biomed. Sci. 2, 217–235 (2006).
pubmed: 23674985
pmcid: 3614608
doi: 10.59566/IJBS.2006.2217
Chester, S. J. et al. A new radioimmunoassay detecting early stages of colon cancer: a comparison with CEA, AFP, and Ca 19-9. Dis. Markers 9, 265–271 (1991).
pubmed: 1724634
Booth, J. C. et al. Comparison of enzyme-linked immunosorbent assay, radioimmunoassay, complement fixation, anticomplement immunofluorescence and passive haemagglutination techniques for detecting cytomegalovirus IgG antibody. J. Clin. Pathol. 35, 1345–1348 (1982).
pubmed: 6294144
pmcid: 497975
doi: 10.1136/jcp.35.12.1345
Hemmilä, I. Fluoroimmunoassays and immunofluorometric assays. Clin. Chem. 31, 359–370 (1985).
pubmed: 3882272
doi: 10.1093/clinchem/31.3.359
Hicks, J. M. Fluorescence immunoassay. Hum. Pathol. 15, 112–116 (1984).
pubmed: 6365732
doi: 10.1016/S0046-8177(84)80049-0
Huang, X. et al. Ratiometric optical nanoprobes enable accurate molecular detection and imaging. Chem. Soc. Rev. 47, 2873–2920 (2018).
pubmed: 29568836
pmcid: 5926823
doi: 10.1039/C7CS00612H
Zhang, R. R. et al. Beyond the margins: real-time detection of cancer using targeted fluorophores. Nat. Rev. Clin. Oncol. 14, 347–364 (2017).
pubmed: 28094261
pmcid: 5683405
doi: 10.1038/nrclinonc.2016.212
Cobb, M. & Gotcher, S. Fluorescence immunoassay in the clinical laboratory. Am. J. Med. Technol. 48, 671–677 (1982).
pubmed: 6753580
Nishiyama, K. et al. One-step non-competitive fluorescence polarization immunoassay based on a Fab fragment for C-reactive protein quantification. Sens. Actuators B Chem. 326, 128982 (2021).
doi: 10.1016/j.snb.2020.128982
Nielsen, K., Lin, M., Gall, D. & Jolley, M. Fluorescence polarization immunoassay: detection of antibody to Brucella abortus. Methods 22, 71–76 (2000).
pubmed: 11020320
doi: 10.1006/meth.2000.1038
Ullman, E. F., Schwarzberg, M. & Rubenstein, K. E. Fluorescent excitation transfer immunoassay. A general method for determination of antigens. J. Biol. Chem. 251, 4172–4178 (1976).
pubmed: 945272
doi: 10.1016/S0021-9258(17)33277-5
Diamandis, E. P. Immunoassays with time-resolved fluorescence spectroscopy: principles and applications. Clin. Biochem. 21, 139–150 (1988).
pubmed: 3292080
doi: 10.1016/S0009-9120(88)80104-8
Tian, J. et al. Multiplexed detection of tumor markers with multicolor quantum dots based on fluorescence polarization immunoassay. Talanta 92, 72–77 (2012).
pubmed: 22385810
doi: 10.1016/j.talanta.2012.01.051
Jehan, Z., Uddin, S. & Al-Kuraya, K. S. In-situ hybridization as a molecular tool in cancer diagnosis and treatment. Curr. Med Chem. 19, 3730–3738 (2012).
pubmed: 22680920
doi: 10.2174/092986712801661031
Veselinyová, D. et al. Selected in situ hybridization methods: principles and application. Molecules 26, 3874 (2021).
pubmed: 34202914
pmcid: 8270300
doi: 10.3390/molecules26133874
Fox, J. L., Hsu, P. H., Legator, M. S., Morrison, L. E. & Seelig, S. A. Fluorescence in situ hybridization: powerful molecular tool for cancer prognosis. Clin. Chem. 41, 1554–1559 (1995).
pubmed: 7586542
doi: 10.1093/clinchem/41.11.1554
Chrzanowska, N. M., Kowalewski, J. & Lewandowska, M. A. Use of fluorescence in situ hybridization (FISH) in diagnosis and tailored therapies in solid tumors. Molecules 25, 1864 (2020).
pubmed: 32316657
pmcid: 7221545
doi: 10.3390/molecules25081864
Shackelford, R. E., Vora, M., Mayhall, K. & Cotelingam, J. ALK-rearrangements and testing methods in non-small cell lung cancer: a review. Genes Cancer 5, 1–14 (2014).
pubmed: 24955213
pmcid: 4063252
doi: 10.18632/genesandcancer.3
Hu, L. et al. Fluorescence in situ hybridization (FISH): an increasingly demanded tool for biomarker research and personalized medicine. Biomark. Res. 2, 3 (2014).
pubmed: 24499728
pmcid: 3917523
doi: 10.1186/2050-7771-2-3
Gökmen-Polar, Y. In Predictive Biomarkers in Oncology (eds Badve, S. & Kumar, G. L.) Ch. 5 (Springer International Publishing, 2019).
Saiki, R. K. et al. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230, 1350–1354 (1985).
pubmed: 2999980
doi: 10.1126/science.2999980
Cree, I. A. Diagnostic RAS mutation analysis by polymerase chain reaction (PCR). Biomol. Detect. Quantif. 8, 29–32 (2016).
pubmed: 27335808
pmcid: 4906127
doi: 10.1016/j.bdq.2016.05.001
Maris, J. M. Recent advances in neuroblastoma. N. Engl. J. Med. 362, 2202–2211 (2010).
pubmed: 20558371
pmcid: 3306838
doi: 10.1056/NEJMra0804577
Cheng, H. et al. Ligand-targeted polymerase chain reaction for the detection of folate receptor-positive circulating tumour cells as a potential diagnostic biomarker for pancreatic cancer. Cell Prolif. 53, e12880 (2020).
pubmed: 32707596
pmcid: 7507398
doi: 10.1111/cpr.12880
Gong, S. et al. CRISPR/Cas-based in vitro diagnostic platforms for cancer biomarker detection. Anal. Chem. 93, 11899–11909 (2021).
pubmed: 34427091
doi: 10.1021/acs.analchem.1c02533
Sanger, F. et al. Nucleotide sequence of bacteriophage phi X174 DNA. Nature 265, 687–695 (1977).
pubmed: 870828
doi: 10.1038/265687a0
Heather, J. M. & Chain, B. The sequence of sequencers: the history of sequencing DNA. Genomics 107, 1–8 (2016).
pubmed: 26554401
doi: 10.1016/j.ygeno.2015.11.003
Feng, Y., Zhang, Y., Ying, C., Wang, D. & Du, C. Nanopore-based fourth-generation DNA sequencing technology. Genomics. Proteom. Bioinforma. 13, 4–16 (2015).
doi: 10.1016/j.gpb.2015.01.009
Lappalainen, T., Scott, A. J., Brandt, M. & Hall, I. M. Genomic analysis in the age of human genome sequencing. Cell 177, 70–84 (2019).
pubmed: 30901550
pmcid: 6532068
doi: 10.1016/j.cell.2019.02.032
Foox, J. et al. Performance assessment of DNA sequencing platforms in the ABRF next-generation sequencing study. Nat. Biotechnol. 39, 1129–1140 (2021).
pubmed: 34504351
pmcid: 8985210
doi: 10.1038/s41587-021-01049-5
Kumar, K. R., Cowley, M. J. & Davis, R. L. Next-generation sequencing and emerging technologies. Semin. Thromb. Hemost. 45, 661–673 (2019).
pubmed: 31096307
doi: 10.1055/s-0039-1688446
Kim, R. Y., Xu, H., Myllykangas, S. & Ji, H. Genetic-based biomarkers and next-generation sequencing: the future of personalized care in colorectal cancer. Per. Med. 8, 331–345 (2011).
pubmed: 23662107
pmcid: 3646399
doi: 10.2217/pme.11.16
Wood, A. C. et al. Evaluation of tumor DNA sequencing results in patients with gastric and gastroesophageal junction adenocarcinoma stratified by TP53 mutation status. Oncologist 27, 307–313 (2022).
pubmed: 35380714
pmcid: 8982441
doi: 10.1093/oncolo/oyac018
Robinson, D. R. et al. Integrative clinical genomics of metastatic cancer. Nature 548, 297–303 (2017).
pubmed: 28783718
pmcid: 5995337
doi: 10.1038/nature23306
Kris, M. G. et al. Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs. JAMA 311, 1998–2006 (2014).
pubmed: 24846037
pmcid: 4163053
doi: 10.1001/jama.2014.3741
Pilgrim, S. M., Pain, S. J. & Tischkowitz, M. D. Opportunities and challenges of next-generation DNA sequencing for breast units. Br. J. Surg. 101, 889–898 (2014).
pubmed: 24676784
doi: 10.1002/bjs.9458
Hong, M. et al. RNA sequencing: new technologies and applications in cancer research. J. Hematol. Oncol. 13, 166 (2020).
pubmed: 33276803
pmcid: 7716291
doi: 10.1186/s13045-020-01005-x
Hussaini, H. M., Seo, B. & Rich, A. M. Immunohistochemistry and Immunofluorescence. Methods Mol. Biol. 2588, 439–450 (2023).
pubmed: 36418703
doi: 10.1007/978-1-0716-2780-8_26
Zaha, D. C. Significance of immunohistochemistry in breast cancer. World J. Clin. Oncol. 5, 382–392 (2014).
pubmed: 25114853
pmcid: 4127609
doi: 10.5306/wjco.v5.i3.382
Fitzgibbons, P. L. & Cooper, K. In Basic Concepts of Molecular Pathology (eds Allen, T. C. & Cagle, P. T.) Ch. 14 (Springer, 2009).
Patel, S. P. & Kurzrock, R. PD-L1 expression as a predictive biomarker in cancer immunotherapy. Mol. Cancer Ther. 14, 847–856 (2015).
pubmed: 25695955
doi: 10.1158/1535-7163.MCT-14-0983
Zhao, S. et al. Molecular subtyping of triple-negative breast cancers by immunohistochemistry: molecular basis and clinical relevance. Oncologist 25, e1481–e1491 (2020).
pubmed: 32406563
pmcid: 7543239
doi: 10.1634/theoncologist.2019-0982
Tay, T. K. Y. et al. Correlating SS18-SSX immunohistochemistry (IHC) with SS18 fluorescent in situ hybridization (FISH) in synovial sarcomas: a study of 36 cases. Virchows Arch. 479, 785–793 (2021).
pubmed: 34091760
doi: 10.1007/s00428-021-03135-0
Luu, T. T. Review of immunohistochemistry biomarkers in pancreatic cancer diagnosis. Front. Oncol. 11, 799025 (2021).
pubmed: 34988027
pmcid: 8720928
doi: 10.3389/fonc.2021.799025
Kashyap, A. et al. Quantitative microimmunohistochemistry for the grading of immunostains on tumour tissues. Nat. Biomed. Eng. 3, 478–490 (2019).
pubmed: 30962588
doi: 10.1038/s41551-019-0386-3
Hall, P. A. & Lane, D. P. p53 in tumour pathology: can we trust immunohistochemistry?–Revisited! J. Pathol. 172, 1–4 (1994).
pubmed: 7931821
doi: 10.1002/path.1711720103
Rodrigues, V. D. C. et al. Analysis of scanning electron microscopy images to investigate adsorption processes responsible for detection of cancer biomarkers. ACS Appl. Mater. Interfaces 9, 5885–5890 (2017).
pubmed: 28117964
doi: 10.1021/acsami.6b16105
Slaoui, M. & Fiette, L. Histopathology procedures: from tissue sampling to histopathological evaluation. Methods Mol. Biol. 691, 69–82 (2011).
pubmed: 20972747
doi: 10.1007/978-1-60761-849-2_4
Rizk, E. M. et al. Prognostic and predictive immunohistochemistry-based biomarkers in cancer and immunotherapy. Hematol. Oncol. Clin. North Am. 33, 291–299 (2019).
pubmed: 30833001
pmcid: 6497069
doi: 10.1016/j.hoc.2018.12.005
Nikanjam, M., Kato, S. & Kurzrock, R. Liquid biopsy: current technology and clinical applications. J. Hematol. Oncol. 15, 131 (2022).
pubmed: 36096847
pmcid: 9465933
doi: 10.1186/s13045-022-01351-y
Cescon, D. W., Bratman, S. V., Chan, S. M. & Siu, L. L. Circulating tumor DNA and liquid biopsy in oncology. Nat. Cancer 1, 276–290 (2020).
pubmed: 35122035
doi: 10.1038/s43018-020-0043-5
Zhou, B. et al. Application of exosomes as liquid biopsy in clinical diagnosis. Signal Transduct. Target Ther. 5, 144 (2020).
pubmed: 32747657
pmcid: 7400738
doi: 10.1038/s41392-020-00258-9
Ignatiadis, M., Sledge, G. W. & Jeffrey, S. S. Liquid biopsy enters the clinic - implementation issues and future challenges. Nat. Rev. Clin. Oncol. 18, 297–312 (2021).
pubmed: 33473219
doi: 10.1038/s41571-020-00457-x
Li, S. et al. The role of exosomes in liquid biopsy for cancer diagnosis and prognosis prediction. Int. J. Cancer 148, 2640–2651 (2021).
pubmed: 33180334
doi: 10.1002/ijc.33386
Yu, W. et al. Exosome-based liquid biopsies in cancer: opportunities and challenges. Ann. Oncol. 32, 466–477 (2021).
pubmed: 33548389
doi: 10.1016/j.annonc.2021.01.074
Tatischeff, I. Extracellular vesicle-DNA: the next liquid biopsy biomarker for early cancer diagnosis? Cancers 15, 1456 (2023).
pubmed: 36900248
pmcid: 10000627
doi: 10.3390/cancers15051456
Muinelo-Romay, L., Casas-Arozamena, C. & Abal, M. Liquid biopsy in endometrial cancer: new opportunities for personalized oncology. Int. J. Mol. Sci. 19, 2311 (2018).
pubmed: 30087246
pmcid: 6121388
doi: 10.3390/ijms19082311
Kemper, M. et al. Liquid biopsies in lung cancer. Cancers 15, 1430 (2023).
pubmed: 36900221
pmcid: 10000706
doi: 10.3390/cancers15051430
Zhao, Y. et al. Liquid biopsy in pancreatic cancer - Current perspective and future outlook. Biochim. Biophys. Acta Rev. Cancer 1878, 188868 (2023).
pubmed: 36842769
doi: 10.1016/j.bbcan.2023.188868
Zhou, H. et al. Liquid biopsy at the frontier of detection, prognosis and progression monitoring in colorectal cancer. Mol. Cancer 21, 86 (2022).
pubmed: 35337361
pmcid: 8951719
doi: 10.1186/s12943-022-01556-2
Ricciardi, E. et al. Metastatic melanoma: liquid biopsy as a new precision medicine approach. Int. J. Mol. Sci. 24, 4014 (2023).
pubmed: 36835424
pmcid: 9962821
doi: 10.3390/ijms24044014
Li, M. et al. Liquid biopsy at the frontier in renal cell carcinoma: recent analysis of techniques and clinical application. Mol. Cancer 22, 37 (2023).
pubmed: 36810071
pmcid: 9942319
doi: 10.1186/s12943-023-01745-7
Arneth, B. Update on the types and usage of liquid biopsies in the clinical setting: a systematic review. BMC Cancer 18, 527 (2018).
pubmed: 29728089
pmcid: 5935950
doi: 10.1186/s12885-018-4433-3
Zhao, J., Yu, X., Shentu, X. & Li, D. The application and development of electron microscopy for three-dimensional reconstruction in life science: a review. Cell Tissue Res. https://doi.org/10.1007/s00441-024-03878-7 (2024).
Stahlberg, H. & Walz, T. Molecular electron microscopy: state of the art and current challenges. ACS Chem. Biol. 3, 268–281 (2008).
pubmed: 18484707
pmcid: 2660199
doi: 10.1021/cb800037d
Lambert, L. & Mulvey, T. In Advances in Imaging and Electron Physics (ed. Hawkes, P. W.) Vol. 95, Ch.1 (Elsevier, 1996).
Dey, P. In Basic and Advanced Laboratory Techniques in Histopathology and Cytology. Ch.28 (Springer Nature, 2022).
Sobel, H. J. & Marquet, E. Usefulness of electron microscopy in the diagnosis of tumors. Pathol. Res. Pract. 167, 22–44 (1980).
pubmed: 7454600
doi: 10.1016/S0344-0338(80)80180-4
Ordóñez, N. G. & Mackay, B. Electron microscopy in tumor diagnosis: indications for its use in the immunohistochemical era. Hum. Pathol. 29, 1403–1411 (1998).
pubmed: 9865825
doi: 10.1016/S0046-8177(98)90008-9
Cohen Hyams, T., Mam, K. & Killingsworth, M. C. Scanning electron microscopy as a new tool for diagnostic pathology and cell biology. Micron 130, 102797 (2020).
pubmed: 31862481
doi: 10.1016/j.micron.2019.102797
Ferlosio, A. & Orlandi, A. The use of electron microscopy for the diagnosis of malignant pleural mesothelioma. J. Thorac. Dis. 8, E1487–E1489 (2016).
pubmed: 28066639
pmcid: 5179440
doi: 10.21037/jtd.2016.11.58
Battifora, H. & Applebaum, E. L. Electron microscopy in the diagnosis of head and neck tumors. Head Neck Surg. 1, 202–212 (1979).
pubmed: 500359
doi: 10.1002/hed.2890010303
Fisher, C., Path, F. R. C., Flood, L. M., Ramsey, A. D. The role of electron microscopy in the diagnosis of tumours of the head and neck. J. Laryngol. Otol. 106, 403–408 (1992).
pubmed: 1613365
doi: 10.1017/S002221510011967X
Wu, Y., Deng, W. & Klinke, D. J. Exosomes: improved methods to characterize their morphology, RNA content, and surface protein biomarkers. Analyst 140, 6631–6642 (2015).
pubmed: 26332016
pmcid: 4986832
doi: 10.1039/C5AN00688K
Albero-González, R. et al. Complementary value of electron microscopy and immunohistochemistry in the diagnosis of non-small cell lung cancer: a potential role for electron microscopy in the era of targeted therapy. Ultrastruct. Pathol. 43, 237–247 (2019).
pubmed: 31810413
doi: 10.1080/01913123.2019.1692118
Tao, J., Bauer, D. E. & Chiarle, R. Assessing and advancing the safety of CRISPR-Cas tools: from DNA to RNA editing. Nat. Commun. 14, 212 (2023).
pubmed: 36639728
pmcid: 9838544
doi: 10.1038/s41467-023-35886-6
Malekshoar, M. et al. CRISPR-Cas9 targeted enrichment and next-generation sequencing for mutation detection. J. Mol. Diagn. 25, 249–262 (2023).
pubmed: 36841425
doi: 10.1016/j.jmoldx.2023.01.010
Allemailem, K. S. et al. Current updates of CRISPR/Cas9-mediated genome editing and targeting within tumor cells: an innovative strategy of cancer management. Cancer Commun. 42, 1257–1287 (2022).
doi: 10.1002/cac2.12366
Almeida, R. S., Wisnieski, F., Takao Real Karia, B. & Smith, M. A. C. CRISPR/Cas9 genome-editing technology and potential clinical application in gastric cancer. Genes 13, 2029 (2022).
pubmed: 36360266
pmcid: 9690943
doi: 10.3390/genes13112029
Bensalah, K., Montorsi, F. & Shariat, S. F. Challenges of cancer biomarker profiling. Eur. Urol. 52, 1601–1609 (2007).
pubmed: 17919807
doi: 10.1016/j.eururo.2007.09.036
Bergstrand, C. G. & CZAR, B. Demonstration of a new protein fraction in serum from the human fetus. Scand. J. Clin. Lab. Invest. 8, 174 (1956).
pubmed: 13351554
doi: 10.3109/00365515609049266
Tomasi, T. B. J. Structure and function of alpha-fetoprotein. Annu. Rev. Med. 28, 453–465 (1977).
pubmed: 67821
doi: 10.1146/annurev.me.28.020177.002321
Gold, P. & Freedman, S. O. Specific carcinoembryonic antigens of the human digestive system. J. Exp. Med. 122, 467–481 (1965).
Hammarström, S. The carcinoembryonic antigen (CEA) family: structures, suggested functions and expression in normal and malignant tissues. Semin. Cancer Biol. 9, 67–81 (1999).
pubmed: 10202129
doi: 10.1006/scbi.1998.0119
Mizejewski, G. J. Biological roles of alpha-fetoprotein during pregnancy and perinatal development. Exp. Biol. Med. 229, 439–463 (2004).
doi: 10.1177/153537020422900602
Johnson, P., Zhou, Q., Dao, D. Y. & Lo, Y. M. D. Circulating biomarkers in the diagnosis and management of hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol. 19, 670–681 (2022).
pubmed: 35676420
doi: 10.1038/s41575-022-00620-y
Daniele, B., Bencivenga, A., Megna, A. S. & Tinessa, V. Alpha-fetoprotein and ultrasonography screening for hepatocellular carcinoma. Gastroenterology 127, S108–S112 (2004).
pubmed: 15508073
doi: 10.1053/j.gastro.2004.09.023
Galle, P. R. et al. Biology and significance of alpha-fetoprotein in hepatocellular carcinoma. Liver Int. 39, 2214–2229 (2019).
pubmed: 31436873
doi: 10.1111/liv.14223
Gupta, S., Bent, S. & Kohlwes, J. Test characteristics of alpha-fetoprotein for detecting hepatocellular carcinoma in patients with hepatitis C. A systematic review and critical analysis. Ann. Intern. Med. 139, 46–50 (2003).
pubmed: 12834318
doi: 10.7326/0003-4819-139-1-200307010-00012
Waidely, E., Al-Yuobi, A. R. O., Bashammakh, A. S., El-Shahawi, M. S. & Leblanc, R. M. Serum protein biomarkers relevant to hepatocellular carcinoma and their detection. Analyst 141, 36–44 (2016).
pubmed: 26606739
doi: 10.1039/C5AN01884F
Johnson, P. J. The role of serum alpha-fetoprotein estimation in the diagnosis and management of hepatocellular carcinoma. Clin. Liver Dis. 5, 145–159 (2001).
pubmed: 11218912
doi: 10.1016/S1089-3261(05)70158-6
Thomas, P., Toth, C. A., Saini, K. S., Jessup, J. M. & Steele, G. J. The structure, metabolism and function of the carcinoembryonic antigen gene family. Biochim. Biophys. Acta 1032, 177–189 (1990).
pubmed: 2261493
Fiebiger, W. & Wiltschke, C. [Tumor markers]. Acta Med. Austriaca 28, 33–37 (2001).
pubmed: 11382139
doi: 10.1046/j.1563-2571.2001.01008.x
Li, M. et al. Recent progress in biosensors for detection of tumor biomarkers. Molecules 27, 7327 (2022).
pubmed: 36364157
pmcid: 9658374
doi: 10.3390/molecules27217327
Yang, Y. et al. Serum carcinoembryonic antigen elevation in benign lung diseases. Sci. Rep. 11, 19044 (2021).
pubmed: 34561515
pmcid: 8463604
doi: 10.1038/s41598-021-98513-8
Fan, Y., Chen, X. & Li, H. Clinical value of serum biomarkers CA153, CEA, and white blood cells in predicting sentinel lymph node metastasis of breast cancer. Int. J. Clin. Exp. Pathol. 13, 2889–2894 (2020).
pubmed: 33284901
pmcid: 7716139
Lakemeyer, L. et al. Diagnostic and prognostic value of CEA and CA19-9 in colorectal cancer. Diseases 9, 21 (2021).
pubmed: 33802962
pmcid: 8006010
doi: 10.3390/diseases9010021
Pal, M., Muinao, T., Boruah, H. P. D. & Mahindroo, N. Current advances in prognostic and diagnostic biomarkers for solid cancers: detection techniques and future challenges. Biomed. Pharmacother. 146, 112488 (2022).
pubmed: 34894516
doi: 10.1016/j.biopha.2021.112488
Sørensen, C. G., Karlsson, W. K., Pommergaard, H. C., Burcharth, J. & Rosenberg, J. The diagnostic accuracy of carcinoembryonic antigen to detect colorectal cancer recurrence - a systematic review. Int. J. Surg. 25, 134–144 (2016).
pubmed: 26700203
doi: 10.1016/j.ijsu.2015.11.065
Valastyan, S. & Weinberg, R. A. Tumor metastasis: molecular insights and evolving paradigms. Cell 147, 275–292 (2011).
pubmed: 22000009
pmcid: 3261217
doi: 10.1016/j.cell.2011.09.024
Charakorn, C. et al. The association between serum squamous cell carcinoma antigen and recurrence and survival of patients with cervical squamous cell carcinoma: a systematic review and meta-analysis. Gynecol. Oncol. 150, 190–200 (2018).
pubmed: 29606483
doi: 10.1016/j.ygyno.2018.03.056
Markovina, S. et al. Serum squamous cell carcinoma antigen as an early indicator of response during therapy of cervical cancer. Br. J. Cancer 118, 72–78 (2018).
pubmed: 29112685
doi: 10.1038/bjc.2017.390
Kato, H., Nagaya, T. & Torigoe, T. Heterogeneity of a tumor antigen TA-4 of squamous cell carcinoma in relation to its appearance in the circulation. Gan 75, 433–435 (1984).
pubmed: 6745563
Zhu, H. Squamous cell carcinoma antigen: clinical application and research status. Diagnostics 12, 1065 (2022).
pubmed: 35626221
pmcid: 9139199
doi: 10.3390/diagnostics12051065
Yang, Y. et al. Clinical use of tumor biomarkers in prediction for prognosis and chemotherapeutic effect in esophageal squamous cell carcinoma. BMC Cancer 19, 526 (2019).
pubmed: 31151431
pmcid: 6544972
doi: 10.1186/s12885-019-5755-5
Travassos, D. C., Fernandes, D., Massucato, E. M. S., Navarro, C. M. & Bufalino, A. Squamous cell carcinoma antigen as a prognostic marker and its correlation with clinicopathological features in head and neck squamous cell carcinoma: systematic review and meta-analysis. J. Oral Pathol. Med. 47, 3–10 (2018).
pubmed: 28600896
doi: 10.1111/jop.12600
Polito, M. et al. Serum markers for monitoring of prostatic carcinoma. Prostate 33, 208–216 (1997).
pubmed: 9365550
doi: 10.1002/(SICI)1097-0045(19971101)33:3<208::AID-PROS10>3.0.CO;2-O
Ahn, S. K. et al. Preoperative serum tissue polypeptide-specific antigen is a valuable prognostic marker in breast cancer. Int. J. Cancer 132, 875–881 (2013).
pubmed: 22815188
doi: 10.1002/ijc.27727
Berglund, Å., Molin, D., Larsson, A., Einarsson, R. & Glimelius, B. Tumour markers as early predictors of response to chemotherapy in advanced colorectal carcinoma. Ann. Oncol. 13, 1430–1437 (2002).
pubmed: 12196369
doi: 10.1093/annonc/mdf220
Buccheri, G. & Ferrigno, D. Lung tumor markers of cytokeratin origin: an overview. Lung Cancer 34, S65–S69 (2001).
pubmed: 11720744
doi: 10.1016/S0169-5002(01)00347-6
van Dalen, A. TPS in breast cancer–a comparative study with carcinoembryonic antigen and CA 15-3. Tumour Biol. 13, 10–17 (1992).
pubmed: 1589693
doi: 10.1159/000217747
Valik, D. & Nekulova, M. Serum tissue polypeptide-specific antigen (TPS): what is its diagnostic value? Br. J. Cancer 82, 1756–175 (2000).
pubmed: 10817515
pmcid: 2374523
Zhang, J., Wei, Q., Dong, D. & Ren, L. The role of TPS, CA125, CA15-3 and CEA in prediction of distant metastasis of breast cancer. Clin. Chim. Acta 523, 19–25 (2021).
pubmed: 34454906
doi: 10.1016/j.cca.2021.08.027
Xie, S., Ding, X., Mo, W. & Chen, J. Serum tissue polypeptide-specific antigen is an independent predictor in breast cancer. Acta Histochem. 116, 372–376 (2014).
pubmed: 24144486
doi: 10.1016/j.acthis.2013.09.001
Kornek, G., Schenk, T., Raderer, M., Djavarnmad, M. & Scheithauer, W. Tissue polypeptide-specific antigen (TPS) in monitoring palliative treatment response of patients with gastrointestinal tumours. Br. J. Cancer 71, 182–185 (1995).
pubmed: 7529527
pmcid: 2033446
doi: 10.1038/bjc.1995.37
Chang, C.-H. et al. Tissue polypeptide specific antigen (TPS) as a tumor marker in renal cell carcinoma. Anticancer Res. 22, 2949–2950 (2002).
pubmed: 12530023
Noh, D. -Y., Ahn, S. K., Moon, H. -G., Han, W. & Kim, J. In Biomarkers in Cancer (eds Preedy, V. R. & Patel, V. B.) Ch.19 (Springer, 2015).
Inaba, N. et al. Immunoradiometrical measurement of tissue polypeptide specific antigen (TPS) in normal, healthy, nonpregnant and pregnant Japanese women. Asia Ocean. J. Obstet. Gynaecol. 19, 459–466 (1993).
doi: 10.1111/j.1447-0756.1993.tb00407.x
Wang, M. C., Valenzuela, L. A., Murphy, G. P. & Chu, T. M. Purification of a human prostate specific antigen. J. Urol. 197, S148–S152 (2017).
pubmed: 28012750
Prensner, J. R., Rubin, M. A., Wei, J. T. & Chinnaiyan, A. M. Beyond PSA: the next generation of prostate cancer biomarkers. Sci. Transl. Med. 4, 127rv3 (2012).
pubmed: 22461644
pmcid: 3799996
doi: 10.1126/scitranslmed.3003180
Duffy, M. J. Biomarkers for prostate cancer: prostate-specific antigen and beyond. Clin. Chem. Lab. Med. 58, 326–339 (2020).
pubmed: 31714881
doi: 10.1515/cclm-2019-0693
Adamaki, M. & Zoumpourlis, V. Prostate cancer biomarkers: from diagnosis to prognosis and precision-guided therapeutics. Pharm. Ther. 228, 107932 (2021).
doi: 10.1016/j.pharmthera.2021.107932
Van Poppel, H. et al. Serum PSA-based early detection of prostate cancer in Europe and globally: past, present and future. Nat. Rev. Urol. 19, 562–572 (2022).
pubmed: 35974245
doi: 10.1038/s41585-022-00638-6
Kouriefs, C., Sahoyl, M., Grange, P. & Muir, G. Prostate specific antigen through the years. Arch. Ital. di Urol. 81, 195–198 (2009).
Terada, N. et al. Prognostic and predictive biomarkers in prostate cancer: latest evidence and clinical implications. Ther. Adv. Med. Oncol. 9, 565–573 (2017).
pubmed: 28794807
pmcid: 5524249
doi: 10.1177/1758834017719215
Yan, P. et al. Prognostic value of neuron-specific enolase in patients with advanced and metastatic non-neuroendocrine non-small cell lung cancer. Biosci. Rep. 41, BSR20210866 (2021).
pubmed: 34286335
pmcid: 8329647
doi: 10.1042/BSR20210866
Kaiser, E., Kuzmits, R., Pregant, P., Burghuber, O. & Worofka, W. Clinical biochemistry of neuron specific enolase. Clin. Chim. Acta 183, 13–31 (1989).
pubmed: 2548772
doi: 10.1016/0009-8981(89)90268-4
Thelin, E. P. et al. Utility of neuron-specific enolase in traumatic brain injury; relations to S100B levels, outcome, and extracranial injury severity. Crit. Care 20, 285 (2016).
pubmed: 27604350
pmcid: 5015335
doi: 10.1186/s13054-016-1450-y
Ferraro, S. et al. Measurement of serum neuron-specific enolase in neuroblastoma: is there a clinical role? Clin. Chem. 66, 667–675 (2020).
pubmed: 32353141
doi: 10.1093/clinchem/hvaa073
Reifenberger, G., Szymas, J. & Wechsler, W. Differential expression of glial- and neuronal-associated antigens in human tumors of the central and peripheral nervous system. Acta Neuropathol. 74, 105–123 (1987).
pubmed: 3314309
doi: 10.1007/BF00692841
Yang, G. et al. Recent advances in biosensor for detection of lung cancer biomarkers. Biosens. Bioelectron. 141, 111416 (2019).
pubmed: 31279179
doi: 10.1016/j.bios.2019.111416
Schneider, J. Tumor markers in detection of lung cancer. Adv. Clin. Chem. 42, 1–41 (2006).
pubmed: 17131623
doi: 10.1016/S0065-2423(06)42001-1
Yu, D., Du, K., Liu, T. & Chen, G. Prognostic value of tumor markers, NSE, CA125 and SCC, in operable NSCLC Patients. Int. J. Mol. Sci. 14, 11145–11156 (2013).
pubmed: 23712355
pmcid: 3709724
doi: 10.3390/ijms140611145
Ferrigno, D., Buccheri, G. & Giordano, C. Neuron-specific enolase is an effective tumour marker in non-small cell lung cancer (NSCLC). Lung Cancer 41, 311–320 (2003).
pubmed: 12928122
doi: 10.1016/S0169-5002(03)00232-0
Pujol, J. L., Boher, J. M., Grenier, J. & Quantin, X. Cyfra 21-1, neuron specific enolase and prognosis of non-small cell lung cancer: prospective study in 621 patients. Lung Cancer 31, 221–231 (2001).
pubmed: 11165401
doi: 10.1016/S0169-5002(00)00186-0
Zhang, C. et al. Alpha-L-fucosidase has diagnostic value in prostate cancer with ‘gray-zone PSA’ and inhibits cancer progression via regulating glycosylation. Front. Oncol. 11, 742354 (2021).
pubmed: 34881177
pmcid: 8645591
doi: 10.3389/fonc.2021.742354
Giardina, M. G. et al. Serum alpha-L-fucosidase. A useful marker in the diagnosis of hepatocellular carcinoma. Cancer 70, 1044–1048 (1992).
pubmed: 1381268
doi: 10.1002/1097-0142(19920901)70:5<1044::AID-CNCR2820700506>3.0.CO;2-U
Fawzy Montaser, M., Amin Sakr, M. & Omar Khalifa, M. Alpha-L-fucosidase as a tumour marker of hepatocellular carcinoma. Arab J. Gastroenterol. 13, 9–13 (2012).
pubmed: 22560818
doi: 10.1016/j.ajg.2012.03.006
Giardina, M. G. et al. Serum alpha-L-fucosidase activity and early detection of hepatocellular carcinoma: a prospective study of patients with cirrhosis. Cancer 83, 2468–2474 (1998).
pubmed: 9874450
doi: 10.1002/(SICI)1097-0142(19981215)83:12<2468::AID-CNCR9>3.0.CO;2-Y
Wang, K. et al. Alpha-1-fucosidase as a prognostic indicator for hepatocellular carcinoma following hepatectomy: a large-scale, long-term study. Br. J. Cancer 110, 1811–1819 (2014).
pubmed: 24569461
pmcid: 3974071
doi: 10.1038/bjc.2014.102
Xing, H. et al. Clinical performance of α-L-fucosidase for early detection of hepatocellular carcinoma. Biomark. Med. 13, 545–555 (2019).
pubmed: 31140827
doi: 10.2217/bmm-2018-0414
Yu, X. et al. Alpha-l-fucosidase: a novel serum biomarker to predict prognosis in early stage esophageal squamous cell carcinoma. J. Thorac. Dis. 11, 3980–3990 (2019).
pubmed: 31656672
pmcid: 6790429
doi: 10.21037/jtd.2019.08.92
Liu, D. et al. Diagnostic value of 5 serum biomarkers for hepatocellular carcinoma with different epidemiological backgrounds: a large-scale, retrospective study. Cancer Biol. Med. 18, 256–270 (2021).
pubmed: 33628599
pmcid: 7877174
doi: 10.20892/j.issn.2095-3941.2020.0207
Khan, A. A., Allemailem, K. S., Alhumaydhi, F. A., Gowder, S. J. T. & Rahmani, A. H. The biochemical and clinical perspectives of lactate dehydrogenase: an enzyme of active metabolism. Endocr. Metab. Immune Disord. Drug Targets 20, 855–868 (2020).
pubmed: 31886754
doi: 10.2174/1871530320666191230141110
Certo, M., Tsai, C.-H., Pucino, V., Ho, P.-C. & Mauro, C. Lactate modulation of immune responses in inflammatory versus tumour microenvironments. Nat. Rev. Immunol. 21, 151–161 (2021).
pubmed: 32839570
doi: 10.1038/s41577-020-0406-2
Akins, N. S., Nielson, T. C. & Le, H. V. Inhibition of glycolysis and glutaminolysis: an emerging drug discovery approach to combat cancer. Curr. Top. Med. Chem. 18, 494–504 (2018).
pubmed: 29788892
pmcid: 6110043
doi: 10.2174/1568026618666180523111351
Young, A., Oldford, C. & Mailloux, R. J. Lactate dehydrogenase supports lactate oxidation in mitochondria isolated from different mouse tissues. Redox Biol. 28, 101339 (2020).
pubmed: 31610469
doi: 10.1016/j.redox.2019.101339
Abbaszadeh, Z., Çeşmeli, S. & Biray Avcı, Ç. Crucial players in glycolysis: cancer progress. Gene 726, 144158 (2020).
pubmed: 31629815
doi: 10.1016/j.gene.2019.144158
Mishra, D. & Banerjee, D. Lactate dehydrogenases as metabolic links between tumor and stroma in the tumor microenvironment. Cancers 11, 750 (2019).
pubmed: 31146503
pmcid: 6627402
doi: 10.3390/cancers11060750
Augoff, K., Hryniewicz-Jankowska, A. & Tabola, R. Lactate dehydrogenase 5: an old friend and a new hope in the war on cancer. Cancer Lett. 358, 1–7 (2015).
pubmed: 25528630
doi: 10.1016/j.canlet.2014.12.035
Pei, Y.-Y. et al. Lactate dehydrogenase as promising marker for prognosis of brain metastasis. J. Neurooncol. 159, 359–368 (2022).
pubmed: 35794505
doi: 10.1007/s11060-022-04070-z
Li, J. et al. Suppression of lactate dehydrogenase A compromises tumor progression by downregulation of the Warburg effect in glioblastoma. Neuroreport 27, 110–115 (2016).
pubmed: 26694942
pmcid: 4712768
doi: 10.1097/WNR.0000000000000506
Wei, Y. et al. Prognostic significance of serum lactic acid, lactate dehydrogenase, and albumin levels in patients with metastatic colorectal cancer. Biomed. Res. Int. 2018, 1804086 (2018).
pubmed: 30627541
pmcid: 6304480
doi: 10.1155/2018/1804086
Zhou, G.-Q. et al. Baseline serum lactate dehydrogenase levels for patients treated with intensity-modulated radiotherapy for nasopharyngeal carcinoma: a predictor of poor prognosis and subsequent liver metastasis. Int. J. Radiat. Oncol. Biol. Phys. 82, e359–e365 (2012).
pubmed: 22000748
doi: 10.1016/j.ijrobp.2011.06.1967
Zhang, J. et al. Prognostic value of pretreatment serum lactate dehydrogenase level in patients with solid tumors: a systematic review and meta-analysis. Sci. Rep. 5, 9800 (2015).
pubmed: 25902419
pmcid: 5386114
doi: 10.1038/srep09800
Sartor, O. et al. An exploratory analysis of alkaline phosphatase, lactate dehydrogenase, and prostate-specific antigen dynamics in the phase 3 ALSYMPCA trial with radium-223. Ann. Oncol. 28, 1090–1097 (2017).
pubmed: 28453701
pmcid: 5406754
doi: 10.1093/annonc/mdx044
Colgan, S. M., Mukherjee, S. & Major, P. Hypoxia-induced lactate dehydrogenase expression and tumor angiogenesis. Clin. Colorectal Cancer 6, 442–446 (2007).
pubmed: 17531108
doi: 10.3816/CCC.2007.n.014
Comandatore, A. et al. Lactate dehydrogenase and its clinical significance in pancreatic and thoracic cancers. Semin. Cancer Biol. 86, 93–100 (2022).
pubmed: 36096316
doi: 10.1016/j.semcancer.2022.09.001
Cho, J. et al. The prognostic role of tumor associated glycoprotein 72 (TAG-72) in stage II and III colorectal adenocarcinoma. Pathol. Res. Pract. 215, 171–176 (2019).
pubmed: 30466765
doi: 10.1016/j.prp.2018.10.024
Li, M., Men, X. & Zhang, X. Diagnostic value of carbohydrate antigen 72-4 combined with carbohydrate antigen 15.3 in ovarian cancer, cervical cancer and endometrial cancer. J. Buon. 25, 1918–1927 (2020).
pubmed: 33099933
Mariampillai, A. I. et al. Cancer antigen 72-4 for the monitoring of advanced tumors of the gastrointestinal tract, lung, breast and ovaries. Anticancer Res. 37, 3649–3656 (2017).
pubmed: 28668856
Guadagni, F. et al. CA 72-4 measurement of tumor-associated glycoprotein 72 (TAG-72) as a serum marker in the management of gastric carcinoma. Cancer Res. 52, 1222–1227 (1992).
pubmed: 1737383
Chen, X.-Z. et al. Correlation between serum CA724 and gastric cancer: multiple analyses based on Chinese population. Mol. Biol. Rep. 39, 9031–9039 (2012).
pubmed: 22752725
doi: 10.1007/s11033-012-1774-x
Xu, Y., Zhang, P., Zhang, K. & Huang, C. The application of CA72-4 in the diagnosis, prognosis, and treatment of gastric cancer. Biochim. Biophys. Acta Rev. Cancer 1876, 188634 (2021).
pubmed: 34656687
doi: 10.1016/j.bbcan.2021.188634
Zhang, Y., Zhang, M., Bai, X., Li, C. & Zhang, L. Increased serum CA724 levels in patients suffering gout vs cancers. Prog. Mol. Biol. Transl. Sci. 162, 177–186 (2019).
pubmed: 30905448
doi: 10.1016/bs.pmbts.2018.12.005
Yang, A.-P. et al. CA72-4 combined with CEA, CA125 and CAl9-9 improves the sensitivity for the early diagnosis of gastric cancer. Clin. Chim. Acta 437, 183–186 (2014).
pubmed: 25086284
doi: 10.1016/j.cca.2014.07.034
Bast, R. C. et al. Reactivity of a monoclonal antibody with human ovarian carcinoma. J. Clin. Invest. 68, 1331–1337 (1981).
pubmed: 7028788
pmcid: 370929
doi: 10.1172/JCI110380
Diamandis, E. P., Bast, R. C. J., Gold, P., Chu, T. M. & Magnani, J. L. Reflection on the discovery of carcinoembryonic antigen, prostate-specific antigen, and cancer antigens CA125 and CA19-9. Clin. Chem. 59, 22–31 (2013).
pubmed: 23204222
doi: 10.1373/clinchem.2012.187047
Zhang, M., Cheng, S., Jin, Y., Zhao, Y. & Wang, Y. Roles of CA125 in diagnosis, prediction, and oncogenesis of ovarian cancer. Biochim. Biophys. Acta Rev. Cancer 1875, 188503 (2021).
pubmed: 33421585
doi: 10.1016/j.bbcan.2021.188503
Rustin, G. J. S. et al. Definitions for response and progression in ovarian cancer clinical trials incorporating recist 1.1 and CA 125 agreed by the gynecological cancer intergroup (GCIG). Int. J. Gynecol. Cancer 21, 419–423 (2011).
pubmed: 21270624
doi: 10.1097/IGC.0b013e3182070f17
Franier, B. D. L. & Thompson, M. Early stage detection and screening of ovarian cancer: a research opportunity and significant challenge for biosensor technology. Biosens. Bioelectron. 135, 71–81 (2019).
pubmed: 31003031
doi: 10.1016/j.bios.2019.03.041
Feng, F. et al. Diagnostic and prognostic value of CEA, CA19–9, AFP and CA125 for early gastric cancer. BMC Cancer 17, 737 (2017).
pubmed: 29121872
pmcid: 5679342
doi: 10.1186/s12885-017-3738-y
Bast, R. C. J. et al. A radioimmunoassay using a monoclonal antibody to monitor the course of epithelial ovarian cancer. N. Engl. J. Med. 309, 883–887 (1983).
pubmed: 6310399
doi: 10.1056/NEJM198310133091503
Akinwunmi, B. O. et al. Chronic medical conditions and CA125 levels among women without ovarian cancer. Cancer Epidemiol. Biomark. Prev. 27, 1483–1490 (2018).
doi: 10.1158/1055-9965.EPI-18-0203
Crosby, D. A., Glover, L. E., Martyn, F. & Wingfield, M. CA125 measured during menstruation can be misleading. Ir. Med. J. 111, 738 (2018).
pubmed: 30488683
Haglund, C., Lundin, J., Kuusela, P. & Roberts, P. J. CA 242, a new tumour marker for pancreatic cancer: a comparison with CA 19-9, CA 50 and CEA. Br. J. Cancer 70, 487–492 (1994).
pubmed: 8080735
pmcid: 2033366
doi: 10.1038/bjc.1994.332
Dou, H., Sun, G. & Zhang, L. CA242 as a biomarker for pancreatic cancer and other diseases. Prog. Mol. Biol. Transl. Sci. 162, 229–239 (2019).
pubmed: 30905452
doi: 10.1016/bs.pmbts.2018.12.007
Tang, Y., Cui, Y., Zhang, S. & Zhang, L. The sensitivity and specificity of serum glycan-based biomarkers for cancer detection. Prog. Mol. Biol. Transl. Sci. 162, 121–140 (2019).
pubmed: 30905445
doi: 10.1016/bs.pmbts.2019.01.010
Ni, X. G. et al. The clinical value of serum CEA, CA19-9, and CA242 in the diagnosis and prognosis of pancreatic cancer. Eur. J. Surg. Oncol. 31, 164–169 (2005).
pubmed: 15698733
doi: 10.1016/j.ejso.2004.09.007
Ozkan, H., Kaya, M. & Cengiz, A. Comparison of tumor marker CA 242 with CA 19-9 and carcinoembryonic antigen (CEA) in pancreatic cancer. Hepatogastroenterology 50, 1669–1674 (2003).
pubmed: 14571813
Nilsson, O. et al. Sensitivity and specificity of CA242 in gastro-intestinal cancer. A comparison with CEA, CA50 and CA 19-9. Br. J. Cancer 65, 215–221 (1992).
pubmed: 1739620
pmcid: 1977720
doi: 10.1038/bjc.1992.44
Pasanen, P. A. et al. Clinical evaluation of a new serum tumour marker CA 242 in pancreatic carcinoma. Br. J. Cancer 65, 731–734 (1992).
pubmed: 1316775
pmcid: 1977373
doi: 10.1038/bjc.1992.154
Nath, S. & Mukherjee, P. MUC1: a multifaceted oncoprotein with a key role in cancer progression. Trends Mol. Med. 20, 332–342 (2014).
pubmed: 24667139
pmcid: 5500204
doi: 10.1016/j.molmed.2014.02.007
Gendler, S. J. MUC1, the renaissance molecule. J. Mammary Gland Biol. Neoplasia 6, 339–353 (2001).
pubmed: 11547902
doi: 10.1023/A:1011379725811
Yousefi, M. et al. Aptasensors as a new sensing technology developed for the detection of MUC1 mucin: a review. Biosens. Bioelectron. 130, 1–19 (2019).
pubmed: 30716589
doi: 10.1016/j.bios.2019.01.015
Price, M. R. High molecular weight epithelial mucins as markers in breast cancer. Eur. J. Cancer Clin. Oncol. 24, 1799–1804 (1988).
pubmed: 3065084
doi: 10.1016/0277-5379(88)90088-0
Seale, K. N. & Tkaczuk, K. H. R. Circulating biomarkers in breast cancer. Clin. Breast Cancer 22, e319–e331 (2022).
pubmed: 34756687
doi: 10.1016/j.clbc.2021.09.006
Duffy, M. J. Serum tumor markers in breast cancer: are they of clinical value? Clin. Chem. 52, 345–351 (2006).
pubmed: 16410341
doi: 10.1373/clinchem.2005.059832
Lindholm, L. et al. Monoclonal antibodies against gastrointestinal tumour-associated antigens isolated as monosialogangliosides. Int. Arch. Allergy Appl. Immunol. 71, 178–181 (1983).
pubmed: 6840874
doi: 10.1159/000233384
Kawa, S. et al. Elevated serum levels of dupan-2 in pancreatic cancer patients negative for lewis blood group phenotype. Br. J. Cancer 64, 899–902 (1991).
pubmed: 1931612
pmcid: 1977472
doi: 10.1038/bjc.1991.422
Shan, M., Tian, Q. & Zhang, L. Serum CA50 levels in patients with cancers and other diseases. Prog. Mol. Biol. Transl. Sci. 162, 187–198 (2019).
pubmed: 30905449
doi: 10.1016/bs.pmbts.2018.12.006
Bouhours, J. F., Bouhours, D. & Hansson, G. C. Developmental changes of gangliosides of the rat stomach. Appearance of a blood group B-active ganglioside. J. Biol. Chem. 262, 16370–16375 (1987).
pubmed: 3680254
doi: 10.1016/S0021-9258(18)49265-4
Steinberg, W. The clinical utility of the CA 19-9 tumor-associated antigen. Am. J. Gastroenterol. 85, 350–355 (1990).
pubmed: 2183589
Ryan, D. P., Hong, T. S. & Bardeesy, N. Pancreatic adenocarcinoma. N. Engl. J. Med. 371, 2140–2141 (2014).
pubmed: 25427123
doi: 10.1056/NEJMra1404198
Kannagi, R. Carbohydrate antigen sialyl Lewis a–its pathophysiological significance and induction mechanism in cancer progression. Chang Gung Med. J. 30, 189–209 (2007).
pubmed: 17760270
Goonetilleke, K. S. & Siriwardena, A. K. Systematic review of carbohydrate antigen (CA 19-9) as a biochemical marker in the diagnosis of pancreatic cancer. Eur. J. Surg. Oncol. 33, 266–270 (2007).
pubmed: 17097848
doi: 10.1016/j.ejso.2006.10.004
Luo, G. et al. Roles of CA19-9 in pancreatic cancer: biomarker, predictor and promoter. Biochim. Biophys. Acta Rev. cancer 1875, 188409 (2021).
pubmed: 32827580
doi: 10.1016/j.bbcan.2020.188409
Scarà, S., Bottoni, P. & Scatena, R. CA 19-9: biochemical and clinical aspects. Adv. Exp. Med. Biol. 867, 247–260 (2015).
pubmed: 26530370
doi: 10.1007/978-94-017-7215-0_15
Al-Janabi, A. A. H. S. & Tawfeeq, E. F. Interfering effect of black tea consumption on diagnosis of pancreatic cancer by CA 19-9. J. Gastrointest. Cancer 48, 148–150 (2017).
pubmed: 27402465
doi: 10.1007/s12029-016-9855-z
Mujica, V. R., Barkin, J. S. & Go, V. L. Acute pancreatitis secondary to pancreatic carcinoma. Study group participants. Pancreas 21, 329–332 (2000).
pubmed: 11075985
doi: 10.1097/00006676-200011000-00001
Zhang, D. et al. Metformin reduces serum CA199 levels in type 2 diabetes Chinese patients with time-effect and gender difference. Diabetes Technol. Ther. 17, 72–79 (2015).
pubmed: 25548963
pmcid: 4321771
doi: 10.1089/dia.2014.0176
Luo, G. et al. Optimize CA19-9 in detecting pancreatic cancer by Lewis and Secretor genotyping. Pancreatology 16, 1057–1062 (2016).
pubmed: 27692554
doi: 10.1016/j.pan.2016.09.013
Wannhoff, A. et al. FUT2 and FUT3 genotype determines CA19-9 cut-off values for detection of cholangiocarcinoma in patients with primary sclerosing cholangitis. J. Hepatol. 59, 1278–1284 (2013).
pubmed: 23958938
doi: 10.1016/j.jhep.2013.08.005
Kirchhoff, C., Habben, I., Ivell, R. & Krull, N. A major human epididymis-specific cDNA encodes a protein with sequence homology to extracellular proteinase inhibitors. Biol. Reprod. 45, 350–357 (1991).
pubmed: 1686187
doi: 10.1095/biolreprod45.2.350
Galgano, M. T., Hampton, G. M. & Frierson, H. F. J. Comprehensive analysis of HE4 expression in normal and malignant human tissues. Mod. Pathol. 19, 847–853 (2006).
pubmed: 16607372
doi: 10.1038/modpathol.3800612
Behrouzi, R., Barr, C. E. & Crosbie, E. J. HE4 as a biomarker for endometrial cancer. Cancers 13, 4764 (2021).
pubmed: 34638250
pmcid: 8507549
doi: 10.3390/cancers13194764
Zhang, R., Siu, M. K. Y., Ngan, H. Y. S. & Chan, K. K. L. Molecular biomarkers for the early detection of ovarian cancer. Int. J. Mol. Sci. 23, 12041 (2022).
pubmed: 36233339
pmcid: 9569881
doi: 10.3390/ijms231912041
Qu, W. et al. Physiopathological factors affecting the diagnostic value of serum HE4-test for gynecologic malignancies. Expert Rev. Mol. Diagn. 16, 1271–1282 (2016).
pubmed: 27784171
doi: 10.1080/14737159.2016.1251317
Truman-Rosentsvit, M. et al. Ferritin is secreted via 2 distinct nonclassical vesicular pathways. Blood 131, 342–352 (2018).
pubmed: 29074498
pmcid: 5774206
doi: 10.1182/blood-2017-02-768580
Mei, Z. et al. Physiologically based serum ferritin thresholds for iron deficiency in children and non-pregnant women: a US National Health and Nutrition Examination Surveys (NHANES) serial cross-sectional study. Lancet Haematol. 8, e572–e582 (2021).
pubmed: 34329578
pmcid: 8948503
doi: 10.1016/S2352-3026(21)00168-X
Koperdanova, M. & Cullis, J. O. Interpreting raised serum ferritin levels. BMJ 351, h3692 (2015).
pubmed: 26239322
doi: 10.1136/bmj.h3692
Matzner, Y., Konijn, A. M. & Hershko, C. Serum ferritin in hematologic malignancies. Am. J. Hematol. 9, 13–22 (1980).
pubmed: 7001894
doi: 10.1002/ajh.2830090103
Gray, C. P., Arosio, P. & Hersey, P. Association of increased levels of heavy-chain ferritin with increased CD4 + CD25+ regulatory T-cell levels in patients with melanoma. Clin. Cancer Res. 9, 2551–2559 (2003).
pubmed: 12855630
de Almeida, S. M., da Cunha, D. S., Yamada, E., Doi, E. M. & Ono, M. Quantification of cerebrospinal fluid ferritin as a biomarker for CNS malignant infiltration. Arq. Neuropsiquiatr. 66, 720–724 (2008).
pubmed: 18949270
doi: 10.1590/S0004-282X2008000500022
Lazzeri, M. et al. Serum isoform [-2]proPSA derivatives significantly improve prediction of prostate cancer at initial biopsy in a total PSA range of 2-10 ng/ml: a multicentric european study. Eur. Urol. 63, 986–994 (2013).
pubmed: 23375961
doi: 10.1016/j.eururo.2013.01.011
Fossati, N. et al. Preoperative prostate-specific antigen isoform p2PSA and its derivatives, %p2PSA and prostate health index, predict pathologic outcomes in patients undergoing radical prostatectomy for prostate cancer: Results from a multicentric european prospective stud. Eur. Urol. 68, 132–138 (2015).
pubmed: 25139197
doi: 10.1016/j.eururo.2014.07.034
Gilligan, T. D. et al. American society of clinical oncology clinical practice guideline on uses of serum tumor markers in adult males with germ cell tumors. J. Clin. Oncol. 28, 3388–3404 (2010).
pubmed: 20530278
doi: 10.1200/JCO.2009.26.4481
Gregory, J. J. J. & Finlay, J. L. Alpha-fetoprotein and beta-human chorionic gonadotropin: their clinical significance as tumour markers. Drugs 57, 463–467 (1999).
pubmed: 10235686
doi: 10.2165/00003495-199957040-00001
Openshaw, M. R. et al. Circulating cell free DNA in the diagnosis of trophoblastic tumors. EBioMedicine 4, 146–152 (2016).
pubmed: 26981554
doi: 10.1016/j.ebiom.2015.12.022
Gallagher, D. J., Riches, J. & Bajorin, D. F. False elevation of human chorionic gonadotropin in a patient with testicular cancer. Nat. Rev. Urol. 7, 230–233 (2010).
pubmed: 20383188
doi: 10.1038/nrurol.2010.10
Gansauge, F. et al. CAM 17.1–a new diagnostic marker in pancreatic cancer. Br. J. Cancer 74, 1997–2002 (1996).
pubmed: 8980403
pmcid: 2074816
doi: 10.1038/bjc.1996.666
Rhodes, J. M. Usefulness of novel tumour markers. Ann. Oncol. 10, 118–121 (1999).
pubmed: 10436801
doi: 10.1093/annonc/10.suppl_4.S118
Ryu, M. R., Kang, E.-S. & Park, H.-D. Performance evaluation of serum PIVKA-II measurement using HISCL-5000 and a method comparison of HISCL-5000, LUMIPULSE G1200, and ARCHITECT i2000. J. Clin. Lab. Anal. 33, e22921 (2019).
pubmed: 31131509
pmcid: 6642327
doi: 10.1002/jcla.22921
Hu, B., Tian, X., Sun, J. & Meng, X. Evaluation of individual and combined applications of serum biomarkers for diagnosis of hepatocellular carcinoma: a meta-analysis. Int. J. Mol. Sci. 14, 23559–23580 (2013).
pubmed: 24317431
pmcid: 3876063
doi: 10.3390/ijms141223559
Xing, H. et al. Clinical application of protein induced by vitamin K antagonist-II as a biomarker in hepatocellular carcinoma. Tumour Biol. https://doi.org/10.1007/s13277-016-5443-x . (2016).
Tartaglione, S. et al. Protein induced by vitamin K absence II (PIVKA-II) as a potential serological biomarker in pancreatic cancer: a pilot study. Biochem. Med. 29, 20707 (2019).
doi: 10.11613/BM.2019.020707
Marrero, J. A. et al. Des-gamma carboxyprothrombin can differentiate hepatocellular carcinoma from nonmalignant chronic liver disease in american patients. Hepatology 37, 1114–1121 (2003).
pubmed: 12717392
doi: 10.1053/jhep.2003.50195
Durazo, F. A. et al. Des-gamma-carboxyprothrombin, alpha-fetoprotein and AFP-L3 in patients with chronic hepatitis, cirrhosis and hepatocellular carcinoma. J. Gastroenterol. Hepatol. 23, 1541–1548 (2008).
pubmed: 18422961
doi: 10.1111/j.1440-1746.2008.05395.x
Wojcik, E. & Kulpa, J. K. Pro-gastrin-releasing peptide (ProGRP) as a biomarker in small-cell lung cancer diagnosis, monitoring and evaluation of treatment response. Lung Cancer 8, 231–240 (2017).
pubmed: 29238236
pmcid: 5716401
Lv, S. P. et al. Meta-analysis of serum gastrin-releasing peptide precursor as a biomarker for diagnosis of small cell lung cancer. Asian Pac. J. Cancer Prev. 18, 391–397 (2017).
pubmed: 28345820
pmcid: 5454733
Tutar, N. et al. Clinical significance of progastrin-releasing peptide, neuron-specific enolase, chromogranin a, and squamous cell cancer antigen in pulmonary neuroendocrine tumors. Turkish J. Med. Sci. 49, 774–781 (2019).
Busch, R. A., Heneghan, A. F., Pierre, J. F., Wang, X. & Kudsk, K. A. The enteric nervous system neuropeptide, bombesin, reverses innate immune impairments during parenteral nutrition. Ann. Surg. 260, 432–434 (2014).
pubmed: 25115419
doi: 10.1097/SLA.0000000000000871
Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).
pubmed: 10647931
doi: 10.1016/S0092-8674(00)81683-9
Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).
pubmed: 21376230
doi: 10.1016/j.cell.2011.02.013
Hanahan, D. Hallmarks of cancer: new dimensions. Cancer Discov. 12, 31–46 (2022).
pubmed: 35022204
doi: 10.1158/2159-8290.CD-21-1059
Pylayeva-Gupta, Y., Grabocka, E. & Bar-Sagi, D. RAS oncogenes: weaving a tumorigenic web. Nat. Rev. Cancer 11, 761–774 (2011).
pubmed: 21993244
pmcid: 3632399
doi: 10.1038/nrc3106
Ediriweera, M. K., Tennekoon, K. H. & Samarakoon, S. R. Role of the PI3K/AKT/mTOR signaling pathway in ovarian cancer: biological and therapeutic significance. Semin. Cancer Biol. 59, 147–160 (2019).
pubmed: 31128298
doi: 10.1016/j.semcancer.2019.05.012
Rocca, A., Braga, L., Volpe, M. C., Maiocchi, S. & Generali, D. The predictive and prognostic role of RAS-RAF-MEK-ERK pathway alterations in breast cancer: revision of the literature and comparison with the analysis of cancer genomic datasets. Cancers 14, 5306 (2022).
pubmed: 36358725
pmcid: 9653766
doi: 10.3390/cancers14215306
Barbacid, M. ras genes. Annu. Rev. Biochem. 56, 779–827 (1987).
pubmed: 3304147
doi: 10.1146/annurev.bi.56.070187.004023
Chang, E. H., Gonda, M. A., Ellis, R. W., Scolnick, E. M. & Lowy, D. R. Human genome contains four genes homologous to transforming genes of Harvey and Kirsten murine sarcoma viruses. Proc. Natl Acad. Sci. USA 79, 4848–4852 (1982).
pubmed: 6289320
pmcid: 346782
doi: 10.1073/pnas.79.16.4848
Downward, J. Targeting RAS signalling pathways in cancer therapy. Nat. Rev. Cancer 3, 11–22 (2003).
pubmed: 12509763
doi: 10.1038/nrc969
Kwan, A. K., Piazza, G. A., Keeton, A. B. & Leite, C. A. The path to the clinic: a comprehensive review on direct KRAS(G12C) inhibitors. J. Exp. Clin. Cancer Res. 41, 27 (2022).
pubmed: 35045886
pmcid: 8767686
doi: 10.1186/s13046-021-02225-w
Yang, H. et al. Targeting RAS mutants in malignancies: successes, failures, and reasons for hope. Cancer Commun. 43, 42–74 (2023).
doi: 10.1002/cac2.12377
Mukhopadhyay, S., Vander Heiden, M. G. & McCormick, F. The metabolic landscape of RAS-driven cancers from biology to therapy. Nat. Cancer 2, 271–283 (2021).
pubmed: 33870211
pmcid: 8045781
doi: 10.1038/s43018-021-00184-x
Buchanan, F. G. et al. Up-regulation of the enzymes involved in prostacyclin synthesis via Ras induces vascular endothelial growth factor. Gastroenterology 127, 1391–1400 (2004).
pubmed: 15521009
doi: 10.1053/j.gastro.2004.07.025
Ancrile, B. B., O’Hayer, K. M. & Counter, C. M. Oncogenic ras-induced expression of cytokines: a new target of anti-cancer therapeutics. Mol. Inter. 8, 22–27 (2008).
doi: 10.1124/mi.8.1.6
Murugan, A. K., Grieco, M. & Tsuchida, N. RAS mutations in human cancers: roles in precision medicine. Semin. Cancer Biol. 59, 23–35 (2019).
pubmed: 31255772
doi: 10.1016/j.semcancer.2019.06.007
Taieb, J. et al. Prognostic value of BRAF and KRAS mutations in MSI and MSS stage III colon cancer. J. Natl Cancer Inst. 109, djw272 (2017).
pubmed: 28040692
doi: 10.1093/jnci/djw272
Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330–337 (2012).
Cancer Genome Atlas Research Network. Integrated genomic characterization of pancreatic ductal adenocarcinoma. Cancer Cell 32, 185–203.e13 (2017).
Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature 511, 543–550 (2014).
Cancer Genome Atlas Research Network. Genomic classification of cutaneous melanoma. Cell 161, 1681–1696 (2015).
Karnoub, A. E. & Weinberg, R. A. Ras oncogenes: split personalities. Nat. Rev. Mol. Cell Biol. 9, 517–531 (2008).
pubmed: 18568040
pmcid: 3915522
doi: 10.1038/nrm2438
Longo, D. L. & Rosen, N. Targeting oncogenic RAS protein. N. Engl. J. Med. 387, 184–186 (2022).
pubmed: 35830646
doi: 10.1056/NEJMe2206831
Santos, E. et al. Malignant activation of a K-ras oncogene in lung carcinoma but not in normal tissue of the same patient. Science 223, 661–664 (1984).
pubmed: 6695174
doi: 10.1126/science.6695174
Prior, I. A., Hood, F. E. & Hartley, J. L. The frequency of Ras mutations in cancer. Cancer Res. 80, 2969–2974 (2020).
pubmed: 32209560
pmcid: 7367715
doi: 10.1158/0008-5472.CAN-19-3682
Dai, M., Chen, S., Teng, X., Chen, K. & Cheng, W. KRAS as a key oncogene in the clinical precision diagnosis and treatment of pancreatic cancer. J. Cancer 13, 3209–3220 (2022).
pubmed: 36118526
pmcid: 9475360
doi: 10.7150/jca.76695
Modest, D. P. et al. Outcome according to KRAS-, NRAS- and BRAF-mutation as well as KRAS mutation variants: Pooled analysis of five randomized trials in metastatic colorectal cancer by the AIO colorectal cancer study group. Ann. Oncol. 27, 1746–1753 (2016).
pubmed: 27358379
pmcid: 4999563
doi: 10.1093/annonc/mdw261
Gallina, F. T. et al. KRAS G12C mutation and risk of disease recurrence in stage I surgically resected lung adenocarcinoma. Lung Cancer 181, 107254 (2023).
pubmed: 37253296
doi: 10.1016/j.lungcan.2023.107254
Buscail, L., Bournet, B. & Cordelier, P. Role of oncogenic KRAS in the diagnosis, prognosis and treatment of pancreatic cancer. Nat. Rev. Gastroenterol. Hepatol. 17, 153–168 (2020).
pubmed: 32005945
doi: 10.1038/s41575-019-0245-4
Shen, H. et al. KRAS G12D mutation subtype in pancreatic ductal adenocarcinoma: does it influence prognosis or stage of disease at presentation? Cells 11, 3175 (2022).
pubmed: 36231137
pmcid: 9562007
doi: 10.3390/cells11193175
Santana-Codina, N. et al. Oncogenic KRAS supports pancreatic cancer through regulation of nucleotide synthesis. Nat. Commun. 9, 4945 (2018).
pubmed: 30470748
pmcid: 6251888
doi: 10.1038/s41467-018-07472-8
Weinberg, F. et al. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc. Natl Acad. Sci. USA 107, 8788–8793 (2010).
pubmed: 20421486
pmcid: 2889315
doi: 10.1073/pnas.1003428107
Kerk, S. A., Papagiannakopoulos, T., Shah, Y. M. & Lyssiotis, C. A. Metabolic networks in mutant KRAS-driven tumours: tissue specificities and the microenvironment. Nat. Rev. Cancer 21, 510–525 (2021).
pubmed: 34244683
pmcid: 10257891
doi: 10.1038/s41568-021-00375-9
Amendola, C. R. et al. KRAS4A directly regulates hexokinase 1. Nature 576, 482–486 (2019).
pubmed: 31827279
pmcid: 6923592
doi: 10.1038/s41586-019-1832-9
Wang, H. et al. Inhibition of glycolytic enzyme hexokinase II (HK2) suppresses lung tumor growth. Cancer Cell Int. 16, 9 (2016).
pubmed: 26884725
pmcid: 4755025
doi: 10.1186/s12935-016-0280-y
Ying, H. et al. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149, 656–670 (2012).
pubmed: 22541435
pmcid: 3472002
doi: 10.1016/j.cell.2012.01.058
Padanad, M. S. et al. Fatty acid oxidation mediated by acyl-CoA synthetase long chain 3 is required for mutant KRAS lung tumorigenesis. Cell Rep. 16, 1614–1628 (2016).
pubmed: 27477280
pmcid: 4981512
doi: 10.1016/j.celrep.2016.07.009
Akhave, N. S., Biter, A. B. & Hong, D. S. Mechanisms of resistance to KRAS(G12C)-targeted therapy. Cancer Discov. 11, 1345–1352 (2021).
pubmed: 33820777
pmcid: 8178176
doi: 10.1158/2159-8290.CD-20-1616
Zhu, C. et al. Targeting KRAS mutant cancers: from druggable therapy to drug resistance. Mol. Cancer 21, 159 (2022).
pubmed: 35922812
pmcid: 9351107
doi: 10.1186/s12943-022-01629-2
Lu, S. et al. Ras conformational ensembles, allostery, and signaling. Chem. Rev. 116, 6607–6665 (2016).
pubmed: 26815308
doi: 10.1021/acs.chemrev.5b00542
Manning, B. D. & Toker, A. AKT/PKB signaling: navigating the network. Cell 169, 381–405 (2017).
pubmed: 28431241
pmcid: 5546324
doi: 10.1016/j.cell.2017.04.001
Mossmann, D., Park, S. & Hall, M. N. mTOR signalling and cellular metabolism are mutual determinants in cancer. Nat. Rev. Cancer 18, 744–757 (2018).
pubmed: 30425336
doi: 10.1038/s41568-018-0074-8
Sawyers, C. L. Will mTOR inhibitors make it as cancer drugs? Cancer Cell 4, 343–348 (2003).
pubmed: 14667501
doi: 10.1016/S1535-6108(03)00275-7
Saxton, R. A. & Sabatini, D. M. mTOR signaling in growth, metabolism, and disease. Cell 168, 960–976 (2017).
pubmed: 28283069
pmcid: 5394987
doi: 10.1016/j.cell.2017.02.004
Engelman, J. A., Luo, J. & Cantley, L. C. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat. Rev. Genet. 7, 606–619 (2006).
pubmed: 16847462
doi: 10.1038/nrg1879
Fruman, D. A. et al. The PI3K pathway in human disease. Cell 170, 605–635 (2017).
pubmed: 28802037
pmcid: 5726441
doi: 10.1016/j.cell.2017.07.029
Polivka, J. J. & Janku, F. Molecular targets for cancer therapy in the PI3K/AKT/mTOR pathway. Pharmacol. Ther. 142, 164–175 (2014).
pubmed: 24333502
doi: 10.1016/j.pharmthera.2013.12.004
Papadimitrakopoulou, V. & Adjei, A. A. The Akt/mTOR and mitogen-activated protein kinase pathways in lung cancer therapy. J. Thorac. Oncol. 1, 749–751 (2006).
pubmed: 17409953
Hung, M.-C., Wang, W.-P. & Chi, Y.-H. AKT phosphorylation as a predictive biomarker for PI3K/mTOR dual inhibition-induced proteolytic cleavage of mTOR companion proteins in small cell lung cancer. Cell Biosci. 12, 122 (2022).
pubmed: 35918763
pmcid: 9344631
doi: 10.1186/s13578-022-00862-y
Nunnery, S. E. & Mayer, I. A. Targeting the PI3K/AKT/mTOR pathway in hormone-positive breast cancer. Drugs 80, 1685–1697 (2020).
pubmed: 32894420
pmcid: 7572750
doi: 10.1007/s40265-020-01394-w
Wang, W. et al. Activation of Akt/mTOR pathway is associated with poor prognosis of nasopharyngeal carcinoma. PLoS ONE 9, e106098 (2014).
pubmed: 25165983
pmcid: 4148345
doi: 10.1371/journal.pone.0106098
Li, H.-L., Deng, N.-H., He, X.-S. & Li, Y.-H. Small biomarkers with massive impacts: PI3K/AKT/mTOR signalling and microRNA crosstalk regulate nasopharyngeal carcinoma. Biomark. Res. 10, 52 (2022).
pubmed: 35883139
pmcid: 9327212
doi: 10.1186/s40364-022-00397-x
Janku, F. et al. PI3K/AKT/mTOR inhibitors in patients with breast and gynecologic malignancies harboring PIK3CA mutations. J. Clin. Oncol. 30, 777–782 (2012).
pubmed: 22271473
pmcid: 3295566
doi: 10.1200/JCO.2011.36.1196
Janku, F. et al. PIK3CA mutation H1047R is associated with response to PI3K/AKT/mTOR signaling pathway inhibitors in early-phase clinical trials. Cancer Res. 73, 276–284 (2013).
pubmed: 23066039
doi: 10.1158/0008-5472.CAN-12-1726
Owonikoko, T. K. & Khuri, F. R. Targeting the PI3K/AKT/mTOR pathway: biomarkers of success and tribulation. Am. Soc. Clin. Oncol. Educ. Book 33, e395–e401 (2013).
doi: 10.14694/EdBook_AM.2013.33.e395
Fusco, N. et al. PIK3CA mutations as a molecular target for hormone receptor-positive, HER2-negative metastatic breast cancer. Front. Oncol. 11, 644737 (2021).
pubmed: 33842357
pmcid: 8027489
doi: 10.3389/fonc.2021.644737
Punekar, S. R., Velcheti, V., Neel, B. G. & Wong, K. K. The current state of the art and future trends in RAS-targeted cancer therapies. Nat. Rev. Clin. Oncol. 19, 637–655 (2022).
pubmed: 36028717
pmcid: 9412785
doi: 10.1038/s41571-022-00671-9
Holderfield, M., Deuker, M. M., McCormick, F. & McMahon, M. Targeting RAF kinases for cancer therapy: BRAF-mutated melanoma and beyond. Nat. Rev. Cancer 14, 455–467 (2014).
pubmed: 24957944
pmcid: 4250230
doi: 10.1038/nrc3760
Takács, T. et al. The effects of mutant Ras proteins on the cell signalome. Cancer Metastasis Rev. 39, 1051–1065 (2020).
pubmed: 32648136
pmcid: 7680337
doi: 10.1007/s10555-020-09912-8
Bahar, M. E., Kim, H. J. & Kim, D. R. Targeting the RAS/RAF/MAPK pathway for cancer therapy: from mechanism to clinical studies. Signal Transduct. Target Ther. 8, 455 (2023).
pubmed: 38105263
pmcid: 10725898
doi: 10.1038/s41392-023-01705-z
Su, W. et al. ARAF protein kinase activates RAS by antagonizing its binding to RASGAP NF1. Mol. Cell 82, 2443–2457.e7 (2022).
pubmed: 35613620
pmcid: 9271631
doi: 10.1016/j.molcel.2022.04.034
da Rocha Dias, S. et al. Activated B-RAF is an Hsp90 client protein that is targeted by the anticancer drug 17-allylamino-17-demethoxygeldanamycin. Cancer Res. 65, 10686–10691 (2005).
pubmed: 16322212
doi: 10.1158/0008-5472.CAN-05-2632
Grammatikakis, N., Lin, J. H., Grammatikakis, A., Tsichlis, P. N. & Cochran, B. H. p50(cdc37) acting in concert with Hsp90 is required for Raf-1 function. Mol. Cell. Biol. 19, 1661–1672 (1999).
pubmed: 10022854
pmcid: 83960
doi: 10.1128/MCB.19.3.1661
Michaud, N. R. et al. KSR stimulates Raf-1 activity in a kinase-independent manner. Proc. Natl Acad. Sci. USA 94, 12792–12796 (1997).
pubmed: 9371754
pmcid: 24217
doi: 10.1073/pnas.94.24.12792
Steelman, L. S. et al. Roles of the Ras/Raf/MEK/ERK pathway in leukemia therapy. Leukemia 25, 1080–1094 (2011).
pubmed: 21494257
doi: 10.1038/leu.2011.66
Imperial, R., Toor, O. M., Hussain, A., Subramanian, J. & Masood, A. Comprehensive pancancer genomic analysis reveals (RTK)-RAS-RAF-MEK as a key dysregulated pathway in cancer: its clinical implications. Semin. Cancer Biol. 54, 14–28 (2019).
pubmed: 29175106
doi: 10.1016/j.semcancer.2017.11.016
Liu, D. & Zhou, K. BRAF/MEK pathway is associated with breast cancer in ER-dependent mode and improves ER status-based cancer recurrence prediction. Clin. Breast Cancer 20, 41–50.e8 (2020).
pubmed: 31547956
doi: 10.1016/j.clbc.2019.08.005
Steck, P. A. et al. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat. Genet. 15, 356–362 (1997).
pubmed: 9090379
doi: 10.1038/ng0497-356
Worby, C. A. & Dixon, J. E. PTEN. Annu. Rev. Biochem. 83, 641–669 (2014).
pubmed: 24905788
doi: 10.1146/annurev-biochem-082411-113907
Maehama, T. & Dixon, J. E. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem. 273, 13375–13378 (1998).
pubmed: 9593664
doi: 10.1074/jbc.273.22.13375
Hollander, M. C., Blumenthal, G. M. & Dennis, P. A. PTEN loss in the continuum of common cancers, rare syndromes and mouse models. Nat. Rev. Cancer 11, 289–301 (2011).
pubmed: 21430697
pmcid: 6946181
doi: 10.1038/nrc3037
Xie, P. et al. Neddylation of PTEN regulates its nuclear import and promotes tumor development. Cell Res. 31, 291–311 (2021).
pubmed: 33299139
doi: 10.1038/s41422-020-00443-z
Sansal, I. & Sellers, W. R. The biology and clinical relevance of the PTEN tumor suppressor pathway. J. Clin. Oncol. 22, 2954–2963 (2004).
pubmed: 15254063
doi: 10.1200/JCO.2004.02.141
Bazzichetto, C. et al. Pten as a prognostic/predictive biomarker in cancer: an unfulfilled promise? Cancers 11, 435 (2019).
pubmed: 30925702
pmcid: 6520939
doi: 10.3390/cancers11040435
Song, M. S., Salmena, L. & Pandolfi, P. P. The functions and regulation of the PTEN tumour suppressor. Nat. Rev. Mol. Cell Biol. 13, 283–296 (2012).
pubmed: 22473468
doi: 10.1038/nrm3330
Lee, Y.-R., Chen, M. & Pandolfi, P. P. The functions and regulation of the PTEN tumour suppressor: new modes and prospects. Nat. Rev. Mol. Cell Biol. 19, 547–562 (2018).
pubmed: 29858604
doi: 10.1038/s41580-018-0015-0
Friend, S. H. et al. A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 323, 643–646 (1986).
pubmed: 2877398
doi: 10.1038/323643a0
Benavente, C. A. & Dyer, M. A. Genetics and epigenetics of human retinoblastoma. Annu. Rev. Pathol. 10, 547–562 (2015).
pubmed: 25621664
doi: 10.1146/annurev-pathol-012414-040259
Kent, L. N. & Leone, G. The broken cycle: E2F dysfunction in cancer. Nat. Rev. Cancer 19, 326–338 (2019).
pubmed: 31053804
doi: 10.1038/s41568-019-0143-7
Burkhart, D. L. & Sage, J. Cellular mechanisms of tumour suppression by the retinoblastoma gene. Nat. Rev. Cancer 8, 671–682 (2008).
pubmed: 18650841
pmcid: 6996492
doi: 10.1038/nrc2399
Munro, S., Carr, S. M. & La Thangue, N. B. Diversity within the pRb pathway: is there a code of conduct. Oncogene 31, 4343–4352 (2012).
pubmed: 22249267
doi: 10.1038/onc.2011.603
Weinberg, R. A. The retinoblastoma protein and cell cycle control. Cell 81, 323–330 (1995).
pubmed: 7736585
doi: 10.1016/0092-8674(95)90385-2
Dyson, N. J. RB1: a prototype tumor suppressor and an enigma. Genes Dev. 30, 1492–1502 (2016).
pubmed: 27401552
pmcid: 4949322
doi: 10.1101/gad.282145.116
Knudsen, E. S. et al. Pan-cancer molecular analysis of the RB tumor suppressor pathway. Commun. Biol. 3, 158 (2020).
pubmed: 32242058
pmcid: 7118159
doi: 10.1038/s42003-020-0873-9
Lane, D. P. Cancer. p53, guardian of the genome. Nature 358, 15–16 (1992).
pubmed: 1614522
doi: 10.1038/358015a0
Bieging, K. T., Mello, S. S. & Attardi, L. D. Unravelling mechanisms of p53-mediated tumour suppression. Nat. Rev. Cancer 14, 359–370 (2014).
pubmed: 24739573
pmcid: 4049238
doi: 10.1038/nrc3711
Bieging, K. T. & Attardi, L. D. Cancer: a piece of the p53 puzzle. Nature 520, 37–38 (2015).
pubmed: 25799989
doi: 10.1038/nature14374
Vousden, K. H. & Prives, C. Blinded by the light: the growing complexity of p53. Cell 137, 413–431 (2009).
pubmed: 19410540
doi: 10.1016/j.cell.2009.04.037
Wang, M. & Attardi, L. D. A balancing act: p53 activity from tumor suppression to pathology and therapeutic implications. Annu. Rev. Pathol. 17, 205–226 (2022).
pubmed: 34699262
doi: 10.1146/annurev-pathol-042320-025840
Hollstein, M., Sidransky, D., Vogelstein, B. & Harris, C. C. p53 mutations in human cancers. Science 253, 49–53 (1991).
pubmed: 1905840
doi: 10.1126/science.1905840
Zhu, H. et al. Targeting p53–MDM2 interaction by small-molecule inhibitors: learning from MDM2 inhibitors in clinical trials. J. Hematol. Oncol. 15, 91 (2022).
pubmed: 35831864
pmcid: 9277894
doi: 10.1186/s13045-022-01314-3
Shi, C., Liu, S., Tian, X., Wang, X. & Gao, P. A TP53 mutation model for the prediction of prognosis and therapeutic responses in head and neck squamous cell carcinoma. BMC Cancer 21, 1035 (2021).
pubmed: 34530752
pmcid: 8447564
doi: 10.1186/s12885-021-08765-w
Li, V. D., Li, K. H. & Li, J. T. TP53 mutations as potential prognostic markers for specific cancers: analysis of data from The Cancer Genome Atlas and the International Agency for Research on Cancer TP53 Database. J. Cancer Res. Clin. Oncol. 145, 625–636 (2019).
pubmed: 30542790
doi: 10.1007/s00432-018-2817-z
Jafri, M. A., Ansari, S. A., Alqahtani, M. H. & Shay, J. W. Roles of telomeres and telomerase in cancer, and advances in telomerase-targeted therapies. Genome Med. 8, 69 (2016).
pubmed: 27323951
pmcid: 4915101
doi: 10.1186/s13073-016-0324-x
Meyne, J., Ratliff, R. L. & Moyzis, R. K. Conservation of the human telomere sequence (TTAGGG)n among vertebrates. Proc. Natl Acad. Sci. USA 86, 7049–7053 (1989).
pubmed: 2780561
pmcid: 297991
doi: 10.1073/pnas.86.18.7049
Gao, J. & Pickett, H. A. Targeting telomeres: advances in telomere maintenance mechanism-specific cancer therapies. Nat. Rev. Cancer 22, 515–532 (2022).
pubmed: 35790854
doi: 10.1038/s41568-022-00490-1
Marinaccio, J. et al. TERT extra-telomeric roles: antioxidant activity and mitochondrial protection. Int. J. Mol. Sci. 24, 4450 (2023).
pubmed: 36901881
pmcid: 10002448
doi: 10.3390/ijms24054450
Bajaj, S., Kumar, M. S., Peters, G. J. & Mayur, Y. C. Targeting telomerase for its advent in cancer therapeutics. Med. Res. Rev. 40, 1871–1919 (2020).
pubmed: 32391613
doi: 10.1002/med.21674
Bertorelle, R. et al. Telomerase is an independent prognostic marker of overall survival in pataients with colorectal cancer. Br. J. Cancer 108, 278–284 (2013).
pubmed: 23322193
pmcid: 3566802
doi: 10.1038/bjc.2012.602
Powter, B. et al. Human TERT promoter mutations as a prognostic biomarker in glioma. J. Cancer Res. Clin. Oncol. 147, 1007–1017 (2021).
pubmed: 33547950
pmcid: 7954705
doi: 10.1007/s00432-021-03536-3
Masutomi, K. et al. The telomerase reverse transcriptase regulates chromatin state and DNA damage responses. Proc. Natl Acad. Sci. USA 102, 8222–8227 (2005).
pubmed: 15928077
pmcid: 1149439
doi: 10.1073/pnas.0503095102
Baeriswyl, V. & Christofori, G. The angiogenic switch in carcinogenesis. Semin. Cancer Biol. 19, 329–337 (2009).
pubmed: 19482086
doi: 10.1016/j.semcancer.2009.05.003
Hanahan, D. & Folkman, J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353–364 (1996).
pubmed: 8756718
doi: 10.1016/S0092-8674(00)80108-7
Weidner, N. et al. Tumor angiogenesis: a new significant and independent prognostic indicator in early-stage breast carcinoma. J. Natl Cancer Inst. 84, 1875–1887 (1992).
pubmed: 1281237
doi: 10.1093/jnci/84.24.1875
Al-Husein, B., Abdalla, M., Trepte, M., DeRemer, D. L. & Somanath, P. R. Antiangiogenic therapy for cancer: an update. Pharmacotherapy 32, 1095–1111 (2012).
pubmed: 23208836
pmcid: 3555403
doi: 10.1002/phar.1147
Senger, D. R. et al. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219, 983–985 (1983).
pubmed: 6823562
doi: 10.1126/science.6823562
Ferrara, N. & Henzel, W. J. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem. Biophys. Res. Commun. 161, 851–858 (1989).
pubmed: 2735925
doi: 10.1016/0006-291X(89)92678-8
Dabravolski, S. A., Khotina, V. A., Omelchenko, A. V., Kalmykov, V. A. & Orekhov, A. N. The role of the VEGF family in atherosclerosis development and its potential as treatment targets. Int. J. Mol. Sci. 23, 931 (2022).
pubmed: 35055117
pmcid: 8781560
doi: 10.3390/ijms23020931
Ebos, J. M. L., Lee, C. R., Christensen, J. G., Mutsaers, A. J. & Kerbel, R. S. Multiple circulating proangiogenic factors induced by sunitinib malate are tumor-independent and correlate with antitumor efficacy. Proc. Natl Acad. Sci. USA 104, 17069–17074 (2007).
pubmed: 17942672
pmcid: 2040401
doi: 10.1073/pnas.0708148104
Kerbel, R. S. Tumor angiogenesis. N. Engl. J. Med. 358, 2039–2049 (2008).
pubmed: 18463380
pmcid: 4542009
doi: 10.1056/NEJMra0706596
Kerbel, R. & Folkman, J. Clinical translation of angiogenesis inhibitors. Nat. Rev. Cancer 2, 727–739 (2002).
pubmed: 12360276
doi: 10.1038/nrc905
Lee, S. H., Jeong, D., Han, Y.-S. & Baek, M. J. Pivotal role of vascular endothelial growth factor pathway in tumor angiogenesis. Ann. Surg. Treat. Res. 89, 1–8 (2015).
pubmed: 26131438
pmcid: 4481026
doi: 10.4174/astr.2015.89.1.1
Simons, M., Gordon, E. & Claesson-Welsh, L. Mechanisms and regulation of endothelial VEGF receptor signalling. Nat. Rev. Mol. Cell Biol. 17, 611–625 (2016).
pubmed: 27461391
doi: 10.1038/nrm.2016.87
de Vries, C. et al. The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science 255, 989–991 (1992).
pubmed: 1312256
doi: 10.1126/science.1312256
Park, J. E., Chen, H. H., Winer, J., Houck, K. A. & Ferrara, N. Placenta growth factor. Potentiation of vascular endothelial growth factor bioactivity, in vitro and in vivo, and high affinity binding to Flt-1 but not to Flk-1/KDR. J. Biol. Chem. 269, 25646–25654 (1994).
pubmed: 7929268
doi: 10.1016/S0021-9258(18)47298-5
Ye, X., Gaucher, J.-F., Vidal, M. & Broussy, S. A structural overview of vascular endothelial growth factors pharmacological ligands: from macromolecules to designed peptidomimetics. Molecules 26, 6759 (2021).
pubmed: 34833851
pmcid: 8625919
doi: 10.3390/molecules26226759
Ceci, C., Atzori, M. G., Lacal, P. M. & Graziani, G. Role of VEGFs/VEGFR-1 signaling and its inhibition in modulating tumor invasion: experimental evidence in different metastatic cancer models. Int. J. Mol. Sci. 21, 1388 (2020).
pubmed: 32085654
pmcid: 7073125
doi: 10.3390/ijms21041388
Apte, R. S., Chen, D. S. & Ferrara, N. VEGF in signaling and disease: beyond discovery and development. Cell 176, 1248–1264 (2019).
pubmed: 30849371
pmcid: 6410740
doi: 10.1016/j.cell.2019.01.021
Ferrara, N., Gerber, H.-P. & LeCouter, J. The biology of VEGF and its receptors. Nat. Med. 9, 669–676 (2003).
pubmed: 12778165
doi: 10.1038/nm0603-669
Yao, C. et al. Angiogenesis in hepatocellular carcinoma: mechanisms and anti-angiogenic therapies. Cancer Biol. Med. 20, 25–43 (2023).
pubmed: 36647777
pmcid: 9843448
doi: 10.20892/j.issn.2095-3941.2022.0449
Karkkainen, M. J., Mäkinen, T. & Alitalo, K. Lymphatic endothelium: a new frontier of metastasis research. Nat. Cell Biol. 4, E2–E5 (2002).
pubmed: 11780131
doi: 10.1038/ncb0102-e2
Alitalo, K., Tammela, T. & Petrova, T. V. Lymphangiogenesis in development and human disease. Nature 438, 946–953 (2005).
pubmed: 16355212
doi: 10.1038/nature04480
Aguilar-Cazares, D. et al. Contribution of angiogenesis to inflammation and cancer. Front. Oncol. 9, 1399 (2019).
pubmed: 31921656
pmcid: 6920210
doi: 10.3389/fonc.2019.01399
Lacin, S. & Yalcin, S. The prognostic value of circulating VEGF-A level in patients with hepatocellular cancer. Technol. Cancer Res. Treat. 19, 153303382097167 (2020).
doi: 10.1177/1533033820971677
Bocci, G. et al. Increased plasma vascular endothelial growth factor (VEGF) as a surrogate marker for optimal therapeutic dosing of VEGF receptor-2 monoclonal antibodies. Cancer Res. 64, 6616–6625 (2004).
pubmed: 15374976
doi: 10.1158/0008-5472.CAN-04-0401
Turner, N. & Grose, R. Fibroblast growth factor signalling: from development to cancer. Nat. Rev. Cancer 10, 116–129 (2010).
pubmed: 20094046
doi: 10.1038/nrc2780
De Moerlooze, L. et al. An important role for the IIIb isoform of fibroblast growth factor receptor 2 (FGFR2) in mesenchymal-epithelial signalling during mouse organogenesis. Development 127, 483–492 (2000).
pubmed: 10631169
doi: 10.1242/dev.127.3.483
Eswarakumar, V. P., Lax, I. & Schlessinger, J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev. 16, 139–149 (2005).
pubmed: 15863030
doi: 10.1016/j.cytogfr.2005.01.001
Mashreghi, M. et al. Angiogenesis biomarkers and their targeting ligands as potential targets for tumor angiogenesis. J. Cell. Physiol. 233, 2949–2965 (2018).
pubmed: 28608549
doi: 10.1002/jcp.26049
Presta, M. et al. Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev. 16, 159–178 (2005).
pubmed: 15863032
doi: 10.1016/j.cytogfr.2005.01.004
Doll, J. A. et al. Thrombospondin-1, vascular endothelial growth factor and fibroblast growth factor-2 are key functional regulators of angiogenesis in the prostate. Prostate 49, 293–305 (2001).
pubmed: 11746276
doi: 10.1002/pros.10025
Birrer, M. J. et al. Whole genome oligonucleotide-based array comparative genomic hybridization analysis identified fibroblast growth factor 1 as a prognostic marker for advanced-stage serous ovarian adenocarcinomas. J. Clin. Oncol. 25, 2281–2287 (2007).
pubmed: 17538174
doi: 10.1200/JCO.2006.09.0795
Dienstmann, R. et al. Genomic aberrations in the FGFR pathway: opportunities for targeted therapies in solid tumors. Ann. Oncol. 25, 552–563 (2014).
pubmed: 24265351
doi: 10.1093/annonc/mdt419
Zhang, Y. et al. Role of epithelial cell fibroblast growth factor receptor substrate 2alpha in prostate development, regeneration and tumorigenesis. Development 135, 775–784 (2008).
pubmed: 18184727
doi: 10.1242/dev.009910
Schaeffer, E. M. et al. Androgen-induced programs for prostate epithelial growth and invasion arise in embryogenesis and are reactivated in cancer. Oncogene 27, 7180–7191 (2008).
pubmed: 18794802
pmcid: 2676849
doi: 10.1038/onc.2008.327
Desai, A. & Adjei, A. A. FGFR signaling as a target for lung cancer therapy. J. Thorac. Oncol. 11, 9–20 (2016).
pubmed: 26762735
doi: 10.1016/j.jtho.2015.08.003
Xian, W. et al. Fibroblast growth factor receptor 1-transformed mammary epithelial cells are dependent on RSK activity for growth and survival. Cancer Res. 69, 2244–2251 (2009).
pubmed: 19258500
doi: 10.1158/0008-5472.CAN-08-3398
Nomura, S. et al. FGF10/FGFR2 signal induces cell migration and invasion in pancreatic cancer. Br. J. Cancer 99, 305–313 (2008).
pubmed: 18594526
pmcid: 2480967
doi: 10.1038/sj.bjc.6604473
Greenman, C. et al. Patterns of somatic mutation in human cancer genomes. Nature 446, 153–158 (2007).
pubmed: 17344846
pmcid: 2712719
doi: 10.1038/nature05610
Cappellen, D. et al. Frequent activating mutations of FGFR3 in human bladder and cervix carcinomas. Nat. Genet. 23, 18–20 (1999).
pubmed: 10471491
doi: 10.1038/12615
Dutt, A. et al. Drug-sensitive FGFR2 mutations in endometrial carcinoma. Proc. Natl Acad. Sci. USA 105, 8713–8717 (2008).
pubmed: 18552176
pmcid: 2438391
doi: 10.1073/pnas.0803379105
Pearson, A. et al. High-level clonal FGFR amplification and response to FGFR inhibition in a translational clinical trial. Cancer Discov. 6, 838–851 (2016).
pubmed: 27179038
pmcid: 5338732
doi: 10.1158/2159-8290.CD-15-1246
Weiss, J. et al. Frequent and focal FGFR1 amplification associates with therapeutically tractable FGFR1 dependency in squamous cell lung cancer. Sci. Transl. Med. 2, 62ra93 (2010).
pubmed: 21160078
pmcid: 3990281
doi: 10.1126/scitranslmed.3001451
Ahmad, I., Iwata, T. & Leung, H. Y. Mechanisms of FGFR-mediated carcinogenesis. Biochim. Biophys. Acta 1823, 850–860 (2012).
pubmed: 22273505
doi: 10.1016/j.bbamcr.2012.01.004
Nakamura, I. T. et al. Comprehensive functional evaluation of variants of fibroblast growth factor receptor genes in cancer. NPJ Precis. Oncol. 5, 66 (2021).
pubmed: 34272467
pmcid: 8285406
doi: 10.1038/s41698-021-00204-0
Wang, S. & Ding, Z. Fibroblast growth factor receptors in breast cancer. Tumour Biol. 39, 1010428317698370 (2017).
pubmed: 28459213
Zou, X. et al. Targeting the PDGF/PDGFR signaling pathway for cancer therapy: a review. Int. J. Biol. Macromol. 202, 539–557 (2022).
pubmed: 35074329
doi: 10.1016/j.ijbiomac.2022.01.113
Kalra, K., Eberhard, J., Farbehi, N., Chong, J. J. & Xaymardan, M. Role of PDGF-A/B ligands in cardiac repair after myocardial infarction. Front. Cell Dev. Biol. 9, 669188 (2021).
pubmed: 34513823
pmcid: 8424099
doi: 10.3389/fcell.2021.669188
Nordby, Y. et al. High expression of PDGFR-β in prostate cancer stroma is independently associated with clinical and biochemical prostate cancer recurrence. Sci. Rep. 7, 43378 (2017).
pubmed: 28233816
pmcid: 5324133
doi: 10.1038/srep43378
Demoulin, J.-B. & Essaghir, A. PDGF receptor signaling networks in normal and cancer cells. Cytokine Growth Factor Rev. 25, 273–283 (2014).
pubmed: 24703957
doi: 10.1016/j.cytogfr.2014.03.003
Thies, K. A. et al. Stromal platelet-derived growth factor receptor-β signaling promotes breast cancer metastasis in the brain. Cancer Res. 81, 606–618 (2021).
pubmed: 32327406
doi: 10.1158/0008-5472.CAN-19-3731
Lin, L.-H. et al. Overexpression of platelet-derived growth factor and its receptor are correlated with oral tumorigenesis and Poor Prognosis in Oral Squamous Cell Carcinoma. Int. J. Mol. Sci. 21, 2360 (2020).
pubmed: 32235327
pmcid: 7177415
doi: 10.3390/ijms21072360
Bernat-Peguera, A. et al. PDGFR-induced autocrine SDF-1 signaling in cancer cells promotes metastasis in advanced skin carcinoma. Oncogene 38, 5021–5037 (2019).
pubmed: 30874597
pmcid: 6756210
doi: 10.1038/s41388-019-0773-y
Brahmi, M. et al. Expression and prognostic significance of PDGF ligands and receptors across soft tissue sarcomas. ESMO Open 6, 100037 (2021).
pubmed: 33524869
pmcid: 7848659
doi: 10.1016/j.esmoop.2020.100037
Yang, J. et al. A positive feedback loop between inactive VHL-triggered histone lactylation and PDGFRβ signaling drives clear cell renal cell carcinoma progression. Int. J. Biol. Sci. 18, 3470–3483 (2022).
pubmed: 35637958
pmcid: 9134910
doi: 10.7150/ijbs.73398
Roskoski, R. J. The role of small molecule platelet-derived growth factor receptor (PDGFR) inhibitors in the treatment of neoplastic disorders. Pharmacol. Res. 129, 65–83 (2018).
pubmed: 29408302
doi: 10.1016/j.phrs.2018.01.021
Manzat Saplacan, R. M. et al. The role of PDGFs and PDGFRs in colorectal cancer. Mediators Inflamm. 2017, 4708076 (2017).
pubmed: 28163397
pmcid: 5259650
doi: 10.1155/2017/4708076
Taeger, J. et al. Targeting FGFR/PDGFR/VEGFR impairs tumor growth, angiogenesis, and metastasis by effects on tumor cells, endothelial cells, and pericytes in pancreatic cancer. Mol. Cancer Ther. 10, 2157–2167 (2011).
pubmed: 21885862
doi: 10.1158/1535-7163.MCT-11-0312
Qian, H. et al. The clinical significance of platelet-derived growth factors (PDGFs) and their receptors (PDGFRs) in gastric cancer: A systematic review and meta-analysis. Crit. Rev. Oncol. Hematol. 127, 15–28 (2018).
pubmed: 29891108
doi: 10.1016/j.critrevonc.2018.05.004
Cavalcanti, E., Ignazzi, A., De Michele, F. & Caruso, M. L. PDGFRα expression as a novel therapeutic marker in well-differentiated neuroendocrine tumors. Cancer Biol. Ther. 20, 423–430 (2019).
pubmed: 30346879
doi: 10.1080/15384047.2018.1529114
Sethi, S., Macoska, J., Chen, W. & Sarkar, F. H. Molecular signature of epithelial-mesenchymal transition (EMT) in human prostate cancer bone metastasis. Am. J. Transl. Res. 3, 90–99 (2010).
pubmed: 21139809
pmcid: 2981429
Ustach, C. V. et al. A novel signaling axis of matriptase/PDGF-D/ß-PDGFR in human prostate cancer. Cancer Res. 70, 9631–9640 (2010).
pubmed: 21098708
pmcid: 3058856
doi: 10.1158/0008-5472.CAN-10-0511
Yang, Y. et al. Application and interpretation of current autophagy inhibitors and activators. Acta Pharmacol. Sin. 34, 625–635 (2013).
pubmed: 23524572
pmcid: 4002883
doi: 10.1038/aps.2013.5
Levy, J. M. M., Towers, C. G. & Thorburn, A. Targeting autophagy in cancer. Nat. Rev. Cancer 17, 528–542 (2017).
pubmed: 28751651
doi: 10.1038/nrc.2017.53
Zong, W. X. & Thompson, C. B. Necrotic death as a cell fate. Genes Dev. 20, 1–15 (2006).
pubmed: 16391229
doi: 10.1101/gad.1376506
Hata, A. N., Engelman, J. A. & Faber, A. C. The BCL2 family: key mediators of the apoptotic response to targeted anticancer therapeutics. Cancer Discov. 5, 475–487 (2015).
pubmed: 25895919
pmcid: 4727530
doi: 10.1158/2159-8290.CD-15-0011
Carneiro, B. A. & El-Deiry, W. S. Targeting apoptosis in cancer therapy. Nat. Rev. Clin. Oncol. 17, 395–417 (2020).
pubmed: 32203277
pmcid: 8211386
doi: 10.1038/s41571-020-0341-y
Pistritto, G., Trisciuoglio, D. & Ceci, C. Apoptosis as anticancer mechanism: Function and dysfunction of its modulators and targeted therapeutic strategies. Aging 8, 603–619 (2016).
pubmed: 27019364
pmcid: 4925817
doi: 10.18632/aging.100934
Ledgerwood, E. C. & Morison, I. M. Targeting the apoptosome for cancer therapy. Clin. cancer Res. 15, 420–424 (2009).
pubmed: 19147745
doi: 10.1158/1078-0432.CCR-08-1172
Jin, Z. & El-Deiry, W. S. Overview of cell death signaling pathways. Cancer Biol. Ther. 4, 139–163 (2005).
pubmed: 15725726
doi: 10.4161/cbt.4.2.1508
Letai, A. G. Diagnosing and exploiting cancer’s addiction to blocks in apoptosis. Nat. Rev. Cancer 8, 121–132 (2008).
pubmed: 18202696
doi: 10.1038/nrc2297
Hu, W. & Kavanagh, J. J. Anticancer therapy targeting the apoptotic pathway. Lancet Oncol. 4, 721–729 (2003).
pubmed: 14662428
doi: 10.1016/S1470-2045(03)01277-4
Delbridge, A. R. D., Grabow, S., Strasser, A. & Vaux, D. L. Thirty years of BCL-2: translating cell death discoveries into novel cancer therapies. Nat. Rev. Cancer 16, 99–109 (2016).
pubmed: 26822577
doi: 10.1038/nrc.2015.17
Adams, J. M. & Cory, S. The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 26, 1324–1337 (2007).
pubmed: 17322918
pmcid: 2930981
doi: 10.1038/sj.onc.1210220
Boise, L. H. et al. bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 74, 597–608 (1993).
pubmed: 8358789
doi: 10.1016/0092-8674(93)90508-N
Lee, E. F. & Fairlie, W. D. The Structural Biology of Bcl-x(L). Int. J. Mol. Sci. 20, 2234 (2019).
Li, M., Wang, D., He, J., Chen, L. & Li, H. Bcl-X(L): a multifunctional anti-apoptotic protein. Pharmacol. Res. 151, 104547 (2020).
pubmed: 31734345
doi: 10.1016/j.phrs.2019.104547
Singh, R., Letai, A. & Sarosiek, K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat. Rev. Mol. Cell Biol. 20, 175–193 (2019).
pubmed: 30655609
pmcid: 7325303
doi: 10.1038/s41580-018-0089-8
Oltersdorf, T. et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435, 677–681 (2005).
pubmed: 15902208
doi: 10.1038/nature03579
Vo, T.-T. & Letai, A. BH3-only proteins and their effects on cancer. Adv. Exp. Med. Biol. 687, 49–63 (2010).
pubmed: 20919637
pmcid: 3733261
doi: 10.1007/978-1-4419-6706-0_3
Letai, A. et al. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2, 183–192 (2002).
pubmed: 12242151
doi: 10.1016/S1535-6108(02)00127-7
Huang, D. C. & Strasser, A. BH3-Only proteins-essential initiators of apoptotic cell death. Cell 103, 839–842 (2000).
pubmed: 11136969
doi: 10.1016/S0092-8674(00)00187-2
Siddiqui, W. A., Ahad, A. & Ahsan, H. The mystery of BCL2 family: Bcl-2 proteins and apoptosis: an update. Arch. Toxicol. 89, 289–317 (2015).
pubmed: 25618543
doi: 10.1007/s00204-014-1448-7
Qian, S. et al. The role of BCL-2 family proteins in regulating apoptosis and cancer therapy. Front. Oncol. 12, 985363 (2022).
pubmed: 36313628
pmcid: 9597512
doi: 10.3389/fonc.2022.985363
Mohammad, R. M. et al. Broad targeting of resistance to apoptosis in cancer. Semin. Cancer Biol. 35, S78–S103 (2015).
pubmed: 25936818
pmcid: 4720504
doi: 10.1016/j.semcancer.2015.03.001
Schott, A. F., Apel, I. J., Nuñez, G. & Clarke, M. F. Bcl-XL protects cancer cells from p53-mediated apoptosis. Oncogene 11, 1389–1394 (1995).
pubmed: 7478561
Dole, M. G. et al. Bcl-xL is expressed in neuroblastoma cells and modulates chemotherapy-induced apoptosis. Cancer Res. 55, 2576–2582 (1995).
pubmed: 7780971
Jin-Song, Y. et al. Prognostic significance of Bcl-xL gene expression in human colorectal cancer. Acta Histochem. 113, 810–814 (2011).
pubmed: 21277008
doi: 10.1016/j.acthis.2011.01.002
Kondo, S. et al. Over-expression of bcl-xL gene in human gastric adenomas and carcinomas. Int. J. cancer 68, 727–730 (1996).
pubmed: 8980174
doi: 10.1002/(SICI)1097-0215(19961211)68:6<727::AID-IJC6>3.0.CO;2-5
Bouchalova, K. et al. Triple negative breast cancer - BCL2 in prognosis and prediction. Review. Curr. Drug Targets 15, 1166–1175 (2014).
pubmed: 25374001
doi: 10.2174/1389450115666141106151143
Cartron, P.-F. et al. The first alpha helix of Bax plays a necessary role in its ligand-induced activation by the BH3-only proteins Bid and PUMA. Mol. Cell 16, 807–818 (2004).
pubmed: 15574335
doi: 10.1016/j.molcel.2004.10.028
Lalier, L. et al. Bax activation and mitochondrial insertion during apoptosis. Apoptosis 12, 887–896 (2007).
pubmed: 17453158
doi: 10.1007/s10495-007-0749-1
Hantusch, A., Das, K. K., García-Sáez, A. J., Brunner, T. & Rehm, M. Bax retrotranslocation potentiates Bcl-x(L)’s antiapoptotic activity and is essential for switch-like transitions between MOMP competency and resistance. Cell Death Dis. 9, 430 (2018).
pubmed: 29567940
pmcid: 5864878
doi: 10.1038/s41419-018-0464-6
McArthur, K. et al. BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis. Science 359, eaao6047 (2018).
pubmed: 29472455
doi: 10.1126/science.aao6047
Igney, F. H. & Krammer, P. H. Death and anti-death: tumour resistance to apoptosis. Nat. Rev. Cancer 2, 277–288 (2002).
pubmed: 12001989
doi: 10.1038/nrc776
Pietrantonio, F. et al. Role of BAX for outcome prediction in gastrointestinal malignancies. Med. Oncol. 30, 610 (2013).
pubmed: 23700226
doi: 10.1007/s12032-013-0610-z
Rampino, N. et al. Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science 275, 967–969 (1997).
pubmed: 9020077
doi: 10.1126/science.275.5302.967
Meijerink, J. P. et al. Hematopoietic malignancies demonstrate loss-of-function mutations of BAX. Blood 91, 2991–2997 (1998).
pubmed: 9531611
doi: 10.1182/blood.V91.8.2991.2991_2991_2997
Perego, P. et al. Association between cisplatin resistance and mutation of p53 gene and reduced bax expression in ovarian carcinoma cell systems. Cancer Res. 56, 556–562 (1996).
pubmed: 8564971
Manoochehri, M., Karbasi, A., Bandehpour, M. & Kazemi, B. Down-regulation of BAX gene during carcinogenesis and acquisition of resistance to 5-FU in colorectal cancer. Pathol. Oncol. Res. 20, 301–307 (2014).
pubmed: 24122668
doi: 10.1007/s12253-013-9695-0
Aoyagi, T. et al. Lung cancer cell line sensitivity to zoledronic acid is BAX-dependent. Anticancer Res. 33, 5357–5363 (2013).
pubmed: 24324070
Liu, Z. et al. Direct activation of Bax protein for cancer therapy. Med. Res. Rev. 36, 313–341 (2016).
pubmed: 26395559
doi: 10.1002/med.21379
Kubo, T. et al. BAK is a predictive and prognostic biomarker for the therapeutic effect of docetaxel treatment in patients with advanced gastric cancer. Gastric Cancer 19, 827–838 (2016).
pubmed: 26486506
doi: 10.1007/s10120-015-0557-1
Srivastava, A. et al. BAX-BAK heterodimer as a pharmacodynamic biomarker of on-target drug action of Mcl-1 inhibitors to evaluate in-vivo effectiveness. JCO 36, 2582–2582 (2018).
doi: 10.1200/JCO.2018.36.15_suppl.2582
de Duve, C., Pressman, B. C., Gianetto, R., Wattiaux, R. & Appelmans, F. Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue. Biochem. J. 60, 604–617 (1955).
pubmed: 13249955
pmcid: 1216159
doi: 10.1042/bj0600604
Klionsky, D. J. Autophagy: from phenomenology to molecular understanding in less than a decade. Nat. Rev. Mol. Cell Biol. 8, 931–937 (2007).
pubmed: 17712358
doi: 10.1038/nrm2245
Towers, C. G. & Thorburn, A. Therapeutic targeting of autophagy. EBioMedicine 14, 15–23 (2016).
pubmed: 28029600
pmcid: 5161418
doi: 10.1016/j.ebiom.2016.10.034
Mizushima, N. Autophagy: process and function. Genes Dev. 21, 2861–2873 (2007).
pubmed: 18006683
doi: 10.1101/gad.1599207
Barbeau, L. M. O., Keulers, T. G. H. & Rouschop, K. M. A. Tumors responsive to autophagy-inhibition: Identification and biomarkers. Cancers 12, 1–24 (2020).
doi: 10.3390/cancers12092463
Kroemer, G., Mariño, G. & Levine, B. Autophagy and the integrated stress response. Mol. Cell 40, 280–293 (2010).
pubmed: 20965422
pmcid: 3127250
doi: 10.1016/j.molcel.2010.09.023
Amaravadi, R. K., Kimmelman, A. C. & Debnath, J. Targeting autophagy in cancer: recent advances and future directions. Cancer Discov. 9, 1167–1181 (2019).
pubmed: 31434711
pmcid: 7306856
doi: 10.1158/2159-8290.CD-19-0292
Mathew, R., Karantza-Wadsworth, V. & White, E. Role of autophagy in cancer. Nat. Rev. Cancer 7, 961–967 (2007).
pubmed: 17972889
pmcid: 2866167
doi: 10.1038/nrc2254
Mizushima, N., Yoshimori, T. & Ohsumi, Y. The role of Atg proteins in autophagosome formation. Annu. Rev. Cell Dev. Biol. 27, 107–132 (2011).
pubmed: 21801009
doi: 10.1146/annurev-cellbio-092910-154005
Gao, W., Wang, X., Zhou, Y., Wang, X. & Yu, Y. Autophagy, ferroptosis, pyroptosis, and necroptosis in tumor immunotherapy. Signal Transduct. Target Ther. 7, 196 (2022).
pubmed: 35725836
pmcid: 9208265
doi: 10.1038/s41392-022-01046-3
Long, X. et al. Autophagy-targeted nanoparticles for effective cancer treatment: advances and outlook. NPG Asia Mater. 14, 71 (2022).
doi: 10.1038/s41427-022-00422-3
Liang, X. H. et al. Protection against fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein. J. Virol. 72, 8586–8596 (1998).
pubmed: 9765397
pmcid: 110269
doi: 10.1128/JVI.72.11.8586-8596.1998
Wirawan, E. et al. Beclin1: a role in membrane dynamics and beyond. Autophagy 8, 6–17 (2012).
pubmed: 22170155
doi: 10.4161/auto.8.1.16645
Fu, L. L., Cheng, Y. & Liu, B. Beclin-1: autophagic regulator and therapeutic target in cancer. Int. J. Biochem. Cell Biol. 45, 921–924 (2013).
pubmed: 23420005
doi: 10.1016/j.biocel.2013.02.007
Mei, Y. et al. Conformational flexibility enables the function of a BECN1 region essential for starvation-mediated Autophagy. Biochemistry 55, 1945–1958 (2016).
pubmed: 26937551
doi: 10.1021/acs.biochem.5b01264
Li, X. et al. Imperfect interface of Beclin1 coiled-coil domain regulates homodimer and heterodimer formation with Atg14L and UVRAG. Nat. Commun. 3, 662 (2012).
pubmed: 22314358
doi: 10.1038/ncomms1648
Liang, X. H., Yu, J., Brown, K. & Levine, B. Beclin 1 contains a leucine-rich nuclear export signal that is required for its autophagy and tumor suppressor function. Cancer Res. 61, 3443–3449 (2001).
pubmed: 11309306
Khan, T. et al. Autophagy modulators for the treatment of oral and esophageal squamous cell carcinomas. Med. Res. Rev. 40, 1002–1060 (2020).
pubmed: 31742748
doi: 10.1002/med.21646
Xiang, H. et al. Targeting autophagy-related protein kinases for potential therapeutic purpose. Acta Pharm. Sin. B 10, 569–581 (2020).
pubmed: 32322463
doi: 10.1016/j.apsb.2019.10.003
Cao, Y. & Klionsky, D. J. Physiological functions of Atg6/Beclin 1: a unique autophagy-related protein. Cell Res. 17, 839–849 (2007).
pubmed: 17893711
doi: 10.1038/cr.2007.78
Tran, S., Fairlie, W. D. & Lee, E. F. Beclin1: protein structure, function and regulation. Cells 10, 1522 (2021).
pubmed: 34204202
pmcid: 8235419
doi: 10.3390/cells10061522
Vega-Rubín-de-Celis, S. The role of Beclin 1-dependent autophagy in cancer. Biology 9, 4 (2019).
pubmed: 31877888
pmcid: 7168252
doi: 10.3390/biology9010004
Zhou, W.-H. et al. Low expression of Beclin 1, associated with high Bcl-xL, predicts a malignant phenotype and poor prognosis of gastric cancer. Autophagy 8, 389–400 (2012).
pubmed: 22240664
doi: 10.4161/auto.18641
Liang, X. H. et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402, 672–676 (1999).
pubmed: 10604474
doi: 10.1038/45257
Park, J. M., Huang, S., Wu, T. T., Foster, N. R. & Sinicrope, F. A. Prognostic impact of Beclin 1, p62/sequestosome 1 and LC3 protein expression in colon carcinomas from patients receiving 5-fluorouracil as adjuvant chemotherapy. Cancer Biol. Ther. 14, 100–107 (2013).
pubmed: 23192274
pmcid: 3571991
doi: 10.4161/cbt.22954
Han, Y. et al. Prognostic significance of Beclin-1 expression in colorectal cancer: a meta-analysis. Asian Pac. J. Cancer Prev. 15, 4583–4587 (2014).
pubmed: 24969889
doi: 10.7314/APJCP.2014.15.11.4583
He, Y. et al. The prognostic value of autophagy-related markers beclin-1 and microtubule-associated protein light chain 3B in cancers: a systematic review and meta-analysis. Tumour Biol. 35, 7317–7326 (2014).
pubmed: 24838948
doi: 10.1007/s13277-014-2060-4
Hwang, H. J. & Kim, Y. K. The role of LC3B in autophagy as an RNA-binding protein. Autophagy 19, 1028–1030 (2023).
pubmed: 35968566
doi: 10.1080/15548627.2022.2111083
Bhutia, S. K. et al. Monitoring and measuring mammalian autophagy. Methods Mol. Biol. 1854, 209–222 (2019).
pubmed: 29855817
doi: 10.1007/7651_2018_159
Bortnik, S. & Gorski, S. M. Clinical applications of autophagy proteins in cancer: from potential targets to biomarkers. Int. J. Mol. Sci. 18, 1496 (2017).
pubmed: 28696368
pmcid: 5535986
doi: 10.3390/ijms18071496
Masuda, G. O. et al. Clinicopathological correlations of autophagy-related proteins LC3, Beclin 1 and p62 in gastric cancer. Anticancer Res. 36, 129–136 (2016).
pubmed: 26722036
Guo, G.-F. et al. Predictive and prognostic implications of 4E-BP1, Beclin-1, and LC3 for cetuximab treatment combined with chemotherapy in advanced colorectal cancer with wild-type KRAS: analysis from real-world data. World J. Gastroenterol. 25, 1840–1853 (2019).
pubmed: 31057298
pmcid: 6478617
doi: 10.3748/wjg.v25.i15.1840
Zhao, H. et al. High expression of LC3B is associated with progression and poor outcome in triple-negative breast cancer. Med. Oncol. 30, 475 (2013).
pubmed: 23371253
doi: 10.1007/s12032-013-0475-1
Lazova, R. et al. Punctate LC3B expression is a common feature of solid tumors and associated with proliferation, metastasis, and poor outcome. Clin. Cancer Res. 18, 370–379 (2012).
pubmed: 22080440
doi: 10.1158/1078-0432.CCR-11-1282
Winardi, D. et al. Correlation of altered expression of the autophagy marker LC3B with poor prognosis in astrocytoma. Biomed. Res. Int. 2014, 723176 (2014).
pubmed: 24900981
pmcid: 4036717
doi: 10.1155/2014/723176
El-Mashed, S. et al. LC3B globular structures correlate with survival in esophageal adenocarcinoma. BMC Cancer 15, 582 (2015).
pubmed: 26265176
pmcid: 4533787
doi: 10.1186/s12885-015-1574-5
Liu, J. L. et al. Prognostic significance of p62/SQSTM1 subcellular localization and LC3B in oral squamous cell carcinoma. Br. J. Cancer 111, 944–954 (2014).
pubmed: 24983366
pmcid: 4150268
doi: 10.1038/bjc.2014.355
Choi, J., Jung, W. & Koo, J. S. Expression of autophagy-related markers beclin-1, light chain 3 A, light chain 3B and p62 according to the molecular subtype of breast cancer. Histopathology 62, 275–286 (2013).
pubmed: 23134379
doi: 10.1111/his.12002
Wu, D.-H. et al. Autophagic LC3B overexpression correlates with malignant progression and predicts a poor prognosis in hepatocellular carcinoma. Tumour Biol. 35, 12225–12233 (2014).
pubmed: 25256671
doi: 10.1007/s13277-014-2531-7
Papinski, D. & Kraft, C. Regulation of autophagy by signaling through the Atg1/ULK1 complex. J. Mol. Biol. 428, 1725–1741 (2016).
pubmed: 27059781
doi: 10.1016/j.jmb.2016.03.030
Jiang, L. et al. Association of the expression of unc-51-Like kinase 1 with lymph node metastasis and survival in patients with esophageal squamous cell carcinoma. Int. J. Clin. Exp. Med. 7, 1349–1354 (2014).
pubmed: 24995094
pmcid: 4073755
Xu, H. et al. UNC51-like kinase 1 as a potential prognostic biomarker for hepatocellular carcinoma. Int. J. Clin. Exp. Pathol. 6, 711–717 (2013).
pubmed: 23573318
pmcid: 3606861
Yun, M. et al. ULK1: a promising biomarker in predicting poor prognosis and therapeutic response in human nasopharygeal carcinoma. PLoS ONE 10, e0117375 (2015).
pubmed: 25714809
pmcid: 4340914
doi: 10.1371/journal.pone.0117375
Zhang, H.-Y., Ma, Y.-D., Zhang, Y., Cui, J. & Wang, Z.-M. Elevated levels of autophagy-related marker ULK1 and mitochondrion-associated autophagy inhibitor LRPPRC are associated with biochemical progression and overall survival after androgen deprivation therapy in patients with metastatic prostate cancer. J. Clin. Pathol. 70, 383–389 (2017).
pubmed: 27679555
doi: 10.1136/jclinpath-2016-203926
Zou, Y. et al. High expression levels of unc-51-like kinase 1 as a predictor of poor prognosis in colorectal cancer. Oncol. Lett. 10, 1583–1588 (2015).
pubmed: 26622714
pmcid: 4533611
doi: 10.3892/ol.2015.3417
Wu, D.-H. et al. Combination of ULK1 and LC3B improve prognosis assessment of hepatocellular carcinoma. Biomed. Pharmacother. 97, 195–202 (2018).
pubmed: 29091866
doi: 10.1016/j.biopha.2017.10.025
Schmitz, K. J., Ademi, C., Bertram, S., Schmid, K. W. & Baba, H. A. Prognostic relevance of autophagy-related markers LC3, p62/sequestosome 1, Beclin-1 and ULK1 in colorectal cancer patients with respect to KRAS mutational status. World J. Surg. Oncol. 14, 189 (2016).
pubmed: 27444698
pmcid: 4957418
doi: 10.1186/s12957-016-0946-x
Tang, J. et al. Low expression of ULK1 is associated with operable breast cancer progression and is an adverse prognostic marker of survival for patients. Breast Cancer Res. Treat. 134, 549–560 (2012).
pubmed: 22585231
doi: 10.1007/s10549-012-2080-y
John Clotaire, D. Z. et al. MiR-26b inhibits autophagy by targeting ULK2 in prostate cancer cells. Biochem. Biophys. Res. Commun. 472, 194–200 (2016).
pubmed: 26920049
doi: 10.1016/j.bbrc.2016.02.093
Moscat, J. & Diaz-Meco, M. T. p62 at the crossroads of autophagy, apoptosis, and cancer. Cell 137, 1001–1004 (2009).
pubmed: 19524504
pmcid: 3971861
doi: 10.1016/j.cell.2009.05.023
Tao, M., Liu, T., You, Q. & Jiang, Z. p62 as a therapeutic target for tumor. Eur. J. Med. Chem. 193, 112231 (2020).
pubmed: 32193054
doi: 10.1016/j.ejmech.2020.112231
Islam, M. A., Sooro, M. A. & Zhang, P. Autophagic regulation of p62 is critical for cancer therapy. Int. J. Mol. Sci. 19, 1405 (2018).
pubmed: 29738493
pmcid: 5983640
doi: 10.3390/ijms19051405
Sanz, L., Sanchez, P., Lallena, M. J., Diaz-Meco, M. T. & Moscat, J. The interaction of p62 with RIP links the atypical PKCs to NF-kappaB activation. EMBO J. 18, 3044–3053 (1999).
pubmed: 10356400
pmcid: 1171386
doi: 10.1093/emboj/18.11.3044
Jadhav, T., Geetha, T., Jiang, J. & Wooten, M. W. Identification of a consensus site for TRAF6/p62 polyubiquitination. Biochem. Biophys. Res. Commun. 371, 521–524 (2008).
pubmed: 18457658
pmcid: 2474794
doi: 10.1016/j.bbrc.2008.04.138
Pankiv, S. et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 282, 24131–24145 (2007).
pubmed: 17580304
doi: 10.1074/jbc.M702824200
Komatsu, M. et al. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat. Cell Biol. 12, 213–223 (2010).
pubmed: 20173742
doi: 10.1038/ncb2021
Moscat, J., Karin, M. & Diaz-Meco, M. T. p62 in cancer: signaling adaptor beyond autophagy. Cell 167, 606–609 (2016).
pubmed: 27768885
pmcid: 5114003
doi: 10.1016/j.cell.2016.09.030
Cohen-Kaplan, V. et al. p62- and ubiquitin-dependent stress-induced autophagy of the mammalian 26 S proteasome. Proc. Natl Acad. Sci. USA 113, E7490–E7499 (2016).
pubmed: 27791183
pmcid: 5127335
doi: 10.1073/pnas.1615455113
Pugsley, H. R. Assessing autophagic flux by measuring LC3, p62, and LAMP1 co-localization using multispectral imaging flow cytometry. J. Vis. Exp. 55637 (2017).
Iwadate, R. et al. High expression of p62 protein Is associated with poor prognosis and aggressive phenotypes in endometrial cancer. Am. J. Pathol. 185, 2523–2533 (2015).
pubmed: 26162509
doi: 10.1016/j.ajpath.2015.05.008
Iwadate, R. et al. High expression of SQSTM1/p62 protein is associated with poor prognosis in epithelial ovarian cancer. Acta Histochem. Cytochem. 47, 295–301 (2014).
pubmed: 25859063
pmcid: 4387266
doi: 10.1267/ahc.14048
Inoue, D. et al. Accumulation of p62/SQSTM1 is associated with poor prognosis in patients with lung adenocarcinoma. Cancer Sci. 103, 760–766 (2012).
pubmed: 22320446
pmcid: 7659245
doi: 10.1111/j.1349-7006.2012.02216.x
Rolland, P. et al. The ubiquitin-binding protein p62 is expressed in breast cancers showing features of aggressive disease. Endocr. Relat. Cancer 14, 73–80 (2007).
pubmed: 17395976
doi: 10.1677/erc.1.01312
Yuan, Z.-Y. et al. Accumulation of p62 is associated with poor prognosis in patients with triple-negative breast cancer. Onco. Targets Ther. 6, 883–888 (2013).
pubmed: 23888115
pmcid: 3722135
doi: 10.2147/OTT.S46222
Su, Z., Yang, Z., Xie, L., Dewitt, J. P. & Chen, Y. Cancer therapy in the necroptosis era. Cell Death Differ. 23, 748–756 (2016).
pubmed: 26915291
pmcid: 4832112
doi: 10.1038/cdd.2016.8
Razaghi, A., Heimann, K., Schaeffer, P. M. & Gibson, S. B. Negative regulators of cell death pathways in cancer: perspective on biomarkers and targeted therapies. Apoptosis 23, 93–112 (2018).
pubmed: 29322476
doi: 10.1007/s10495-018-1440-4
Yu, X., Deng, Q., Bode, A. M., Dong, Z. & Cao, Y. The role of necroptosis, an alternative form of cell death, in cancer therapy. Expert Rev. Anticancer Ther. 13, 883–893 (2013).
pubmed: 23875666
doi: 10.1586/14737140.2013.811180
Xie, Y. et al. Ferroptosis: process and function. Cell Death Differ. 23, 369–379 (2016).
pubmed: 26794443
pmcid: 5072448
doi: 10.1038/cdd.2015.158
He, R., Wang, Z., Dong, S., Chen, Z. & Zhou, W. Understanding necroptosis in pancreatic diseases. Biomolecules 12, 828 (2022).
pubmed: 35740953
pmcid: 9221205
doi: 10.3390/biom12060828
Zhang, L. et al. Tumor necrosis as a prognostic variable for the clinical outcome in patients with renal cell carcinoma: a systematic review and meta-analysis. BMC Cancer 18, 870 (2018).
pubmed: 30176824
pmcid: 6122538
doi: 10.1186/s12885-018-4773-z
Richards, C. H., Mohammed, Z., Qayyum, T., Horgan, P. G. & McMillan, D. C. The prognostic value of histological tumor necrosis in solid organ malignant disease: a systematic review. Futur. Oncol. 7, 1223–1235 (2011).
doi: 10.2217/fon.11.99
Salah, S., Lewin, J., Amir, E. & Abdul Razak, A. Tumor necrosis and clinical outcomes following neoadjuvant therapy in soft tissue sarcoma: a systematic review and meta-analysis. Cancer Treat. Rev. 69, 1–10 (2018).
pubmed: 29843049
doi: 10.1016/j.ctrv.2018.05.007
Ofengeim, D. & Yuan, J. Regulation of RIP1 kinase signalling at the crossroads of inflammation and cell death. Nat. Rev. Mol. Cell Biol. 14, 727–736 (2013).
pubmed: 24129419
doi: 10.1038/nrm3683
Huang, X. et al. Bypassing drug resistance by triggering necroptosis: Recent advances in mechanisms and its therapeutic exploitation in leukemia. J. Exp. Clin. Cancer Res. 37, 310 (2018).
pubmed: 30541583
pmcid: 6291981
doi: 10.1186/s13046-018-0976-z
Cho, Y. S. et al. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137, 1112–1123 (2009).
pubmed: 19524513
pmcid: 2727676
doi: 10.1016/j.cell.2009.05.037
Murphy, J. M. et al. The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. Immunity 39, 443–453 (2013).
pubmed: 24012422
doi: 10.1016/j.immuni.2013.06.018
Lalaoui, N. & Brumatti, G. Relevance of necroptosis in cancer. Immunol. Cell Biol. 95, 137–145 (2017).
pubmed: 27922620
doi: 10.1038/icb.2016.120
Qin, X., Ma, D., Tan, Y.-X., Wang, H.-Y. & Cai, Z. The role of necroptosis in cancer: a double-edged sword? Biochim. Biophys. Acta Rev. Cancer 1871, 259–266 (2019).
pubmed: 30716362
doi: 10.1016/j.bbcan.2019.01.006
Chan, F. K.-M. RIPK3 slams the brake on leukemogenesis. Cancer Cell 30, 7–9 (2016).
pubmed: 27411581
doi: 10.1016/j.ccell.2016.06.017
Höckendorf, U. et al. RIPK3 restricts myeloid leukemogenesis by promoting cell death and differentiation of leukemia initiating cells. Cancer Cell 30, 75–91 (2016).
pubmed: 27411587
doi: 10.1016/j.ccell.2016.06.002
Koo, G. B. et al. Methylation-dependent loss of RIP3 expression in cancer represses programmed necrosis in response to chemotherapeutics. Cell Res. 25, 707–725 (2015).
pubmed: 25952668
pmcid: 4456623
doi: 10.1038/cr.2015.56
Geserick, P. et al. Absence of RIPK3 predicts necroptosis resistance in malignant melanoma. Cell Death Dis. 6, e1884 (2015).
pubmed: 26355347
pmcid: 4650439
doi: 10.1038/cddis.2015.240
Fukasawa, M. et al. Microarray analysis of promoter methylation in lung cancers. J. Hum. Genet. 51, 368–374 (2006).
pubmed: 16435073
doi: 10.1007/s10038-005-0355-4
Moriwaki, K., Bertin, J., Gough, P. J., Orlowski, G. M. & Chan, F. K. M. Differential roles of RIPK1 and RIPK3 in TNF-induced necroptosis and chemotherapeutic agent-induced cell death. Cell Death Dis. 6, e1636 (2015).
pubmed: 25675296
pmcid: 4669795
doi: 10.1038/cddis.2015.16
Bozec, D., Iuga, A. C., Roda, G., Dahan, S. & Yeretssian, G. Critical function of the necroptosis adaptor RIPK3 in protecting from intestinal tumorigenesis. Oncotarget 7, 46384–46400 (2016).
pubmed: 27344176
pmcid: 5216805
doi: 10.18632/oncotarget.10135
Feng, X. et al. Receptor-interacting protein kinase 3 is a predictor of survival and plays a tumor suppressive role in colorectal cancer. Neoplasma 62, 592–601 (2015).
pubmed: 25997957
doi: 10.4149/neo_2015_071
McCabe, K. E. et al. Triggering necroptosis in cisplatin and IAP antagonist-resistant ovarian carcinoma. Cell Death Dis. 5, e1496 (2014).
pubmed: 25356865
pmcid: 4237265
doi: 10.1038/cddis.2014.448
Seifert, L. et al. The necrosome promotes pancreatic oncogenesis via CXCL1 and Mincle-induced immune suppression. Nature 532, 245–249 (2016).
pubmed: 27049944
pmcid: 4833566
doi: 10.1038/nature17403
Liu, Z.-Y. et al. RIP3 promotes colitis-associated colorectal cancer by controlling tumor cell proliferation and CXCL1-induced immune suppression. Theranostics 9, 3659–3673 (2019).
pubmed: 31281505
pmcid: 6587173
doi: 10.7150/thno.32126
Zhan, C., Huang, M., Yang, X. & Hou, J. MLKL: functions beyond serving as the executioner of necroptosis. Theranostics 11, 4759–4769 (2021).
pubmed: 33754026
pmcid: 7978304
doi: 10.7150/thno.54072
Colbert, L. E. et al. Pronecrotic mixed lineage kinase domain-like protein expression is a prognostic biomarker in patients with early-stage resected pancreatic adenocarcinoma. Cancer 119, 3148–3155 (2013).
pubmed: 23720157
doi: 10.1002/cncr.28144
Ertao, Z. et al. Prognostic value of mixed lineage kinase domain-like protein expression in the survival of patients with gastric caner. Tumour Biol. 37, 13679–13685 (2016).
pubmed: 27473085
doi: 10.1007/s13277-016-5229-1
He, L., Peng, K., Liu, Y., Xiong, J. & Zhu, F. F. Low expression of mixed lineage kinase domain-like protein is associated with poor prognosis in ovarian cancer patients. Onco. Targets Ther. 6, 1539–1543 (2013).
pubmed: 24204164
pmcid: 3817086
Ruan, J., Mei, L., Zhu, Q., Shi, G. & Wang, H. Mixed lineage kinase domain-like protein is a prognostic biomarker for cervical squamous cell cancer. Int. J. Clin. Exp. Pathol. 8, 15035–15038 (2015).
pubmed: 26823841
pmcid: 4713627
Li, X. et al. Association of mixed lineage kinase domain-like protein expression with prognosis in patients with colon cancer. Technol. Cancer Res. Treat. 16, 428–434 (2017).
pubmed: 27432118
doi: 10.1177/1533034616655909
Liu, X. et al. Key roles of necroptotic factors in promoting tumor growth. Oncotarget 7, 22219–22233 (2016).
pubmed: 26959742
pmcid: 5008357
doi: 10.18632/oncotarget.7924
Suhail, Y. et al. Systems biology of cancer metastasis. Cell Syst. 9, 109–127 (2019).
pubmed: 31465728
pmcid: 6716621
doi: 10.1016/j.cels.2019.07.003
Gupta, G. P. & Massagué, J. Cancer metastasis: building a framework. Cell 127, 679–695 (2006).
pubmed: 17110329
doi: 10.1016/j.cell.2006.11.001
Steeg, P. S. Tumor metastasis: mechanistic insights and clinical challenges. Nat. Med. 12, 895–904 (2006).
pubmed: 16892035
doi: 10.1038/nm1469
Fares, J., Fares, M. Y., Khachfe, H. H., Salhab, H. A. & Fares, Y. Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduct. Target Ther. 5, 28 (2020).
pubmed: 32296047
pmcid: 7067809
doi: 10.1038/s41392-020-0134-x
Maishi, N. & Hida, K. Tumor endothelial cells accelerate tumor metastasis. Cancer Sci. 108, 1921–1926 (2017).
pubmed: 28763139
pmcid: 5623747
doi: 10.1111/cas.13336
Paget, S. The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev. 8, 98–101 (1989).
pubmed: 2673568
Liu, Q. et al. Factors involved in cancer metastasis: a better understanding to ‘seed and soil’ hypothesis. Mol. Cancer 16, 176 (2017).
pubmed: 29197379
pmcid: 5712107
doi: 10.1186/s12943-017-0742-4
Curran, S. & Murray, G. I. Matrix metalloproteinases: molecular aspects of their roles in tumour invasion and metastasis. Eur. J. Cancer 36, 1621–1630 (2000).
pubmed: 10959048
doi: 10.1016/S0959-8049(00)00156-8
Steeg, P. S. Targeting metastasis. Nat. Rev. Cancer 16, 201–218 (2016).
pubmed: 27009393
pmcid: 7055530
doi: 10.1038/nrc.2016.25
Ma, B., Wells, A. & Clark, A. M. The pan-therapeutic resistance of disseminated tumor cells: role of phenotypic plasticity and the metastatic microenvironment. Semin. Cancer Biol. 60, 138–147 (2020).
pubmed: 31376430
doi: 10.1016/j.semcancer.2019.07.021
Howard, E. W., Camm, K. D., Wong, Y. C. & Wang, X. H. E-cadherin upregulation as a therapeutic goal in cancer treatment. Mini Rev. Med. Chem. 8, 496–518 (2008).
pubmed: 18473938
doi: 10.2174/138955708784223521
Hazan, R. B., Qiao, R., Keren, R., Badano, I. & Suyama, K. Cadherin switch in tumor progression. Ann. N. Y. Acad. Sci. 1014, 155–163 (2004).
pubmed: 15153430
doi: 10.1196/annals.1294.016
Wijnhoven, B. P., Dinjens, W. N. & Pignatelli, M. E-cadherin-catenin cell-cell adhesion complex and human cancer. Br. J. Surg. 87, 992–1005 (2000).
pubmed: 10931041
doi: 10.1046/j.1365-2168.2000.01513.x
Beavon, I. R. The E-cadherin-catenin complex in tumour metastasis: structure, function and regulation. Eur. J. Cancer 36, 1607–1620 (2000).
pubmed: 10959047
doi: 10.1016/S0959-8049(00)00158-1
Steinberg, M. S. & McNutt, P. M. Cadherins and their connections: adhesion junctions have broader functions. Curr. Opin. Cell Biol. 11, 554–560 (1999).
pubmed: 10508659
doi: 10.1016/S0955-0674(99)00027-7
Venhuizen, J.-H., Jacobs, F. J. C., Span, P. N. & Zegers, M. M. P120 and E-cadherin: double-edged swords in tumor metastasis. Semin. Cancer Biol. 60, 107–120 (2020).
pubmed: 31369816
doi: 10.1016/j.semcancer.2019.07.020
Schmalhofer, O., Brabletz, S. & Brabletz, T. E-cadherin, beta-catenin, and ZEB1 in malignant progression of cancer. Cancer Metastasis Rev. 28, 151–166 (2009).
pubmed: 19153669
doi: 10.1007/s10555-008-9179-y
Yilmaz, M., Christofori, G. & Lehembre, F. Distinct mechanisms of tumor invasion and metastasis. Trends Mol. Med. 13, 535–541 (2007).
pubmed: 17981506
doi: 10.1016/j.molmed.2007.10.004
Thiery, J. P. Epithelial-mesenchymal transitions in tumour progression. Nat. Rev. Cancer 2, 442–454 (2002).
pubmed: 12189386
doi: 10.1038/nrc822
Christofori, G. & Semb, H. The role of the cell-adhesion molecule E-cadherin as a tumour-suppressor gene. Trends Biochem. Sci. 24, 73–76 (1999).
pubmed: 10098402
doi: 10.1016/S0968-0004(98)01343-7
Fearon, E. R. Connecting estrogen receptor function, transcriptional repression, and E-cadherin expression in breast cancer. Cancer Cell 3, 307–310 (2003).
pubmed: 12726856
doi: 10.1016/S1535-6108(03)00087-4
Karayiannakis, A. J. et al. Aberrant E-cadherin expression associated with loss of differentiation and advanced stage in human pancreatic cancer. Anticancer Res. 18, 4177–4180 (1998).
pubmed: 9891464
Pignatelli, M. et al. Loss of membranous E-cadherin expression in pancreatic cancer: correlation with lymph node metastasis, high grade, and advanced stage. J. Pathol. 174, 243–248 (1994).
pubmed: 7884585
doi: 10.1002/path.1711740403
Van Aken, J. et al. Immunohistochemical analysis of E-cadherin expression in human colorectal tumours. Pathol. Res. Pract. 189, 975–978 (1993).
pubmed: 8302730
doi: 10.1016/S0344-0338(11)80667-9
Mayer, B. et al. E-cadherin expression in primary and metastatic gastric cancer: down-regulation correlates with cellular dedifferentiation and glandular disintegration. Cancer Res. 53, 1690–1695 (1993).
pubmed: 8453643
Chetty, R., Serra, S. & Asa, S. L. Loss of membrane localization and aberrant nuclear E-cadherin expression correlates with invasion in pancreatic endocrine tumors. Am. J. Surg. Pathol. 32, 413–419 (2008).
pubmed: 18300809
doi: 10.1097/PAS.0b013e31813547f8
Kadowaki, T. et al. E-cadherin and alpha-catenin expression in human esophageal cancer. Cancer Res. 54, 291–296 (1994).
pubmed: 8261454
Slagle, B. L., Zhou, Y. Z., Birchmeier, W. & Scorsone, K. A. Deletion of the E-cadherin gene in hepatitis B virus-positive Chinese hepatocellular carcinomas. Hepatology 18, 757–762 (1993).
pubmed: 8104855
doi: 10.1002/hep.1840180402
Bremnes, R. M., Veve, R., Hirsch, F. R. & Franklin, W. A. The E-cadherin cell-cell adhesion complex and lung cancer invasion, metastasis, and prognosis. Lung Cancer 36, 115–124 (2002).
pubmed: 11955645
doi: 10.1016/S0169-5002(01)00471-8
Otto, T. et al. Inverse relation of E-cadherin and autocrine motility factor receptor expression as a prognostic factor in patients with bladder carcinomas. Cancer Res. 54, 3120–3123 (1994).
pubmed: 8205527
Morton, R. A., Ewing, C. M., Nagafuchi, A., Tsukita, S. & Isaacs, W. B. Reduction of E-cadherin levels and deletion of the alpha-catenin gene in human prostate cancer cells. Cancer Res. 53, 3585–3590 (1993).
pubmed: 8339265
Umbas, R. et al. Expression of the cellular adhesion molecule E-cadherin is reduced or absent in high-grade prostate cancer. Cancer Res. 52, 5104–5109 (1992).
pubmed: 1516067
Rasbridge, S. A., Gillett, C. E., Sampson, S. A., Walsh, F. S. & Millis, R. R. Epithelial (E-) and placental (P-) cadherin cell adhesion molecule expression in breast carcinoma. J. Pathol. 169, 245–250 (1993).
pubmed: 8383197
doi: 10.1002/path.1711690211
Saito, T., Nishimura, M., Yamasaki, H. & Kudo, R. Hypermethylation in promoter region of E-cadherin gene is associated with tumor dedifferention and myometrial invasion in endometrial carcinoma. Cancer 97, 1002–1009 (2003).
pubmed: 12569599
doi: 10.1002/cncr.11157
Veatch, A. L., Carson, L. F. & Ramakrishnan, S. Differential expression of the cell-cell adhesion molecule E-cadherin in ascites and solid human ovarian tumor cells. Int. J. Cancer 58, 393–399 (1994).
pubmed: 7519585
doi: 10.1002/ijc.2910580315
Brabant, G. et al. E-cadherin: a differentiation marker in thyroid malignancies. Cancer Res. 53, 4987–4993 (1993).
pubmed: 8402689
Kurtz, K. A., Hoffman, H. T., Zimmerman, M. B. & Robinson, R. A. Decreased E-cadherin but not beta-catenin expression is associated with vascular invasion and decreased survival in head and neck squamous carcinomas. Otolaryngol. Head Neck Surg. 134, 142–146 (2006).
pubmed: 16399195
doi: 10.1016/j.otohns.2005.08.026
Puisieux, A., Brabletz, T. & Caramel, J. Oncogenic roles of EMT-inducing transcription factors. Nat. Cell Biol. 16, 488–494 (2014).
pubmed: 24875735
doi: 10.1038/ncb2976
Serrano-Gomez, S. J., Maziveyi, M. & Alahari, S. K. Regulation of epithelial-mesenchymal transition through epigenetic and post-translational modifications. Mol. Cancer 15, 18 (2016).
pubmed: 26905733
pmcid: 4765192
doi: 10.1186/s12943-016-0502-x
Dong, C. et al. Loss of FBP1 by Snail-mediated repression provides metabolic advantages in basal-like breast cancer. Cancer Cell 23, 316–331 (2013).
pubmed: 23453623
pmcid: 3703516
doi: 10.1016/j.ccr.2013.01.022
Debnath, P., Huirem, R. S., Dutta, P. & Palchaudhuri, S. Epithelial-mesenchymal transition and its transcription factors. Biosci. Rep. 42, BSR20211754 (2022).
pubmed: 34708244
doi: 10.1042/BSR20211754
Lu, W. & Kang, Y. Epithelial-mesenchymal plasticity in cancer progression and metastasis. Dev. Cell 49, 361–374 (2019).
pubmed: 31063755
pmcid: 6506183
doi: 10.1016/j.devcel.2019.04.010
Stemmler, M. P., Eccles, R. L., Brabletz, S. & Brabletz, T. Non-redundant functions of EMT transcription factors. Nat. Cell Biol. 21, 102–112 (2019).
pubmed: 30602760
doi: 10.1038/s41556-018-0196-y
Pearlman, R. L., Montes de Oca, M. K., Pal, H. C. & Afaq, F. Potential therapeutic targets of epithelial-mesenchymal transition in melanoma. Cancer Lett. 391, 125–140 (2017).
pubmed: 28131904
pmcid: 5371401
doi: 10.1016/j.canlet.2017.01.029
Sánchez-Tilló, E. et al. EMT-activating transcription factors in cancer: Beyond EMT and tumor invasiveness. Cell Mol. Life Sci. 69, 3429–3456 (2012).
pubmed: 22945800
doi: 10.1007/s00018-012-1122-2
Brabletz, S., Schuhwerk, H., Brabletz, T. & Stemmler, M. P. Dynamic EMT: a multi-tool for tumor progression. EMBO J. 40, e108647 (2021).
pubmed: 34459003
pmcid: 8441439
doi: 10.15252/embj.2021108647
Zhang, Z. et al. Genomics and prognosis analysis of epithelial-mesenchymal transition in colorectal cancer patients. BMC Cancer 20, 1135 (2020).
pubmed: 33228590
pmcid: 7686680
doi: 10.1186/s12885-020-07615-5
Matysiak, M., Kapka-Skrzypczak, L., Jodłowska-Jędrych, B. & Kruszewski, M. EMT promoting transcription factors as prognostic markers in human breast cancer. Arch. Gynecol. Obstet. 295, 817–825 (2017).
pubmed: 28190105
doi: 10.1007/s00404-017-4304-1
Goossens, S., Vandamme, N., Van Vlierberghe, P. & Berx, G. EMT transcription factors in cancer development re-evaluated: Beyond EMT and MET. Biochim. Biophys. Acta Rev. Cancer 1868, 584–591 (2017).
pubmed: 28669750
doi: 10.1016/j.bbcan.2017.06.006
Ng, L., Poon, R. T. P. & Pang, R. Biomarkers for predicting future metastasis of human gastrointestinal tumors. Cell Mol. Life Sci. 70, 3631–3656 (2013).
pubmed: 23370778
doi: 10.1007/s00018-013-1266-8
Ansieau, S. et al. Induction of EMT by twist proteins as a collateral effect of tumor-promoting inactivation of premature senescence. Cancer Cell 14, 79–89 (2008).
pubmed: 18598946
doi: 10.1016/j.ccr.2008.06.005
Yang, J. et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117, 927–939 (2004).
pubmed: 15210113
doi: 10.1016/j.cell.2004.06.006
Khales, S. A., Mozaffari-Jovin, S., Geerts, D. & Abbaszadegan, M. R. TWIST1 activates cancer stem cell marker genes to promote epithelial-mesenchymal transition and tumorigenesis in esophageal squamous cell carcinoma. BMC Cancer 22, 1272 (2022).
pubmed: 36474162
pmcid: 9724315
doi: 10.1186/s12885-022-10252-9
Sepporta, M.-V. et al. TWIST1 expression is associated with high-risk neuroblastoma and promotes primary and metastatic tumor growth. Commun. Biol. 5, 42 (2022).
pubmed: 35022561
pmcid: 8755726
doi: 10.1038/s42003-021-02958-6
Xiong, H. et al. Twist1 enhances hypoxia induced radioresistance in cervical cancer cells by promoting nuclear EGFR localization. J. Cancer 8, 345–353 (2017).
pubmed: 28261334
pmcid: 5332884
doi: 10.7150/jca.16607
Ohba, K. et al. High expression of twist is associated with tumor aggressiveness and poor prognosis in patients with renal cell carcinoma. Int. J. Clin. Exp. Pathol. 7, 3158–3165 (2014).
pubmed: 25031735
pmcid: 4097249
Norozi, F., Ahmadzadeh, A., Shahjahani, M., Shahrabi, S. & Saki, N. Twist as a new prognostic marker in hematological malignancies. Clin. Transl. Oncol. 18, 113–124 (2016).
pubmed: 26203802
doi: 10.1007/s12094-015-1357-0
Nieto, M. A. The snail superfamily of zinc-finger transcription factors. Nat. Rev. Mol. Cell Biol. 3, 155–166 (2002).
pubmed: 11994736
doi: 10.1038/nrm757
Nüsslein-Volhard, C., Wieschaus, E. & Kluding, H. Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster: I. Zygotic loci on the second chromosome. Wilhelm. Roux’s Arch. Dev. Biol. 193, 267–282 (1984).
doi: 10.1007/BF00848156
Wang, Y., Shi, J., Chai, K., Ying, X. & Zhou, B. P. The role of Snail in EMT and tumorigenesis. Curr. Cancer Drug Targets 13, 963–972 (2013).
pubmed: 24168186
pmcid: 4004763
doi: 10.2174/15680096113136660102
Tran, H. D. et al. Transient SNAIL1 expression is necessary for metastatic competence in breast cancer. Cancer Res. 74, 6330–6340 (2014).
pubmed: 25164016
pmcid: 4925010
doi: 10.1158/0008-5472.CAN-14-0923
De Craene, B. et al. The transcription factor snail induces tumor cell invasion through modulation of the epithelial cell differentiation program. Cancer Res. 65, 6237–6244 (2005).
pubmed: 16024625
doi: 10.1158/0008-5472.CAN-04-3545
Zhang, M., Dong, X., Zhang, D., Chen, X. & Zhu, X. High expression of Snail and NF-κB predicts poor survival in Chinese hepatocellular carcinoma patients. Oncotarget 8, 4543–4548 (2017).
pubmed: 27965464
doi: 10.18632/oncotarget.13891
Kosaka, T. et al. Expression of snail in upper urinary tract urothelial carcinoma: prognostic significance and implications for tumor invasion. Clin. Cancer Res. 16, 5814–5823 (2010).
pubmed: 20947514
doi: 10.1158/1078-0432.CCR-10-0230
Shioiri, M. et al. Slug expression is an independent prognostic parameter for poor survival in colorectal carcinoma patients. Br. J. Cancer 94, 1816–1822 (2006).
pubmed: 16773075
pmcid: 2361350
doi: 10.1038/sj.bjc.6603193
XU, S. et al. Expression of twist, slug and snail in esophageal squamous cell carcinoma and their prognostic significance. Oncol. Lett. 21, 184 (2021).
Vandewalle, C., Van Roy, F. & Berx, G. The role of the ZEB family of transcription factors in development and disease. Cell. Mol. Life Sci. 66, 773–787 (2009).
pubmed: 19011757
doi: 10.1007/s00018-008-8465-8
Brabletz, S. & Brabletz, T. The ZEB/miR-200 feedback loop–a motor of cellular plasticity in development and cancer? EMBO Rep. 11, 670–677 (2010).
pubmed: 20706219
pmcid: 2933868
doi: 10.1038/embor.2010.117
Krebs, A. M. et al. The EMT-activator Zeb1 is a key factor for cell plasticity and promotes metastasis in pancreatic cancer. Nat. Cell Biol. 19, 518–529 (2017).
pubmed: 28414315
doi: 10.1038/ncb3513
Zhang, P., Sun, Y. & Ma, L. ZEB1: at the crossroads of epithelial-mesenchymal transition, metastasis and therapy resistance. Cell Cycle 14, 481–487 (2015).
pubmed: 25607528
pmcid: 4614883
doi: 10.1080/15384101.2015.1006048
Galván, J. A. et al. Expression of E-cadherin repressors SNAIL, ZEB1 and ZEB2 by tumour and stromal cells influences tumour-budding phenotype and suggests heterogeneity of stromal cells in pancreatic cancer. Br. J. Cancer 112, 1944–1950 (2015).
pubmed: 25989272
pmcid: 4580384
doi: 10.1038/bjc.2015.177
Sangrador, I. et al. Zeb1 in stromal myofibroblasts promotes Kras-driven development of pancreatic cancer. Cancer Res. 78, 2624–2637 (2018).
pubmed: 29490942
doi: 10.1158/0008-5472.CAN-17-1882
Zawati, I. et al. Association of ZEB1 and Vimentin with poor prognosis in metaplastic breast cancer. Ann. Diagn. Pathol. 59, 151954 (2022).
pubmed: 35523002
doi: 10.1016/j.anndiagpath.2022.151954
Hegarty, S. V., Sullivan, A. M. & O’Keeffe, G. W. Zeb2: a multifunctional regulator of nervous system development. Prog. Neurobiol. 132, 81–95 (2015).
pubmed: 26193487
doi: 10.1016/j.pneurobio.2015.07.001
Kang, Y. & Massagué, J. Epithelial-mesenchymal transitions: twist in development and metastasis. Cell 118, 277–279 (2004).
pubmed: 15294153
doi: 10.1016/j.cell.2004.07.011
Burks, H. E. et al. ZEB2 regulates endocrine therapy sensitivity and metastasis in luminal a breast cancer cells through a non-canonical mechanism. Breast Cancer Res. Treat. 189, 25–37 (2021).
pubmed: 34231077
doi: 10.1007/s10549-021-06256-x
Li, N. et al. An FBXW7-ZEB2 axis links EMT and tumour microenvironment to promote colorectal cancer stem cells and chemoresistance. Oncogenesis 8, 13 (2019).
pubmed: 30783098
pmcid: 6381143
doi: 10.1038/s41389-019-0125-3
Maeda, G. et al. Expression of SIP1 in oral squamous cell carcinomas: implications for E-cadherin expression and tumor progression. Int. J. Oncol. 27, 1535–1541 (2005).
pubmed: 16273209
Birchmeier, C., Birchmeier, W., Gherardi, E. & Vande Woude, G. F. Met, metastasis, motility and more. Nat. Rev. Mol. Cell Biol. 4, 915–925 (2003).
pubmed: 14685170
doi: 10.1038/nrm1261
Cooper, C. S. et al. Molecular cloning of a new transforming gene from a chemically transformed human cell line. Nature 311, 29–33 (1984).
pubmed: 6590967
doi: 10.1038/311029a0
Bradley, C. A. et al. Targeting c-MET in gastrointestinal tumours: rationale, opportunities and challenges. Nat. Rev. Clin. Oncol. 14, 562–576 (2017).
pubmed: 28374784
doi: 10.1038/nrclinonc.2017.40
Faiella, A., Riccardi, F., Cartenì, G., Chiurazzi, M. & Onofrio, L. The emerging role of c-Met in carcinogenesis and clinical implications as a possible therapeutic target. J. Oncol. 2022, 5179182 (2022).
pubmed: 35069735
pmcid: 8776431
doi: 10.1155/2022/5179182
Zou, H. Y. et al. An orally available small-molecule inhibitor of c-Met, PF-2341066, exhibits cytoreductive antitumor efficacy through antiproliferative and antiangiogenic mechanisms. Cancer Res. 67, 4408–4417 (2007).
pubmed: 17483355
doi: 10.1158/0008-5472.CAN-06-4443
Rong, S., Segal, S., Anver, M., Resau, J. H. & Vande Woude, G. F. Invasiveness and metastasis of NIH 3T3 cells induced by Met-hepatocyte growth factor/scatter factor autocrine stimulation. Proc. Natl Acad. Sci. USA 91, 4731–4735 (1994).
pubmed: 8197126
pmcid: 43862
doi: 10.1073/pnas.91.11.4731
Moshitch-Moshkovitz, S. et al. In vivo direct molecular imaging of early tumorigenesis and malignant progression induced by transgenic expression of GFP-Met. Neoplasia 8, 353–363 (2006).
pubmed: 16790084
pmcid: 1592452
doi: 10.1593/neo.05634
Otsuka, T. et al. c-Met autocrine activation induces development of malignant melanoma and acquisition of the metastatic phenotype. Cancer Res. 58, 5157–5167 (1998).
pubmed: 9823327
Demkova, L. & Kucerova, L. Role of the HGF/c-MET tyrosine kinase inhibitors in metastasic melanoma. Mol. Cancer 17, 26 (2018).
pubmed: 29455657
pmcid: 5817811
doi: 10.1186/s12943-018-0795-z
Yao, J.-F. et al. Role of HGF/c-Met in the treatment of colorectal cancer with liver metastasis. J. Biochem. Mol. Toxicol. 33, e22316 (2019).
pubmed: 30897285
pmcid: 6617765
doi: 10.1002/jbt.22316
Lee, J. H. et al. A novel germ line juxtamembrane Met mutation in human gastric cancer. Oncogene 19, 4947–4953 (2000).
pubmed: 11042681
doi: 10.1038/sj.onc.1203874
Ma, P. C. et al. c-MET mutational analysis in small cell lung cancer: novel juxtamembrane domain mutations regulating cytoskeletal functions. Cancer Res. 63, 6272–6281 (2003).
pubmed: 14559814
Di Renzo, M. F. et al. Somatic mutations of the MET oncogene are selected during metastatic spread of human HNSC carcinomas. Oncogene 19, 1547–1555 (2000).
pubmed: 10734314
doi: 10.1038/sj.onc.1203455
Hartmann, S., Bhola, N. E. & Grandis, J. R. HGF/Met signaling in head and neck cancer: impact on the tumor microenvironment. Clin. Cancer Res. 22, 4005–4013 (2016).
pubmed: 27370607
pmcid: 6820346
doi: 10.1158/1078-0432.CCR-16-0951
Boromand, N. et al. Clinical and prognostic value of the C-Met/HGF signaling pathway in cervical cancer. J. Cell. Physiol. 233, 4490–4496 (2018).
pubmed: 29058790
doi: 10.1002/jcp.26232
Wang, H. et al. The function of the HGF/c-Met axis in hepatocellular carcinoma. Front. Cell Dev. Biol. 8, 55 (2020).
pubmed: 32117981
pmcid: 7018668
doi: 10.3389/fcell.2020.00055
Miranda, O., Farooqui, M. & Siegfried, J. M. Status of agents targeting the HGF/c-Met axis in lung cancer. Cancers 10, 280 (2018).
pubmed: 30134579
pmcid: 6162713
doi: 10.3390/cancers10090280
Goyal, L., Muzumdar, M. D. & Zhu, A. X. Targeting the HGF/c-MET pathway in hepatocellular carcinoma. Clin. Cancer Res. 19, 2310–2318 (2013).
pubmed: 23388504
pmcid: 4583193
doi: 10.1158/1078-0432.CCR-12-2791
Kim, H. J. Therapeutic strategies for ovarian cancer in point of HGF/c-MET targeting. Medicina. 58, 649 (2022).
pubmed: 35630066
pmcid: 9147666
doi: 10.3390/medicina58050649
Lam, B. Q., Dai, L. & Qin, Z. The role of HGF/c-MET signaling pathway in lymphoma. J. Hematol. Oncol. 9, 135 (2016).
pubmed: 27923392
pmcid: 5141645
doi: 10.1186/s13045-016-0366-y
Guryanova, O. A. & Bao, S. How scatter factor receptor c-MET contributes to tumor radioresistance: ready, set, scatter! J. Natl Cancer Inst. 103, 617–619 (2011).
pubmed: 21464396
doi: 10.1093/jnci/djr103
Kwak, E. L. et al. Molecular heterogeneity and receptor coamplification drive resistance to targeted therapy in MET-Amplified esophagogastric cancer. Cancer Discov. 5, 1271–1281 (2015).
pubmed: 26432108
pmcid: 4670804
doi: 10.1158/2159-8290.CD-15-0748
Mrozik, K. M. et al. Therapeutic targeting of N-cadherin is an effective treatment for multiple myeloma. Br. J. Haematol. 171, 387–399 (2015).
pubmed: 26194766
doi: 10.1111/bjh.13596
Hatta, K. & Takeichi, M. Expression of N-cadherin adhesion molecules associated with early morphogenetic events in chick development. Nature 320, 447–449 (1986).
pubmed: 3515198
doi: 10.1038/320447a0
Cao, Z.-Q., Wang, Z. & Leng, P. Aberrant N-cadherin expression in cancer. Biomed. Pharmacother. 118, 109320 (2019).
pubmed: 31545265
doi: 10.1016/j.biopha.2019.109320
Leckband, D. E. & de Rooij, J. Cadherin adhesion and mechanotransduction. Annu. Rev. Cell Dev. Biol. 30, 291–315 (2014).
pubmed: 25062360
doi: 10.1146/annurev-cellbio-100913-013212
Blaschuk, O. W. N-cadherin antagonists as oncology therapeutics. Philos. Trans. R. Soc. Lond. Ser. B, Biol. Sci. 370, 20140039 (2015).
doi: 10.1098/rstb.2014.0039
Mrozik, K. M., Blaschuk, O. W., Cheong, C. M., Zannettino, A. C. W. & Vandyke, K. N-cadherin in cancer metastasis, its emerging role in haematological malignancies and potential as a therapeutic target in cancer. BMC Cancer 18, 939 (2018).
pubmed: 30285678
pmcid: 6167798
doi: 10.1186/s12885-018-4845-0
Ciołczyk-Wierzbicka, D. & Laidler, P. The inhibition of invasion of human melanoma cells through N-cadherin knock-down. Med. Oncol. 35, 42 (2018).
pubmed: 29492694
pmcid: 5830464
doi: 10.1007/s12032-018-1104-9
Lammens, T. et al. N-Cadherin in neuroblastoma disease: expression and clinical significance. PLoS ONE 7, e31206 (2012).
pubmed: 22355346
pmcid: 3280274
doi: 10.1371/journal.pone.0031206
Hulit, J. et al. N-cadherin signaling potentiates mammary tumor metastasis via enhanced extracellular signal-regulated kinase activation. Cancer Res. 67, 3106–3116 (2007).
pubmed: 17409417
doi: 10.1158/0008-5472.CAN-06-3401
Klymenko, Y. et al. Cadherin composition and multicellular aggregate invasion in organotypic models of epithelial ovarian cancer intraperitoneal metastasis. Oncogene 36, 5840–5851 (2017).
pubmed: 28628116
pmcid: 5648607
doi: 10.1038/onc.2017.171
Mariotti, A., Perotti, A., Sessa, C. & Rüegg, C. N-cadherin as a therapeutic target in cancer. Expert Opin. Investig. Drugs 16, 451–465 (2007).
pubmed: 17371194
doi: 10.1517/13543784.16.4.451
Groen, R. W. J. et al. N-cadherin-mediated interaction with multiple myeloma cells inhibits osteoblast differentiation. Haematologica 96, 1653–1661 (2011).
pubmed: 21828122
pmcid: 3208683
doi: 10.3324/haematol.2010.038133
Sadler, N. M., Harris, B. R., Metzger, B. A. & Kirshner, J. N-cadherin impedes proliferation of the multiple myeloma cancer stem cells. Am. J. Blood Res. 3, 271–285 (2013).
pubmed: 24396705
pmcid: 3875273
Shintani, Y. et al. ADH-1 suppresses N-cadherin-dependent pancreatic cancer progression. Int. J. Cancer 122, 71–77 (2008).
pubmed: 17721921
doi: 10.1002/ijc.23027
Sun, Y. et al. N-cadherin inhibitor creates a microenvironment that protect TILs from immune checkpoints and Treg cells. J. Immunother. Cancer 9, e002138 (2021).
pubmed: 33692219
pmcid: 7949480
doi: 10.1136/jitc-2020-002138
Richards, L. Genetics: N-cadherin—a target for prostate cancer therapy. Nat. Rev. Clin. Oncol. 8, 63 (2011).
pubmed: 21360843
Tokito, A. & Jougasaki, M. Matrix metalloproteinases in non-neoplastic disorders. Int. J. Mol. Sci. 17, 1178 (2016).
pubmed: 27455234
pmcid: 4964549
doi: 10.3390/ijms17071178
Huang, H. Matrix metalloproteinase-9 (MMP-9) as a cancer biomarker and MMP-9 biosensors: recent advances. Sensors 18, 3249 (2018).
pubmed: 30262739
pmcid: 6211011
doi: 10.3390/s18103249
de Almeida, L. G. N. et al. Matrix metalloproteinases: from molecular mechanisms to physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 74, 712–768 (2022).
pubmed: 35738680
doi: 10.1124/pharmrev.121.000349
Roy, R., Yang, J. & Moses, M. A. Matrix metalloproteinases as novel biomarkers and potential therapeutic targets in human cancer. J. Clin. Oncol. 27, 5287–5297 (2009).
pubmed: 19738110
pmcid: 2773480
doi: 10.1200/JCO.2009.23.5556
Klein, T. & Bischoff, R. Physiology and pathophysiology of matrix metalloproteases. Amino Acids 41, 271–290 (2011).
pubmed: 20640864
doi: 10.1007/s00726-010-0689-x
Szarvas, T., Vom Dorp, F., Ergün, S. & Rübben, H. Matrix metalloproteinases and their clinical relevance in urinary bladder cancer. Nat. Rev. Urol. 8, 241–254 (2011).
pubmed: 21487384
doi: 10.1038/nrurol.2011.44
Talvensaari-Mattila, A., Pääkkö, P., Höyhtyä, M., Blanco-Sequeiros, G. & Turpeenniemi-Hujanen, T. Matrix metalloproteinase-2 immunoreactive protein: a marker of aggressiveness in breast carcinoma. Cancer 83, 1153–1162 (1998).
pubmed: 9740080
doi: 10.1002/(SICI)1097-0142(19980915)83:6<1153::AID-CNCR14>3.0.CO;2-4
Murray, G. I., Duncan, M. E., O’Neil, P., Melvin, W. T. & Fothergill, J. E. Matrix metalloproteinase-1 is associated with poor prognosis in colorectal cancer. Nat. Med. 2, 461–462 (1996).
pubmed: 8597958
doi: 10.1038/nm0496-461
Sier, C. F. et al. Tissue levels of matrix metalloproteinases MMP-2 and MMP-9 are related to the overall survival of patients with gastric carcinoma. Br. J. Cancer 74, 413–417 (1996).
pubmed: 8695357
pmcid: 2074643
doi: 10.1038/bjc.1996.374
Murray, G. I. et al. Matrix metalloproteinase-1 is associated with poor prognosis in oesophageal cancer. J. Pathol. 185, 256–261 (1998).
pubmed: 9771478
doi: 10.1002/(SICI)1096-9896(199807)185:3<256::AID-PATH115>3.0.CO;2-A
Vandenbroucke, R. E., Dejonckheere, E. & Libert, C. A therapeutic role for matrix metalloproteinase inhibitors in lung diseases? Eur. Respir. J. 38, 1200–1214 (2011).
pubmed: 21659416
doi: 10.1183/09031936.00027411
Isaacson, K. J., Martin Jensen, M., Subrahmanyam, N. B. & Ghandehari, H. Matrix-metalloproteinases as targets for controlled delivery in cancer: an analysis of upregulation and expression. J. Control. Release 259, 62–75 (2017).
pubmed: 28153760
pmcid: 5537048
doi: 10.1016/j.jconrel.2017.01.034
Gong, L. et al. Prognostic impact of serum and tissue MMP-9 in non-small cell lung cancer: a systematic review and meta-analysis. Oncotarget 7, 18458–18468 (2016).
pubmed: 26918342
pmcid: 4951301
doi: 10.18632/oncotarget.7607
Li, Y., Wu, T., Zhang, B., Yao, Y. & Yin, G. Matrix metalloproteinase-9 is a prognostic marker for patients with cervical cancer. Med. Oncol. 29, 3394–3399 (2012).
pubmed: 22752570
doi: 10.1007/s12032-012-0283-z
Lian, P.-L. et al. Integrin αvβ6 and matrix metalloproteinase 9 correlate with survival in gastric cancer. World J. Gastroenterol. 22, 3852–3859 (2016).
pubmed: 27076771
pmcid: 4814749
doi: 10.3748/wjg.v22.i14.3852
Li, L.-N., Zhou, X., Gu, Y. & Yan, J. Prognostic value of MMP-9 in ovarian cancer: a meta-analysis. Asian Pac. J. Cancer Prev. 14, 4107–4113 (2013).
pubmed: 23991961
doi: 10.7314/APJCP.2013.14.7.4107
Yousef, E. M., Tahir, M. R., St-Pierre, Y. & Gaboury, L. A. MMP-9 expression varies according to molecular subtypes of breast cancer. BMC Cancer 14, 609 (2014).
pubmed: 25151367
pmcid: 4150970
doi: 10.1186/1471-2407-14-609
Wang, J. et al. Matrix metalloproteinase 9 (MMP-9) in osteosarcoma: review and meta-analysis. Clin. Chim. Acta 433, 225–231 (2014).
pubmed: 24704305
doi: 10.1016/j.cca.2014.03.023
Tian, M. et al. Proteomic analysis identifies MMP-9, DJ-1 and A1BG as overexpressed proteins in pancreatic juice from pancreatic ductal adenocarcinoma patients. BMC Cancer 8, 241 (2008).
pubmed: 18706098
pmcid: 2528014
doi: 10.1186/1471-2407-8-241
Wang, T., Zhang, Y., Bai, J., Xue, Y. & Peng, Q. MMP1 and MMP9 are potential prognostic biomarkers and targets for uveal melanoma. BMC Cancer 21, 1068 (2021).
pubmed: 34587931
pmcid: 8482640
doi: 10.1186/s12885-021-08788-3
Groelly, F. J., Fawkes, M., Dagg, R. A., Blackford, A. N. & Tarsounas, M. Targeting DNA damage response pathways in cancer. Nat. Rev. Cancer 23, 78–94 (2023).
pubmed: 36471053
doi: 10.1038/s41568-022-00535-5
Chu, Y.-Y., Yam, C., Yamaguchi, H. & Hung, M.-C. Biomarkers beyond BRCA: promising combinatorial treatment strategies in overcoming resistance to PARP inhibitors. J. Biomed. Sci. 29, 86 (2022).
pubmed: 36284291
pmcid: 9594904
doi: 10.1186/s12929-022-00870-7
Wang, Y. et al. PARP inhibitors in gastric cancer: beacon of hope. J. Exp. Clin. Cancer Res. 40, 211 (2021).
pubmed: 34167572
pmcid: 8228511
doi: 10.1186/s13046-021-02005-6
Quinet, A., Lemaçon, D. & Vindigni, A. Replication fork reversal: players and guardians. Mol. Cell 68, 830–833 (2017).
pubmed: 29220651
pmcid: 5895179
doi: 10.1016/j.molcel.2017.11.022
Roy, R., Chun, J. & Powell, S. N. BRCA1 and BRCA2: different roles in a common pathway of genome protection. Nat. Rev. Cancer 12, 68–78 (2011).
pubmed: 22193408
pmcid: 4972490
doi: 10.1038/nrc3181
Jin, T. Y. et al. BRCA1/2 serves as a biomarker for poor prognosis in breast carcinoma. Int. J. Mol. Sci. 23, 3754 (2022).
pubmed: 35409110
pmcid: 8998777
doi: 10.3390/ijms23073754
Wang, G.-H. et al. BRCA1 and BRCA2 expression patterns and prognostic significance in digestive system cancers. Hum. Pathol. 71, 135–144 (2018).
pubmed: 29126833
doi: 10.1016/j.humpath.2017.10.032
Breast Cancer Linkage Consortium. Cancer risks in BRCA2 mutation carriers. J. Natl Cancer Inst. 91, 1310–1316 (1999).
Bryant, H. E. et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434, 913–917 (2005).
pubmed: 15829966
doi: 10.1038/nature03443
Blackford, A. N. & Jackson, S. P. ATM, ATR, and DNA-PK: the trinity at the heart of the DNA damage response. Mol. Cell 66, 801–817 (2017).
pubmed: 28622525
doi: 10.1016/j.molcel.2017.05.015
Ngoi, N. Y. L. et al. Targeting ATR in patients with cancer. Nat. Rev. Clin. Oncol. 21, 278–293 (2024).
pubmed: 38378898
doi: 10.1038/s41571-024-00863-5
Matsuoka, S. et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316, 1160–1166 (2007).
pubmed: 17525332
doi: 10.1126/science.1140321
Cremona, C. A. & Behrens, A. ATM signalling and cancer. Oncogene 33, 3351–3360 (2014).
pubmed: 23851492
doi: 10.1038/onc.2013.275
Bailey, P. et al. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature 531, 47–52 (2016).
pubmed: 26909576
doi: 10.1038/nature16965
Sun, L., Wang, R.-C., Zhang, Q. & Guo, L.-L. ATM mutations as an independent prognostic factor and potential biomarker for immune checkpoint therapy in endometrial cancer. Pathol. Res. Pract. 216, 153032 (2020).
pubmed: 32703496
doi: 10.1016/j.prp.2020.153032
Randon, G. et al. Prognostic impact of ATM mutations in patients with metastatic colorectal cancer. Sci. Rep. 9, 2858 (2019).
pubmed: 30814645
pmcid: 6393680
doi: 10.1038/s41598-019-39525-3
Moossavi, M., Parsamanesh, N., Bahrami, A., Atkin, S. L. & Sahebkar, A. Role of the NLRP3 inflammasome in cancer. Mol. Cancer 17, 158 (2018).
pubmed: 30447690
pmcid: 6240225
doi: 10.1186/s12943-018-0900-3
Grivennikov, S. I., Greten, F. R. & Karin, M. Immunity, inflammation, and cancer. Cell 140, 883–899 (2010).
pubmed: 20303878
pmcid: 2866629
doi: 10.1016/j.cell.2010.01.025
Carswell, E. A. et al. An endotoxin-induced serum factor that causes necrosis of tumors. Proc. Natl Acad. Sci. USA 72, 3666–3670 (1975).
pubmed: 1103152
pmcid: 433057
doi: 10.1073/pnas.72.9.3666
Szlosarek, P. W. & Balkwill, F. R. Tumour necrosis factor alpha: a potential target for the therapy of solid tumours. Lancet Oncol. 4, 565–573 (2003).
pubmed: 12965278
doi: 10.1016/S1470-2045(03)01196-3
van Loo, G. & Bertrand, M. J. M. Death by TNF: a road to inflammation. Nat. Rev. Immunol. 23, 289–303 (2023).
pubmed: 36380021
doi: 10.1038/s41577-022-00792-3
Szlosarek, P., Charles, K. A. & Balkwill, F. R. Tumour necrosis factor-alpha as a tumour promoter. Eur. J. Cancer 42, 745–750 (2006).
pubmed: 16517151
doi: 10.1016/j.ejca.2006.01.012
Balkwill, F. Tumour necrosis factor and cancer. Nat. Rev. Cancer 9, 361–371 (2009).
pubmed: 19343034
doi: 10.1038/nrc2628
Bounder, G. et al. Associations of the -238(G/A) and -308(G/A) TNF-α promoter polymorphisms and TNF-α serum levels with the susceptibility to gastric precancerous lesions and gastric cancer related to Helicobacter pylori infection in a Moroccan population. Asian Pac. J. Cancer Prev. 21, 1623–1629 (2020).
pubmed: 32592356
pmcid: 7568906
doi: 10.31557/APJCP.2020.21.6.1623
Noguchi, M., Hiwatashi, N., Liu, Z. & Toyota, T. Secretion imbalance between tumour necrosis factor and its inhibitor in inflammatory bowel disease. Gut 43, 203–209 (1998).
pubmed: 10189845
pmcid: 1727225
doi: 10.1136/gut.43.2.203
Szlosarek, P. W. et al. Expression and regulation of tumor necrosis factor alpha in normal and malignant ovarian epithelium. Mol. Cancer Ther. 5, 382–390 (2006).
pubmed: 16505113
doi: 10.1158/1535-7163.MCT-05-0303
Andersson, B. Å. et al. Plasma tumor necrosis factor-α and C-reactive protein as biomarker for survival in head and neck squamous cell carcinoma. J. Cancer Res. Clin. Oncol. 140, 515–519 (2014).
pubmed: 24481866
doi: 10.1007/s00432-014-1592-8
Sen, R. & Baltimore, D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 46, 705–716 (1986).
pubmed: 3091258
doi: 10.1016/0092-8674(86)90346-6
Ghosh, S., May, M. J. & Kopp, E. B. NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol. 16, 225–260 (1998).
pubmed: 9597130
doi: 10.1146/annurev.immunol.16.1.225
Li, Q. & Verma, I. M. NF-kappaB regulation in the immune system. Nat. Rev. Immunol. 2, 725–734 (2002).
pubmed: 12360211
doi: 10.1038/nri910
Taniguchi, K. & Karin, M. NF-κB, inflammation, immunity and cancer: coming of age. Nat. Rev. Immunol. 18, 309–324 (2018).
pubmed: 29379212
doi: 10.1038/nri.2017.142
Karin, M. Nuclear factor-kappaB in cancer development and progression. Nature 441, 431–436 (2006).
pubmed: 16724054
doi: 10.1038/nature04870
Viatour, P., Merville, M.-P., Bours, V. & Chariot, A. Phosphorylation of NF-kappaB and IkappaB proteins: implications in cancer and inflammation. Trends Biochem. Sci. 30, 43–52 (2005).
pubmed: 15653325
doi: 10.1016/j.tibs.2004.11.009
Karin, M. NF-kappaB as a critical link between inflammation and cancer. Cold Spring Harb. Perspect. Biol. 1, a000141 (2009).
pubmed: 20066113
pmcid: 2773649
doi: 10.1101/cshperspect.a000141
Wu, D. et al. NF-κB expression and outcomes in solid tumors: a systematic review and meta-analysis. Medicine 94, e1687 (2015).
pubmed: 26448015
pmcid: 4616757
doi: 10.1097/MD.0000000000001687
Sarkar, D. K. et al. Role of NF-κB as a prognostic marker in breast cancer: a pilot study in Indian patients. Indian J. Surg. Oncol. 4, 242–247 (2013).
pubmed: 24426730
pmcid: 3771050
doi: 10.1007/s13193-013-0234-y
Ben-Neriah, Y. & Karin, M. Inflammation meets cancer, with NF-κB as the matchmaker. Nat. Immunol. 12, 715–723 (2011).
pubmed: 21772280
doi: 10.1038/ni.2060
Kumar, M. et al. NF-κB regulates mesenchymal transition for the induction of non-small cell lung cancer initiating cells. PLoS ONE 8, e68597 (2013).
pubmed: 23935876
pmcid: 3728367
doi: 10.1371/journal.pone.0068597
Huber, M. A. et al. NF-kappaB is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression. J. Clin. Invest. 114, 569–581 (2004).
pubmed: 15314694
pmcid: 503772
doi: 10.1172/JCI200421358
He, Y., Hara, H. & Núñez, G. Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem. Sci. 41, 1012–1021 (2016).
pubmed: 27669650
pmcid: 5123939
doi: 10.1016/j.tibs.2016.09.002
Martinon, F., Burns, K. & Tschopp, J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol. Cell 10, 417–426 (2002).
pubmed: 12191486
doi: 10.1016/S1097-2765(02)00599-3
Lamkanfi, M. & Dixit, V. M. Mechanisms and functions of inflammasomes. Cell 157, 1013–1022 (2014).
pubmed: 24855941
doi: 10.1016/j.cell.2014.04.007
Si, Y., Liu, L. & Fan, Z. Mechanisms and effects of NLRP3 in digestive cancers. Cell Death Discov. 10, 10 (2024).
pubmed: 38182564
pmcid: 10770122
doi: 10.1038/s41420-023-01783-6
Tarassishin, L., Casper, D. & Lee, S. C. Aberrant expression of interleukin-1β and inflammasome activation in human malignant gliomas. PLoS ONE 9, e103432 (2014).
pubmed: 25054228
pmcid: 4108401
doi: 10.1371/journal.pone.0103432
Bae, J. Y. et al. P2X7 receptor and NLRP3 inflammasome activation in head and neck cancer. Oncotarget 8, 48972–48982 (2017).
pubmed: 28430665
pmcid: 5564741
doi: 10.18632/oncotarget.16903
Veeranki, S. Role of inflammasomes and their regulators in prostate cancer initiation, progression and metastasis. Cell. Mol. Biol. Lett. 18, 355–367 (2013).
pubmed: 23793845
pmcid: 6275599
doi: 10.2478/s11658-013-0095-y
Dunn, J. H., Ellis, L. Z. & Fujita, M. Inflammasomes as molecular mediators of inflammation and cancer: potential role in melanoma. Cancer Lett. 314, 24–33 (2012).
pubmed: 22050907
doi: 10.1016/j.canlet.2011.10.001
Shi, F. et al. Low NLRP3 expression predicts a better prognosis of colorectal cancer. Biosci. Rep. 41, BSR20210280 (2021).
pubmed: 33821998
pmcid: 8055799
doi: 10.1042/BSR20210280
Fan, S. et al. Luteoloside suppresses proliferation and metastasis of hepatocellular carcinoma cells by inhibition of NLRP3 inflammasome. PLoS ONE 9, e89961 (2014).
pubmed: 24587153
pmcid: 3935965
doi: 10.1371/journal.pone.0089961
Warburg, O. Über den Stoffwechsel der Carcinomzelle. Naturwissenschaften 12, 1131–1137 (1924).
doi: 10.1007/BF01504608
Wang, Y. & Patti, G. J. The Warburg effect: a signature of mitochondrial overload. Trends Cell Biol. 33, 1014–1020 (2023).
pubmed: 37117116
doi: 10.1016/j.tcb.2023.03.013
Macheda, M. L., Rogers, S. & Best, J. D. Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J. Cell. Physiol. 202, 654–662 (2005).
pubmed: 15389572
doi: 10.1002/jcp.20166
Deng, D. et al. Crystal structure of the human glucose transporter GLUT1. Nature 510, 121–125 (2014).
pubmed: 24847886
doi: 10.1038/nature13306
Wieman, H. L., Wofford, J. A. & Rathmell, J. C. Cytokine stimulation promotes glucose uptake via phosphatidylinositol-3 kinase/Akt regulation of Glut1 activity and trafficking. Mol. Biol. Cell 18, 1437–1446 (2007).
pubmed: 17301289
pmcid: 1838986
doi: 10.1091/mbc.e06-07-0593
Meng, Y. et al. The progress and development of GLUT1 inhibitors targeting cancer energy metabolism. Future Med. Chem. 11, 2333–2352 (2019).
pubmed: 31581916
doi: 10.4155/fmc-2019-0052
Schwartzenberg-Bar-Yoseph, F., Armoni, M. & Karnieli, E. The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Res. 64, 2627–2633 (2004).
pubmed: 15059920
doi: 10.1158/0008-5472.CAN-03-0846
Zambrano, A., Molt, M., Uribe, E. & Salas, M. Glut 1 in cancer cells and the inhibitory action of resveratrol as a potential therapeutic strategy. Int. J. Mol. Sci. 20, 3374 (2019).
pubmed: 31324056
pmcid: 6651361
doi: 10.3390/ijms20133374
Zhang, B., Xie, Z. & Li, B. The clinicopathologic impacts and prognostic significance of GLUT1 expression in patients with lung cancer: a meta-analysis. Gene 689, 76–83 (2019).
pubmed: 30552981
doi: 10.1016/j.gene.2018.12.006
Amann, T. & Hellerbrand, C. GLUT1 as a therapeutic target in hepatocellular carcinoma. Expert Opin. Ther. Targets 13, 1411–1427 (2009).
pubmed: 19874261
doi: 10.1517/14728220903307509
Wang, J. et al. Glucose transporter GLUT1 expression and clinical outcome in solid tumors: a systematic review and meta-analysis. Oncotarget 8, 16875–16886 (2017).
pubmed: 28187435
pmcid: 5370007
doi: 10.18632/oncotarget.15171
Waitkus, M. S., Diplas, B. H. & Yan, H. Biological role and therapeutic potential of IDH mutations in cancer. Cancer Cell 34, 186–195 (2018).
pubmed: 29805076
pmcid: 6092238
doi: 10.1016/j.ccell.2018.04.011
Turkalp, Z., Karamchandani, J. & Das, S. IDH mutation in glioma: new insights and promises for the future. JAMA Neurol. 71, 1319–1325 (2014).
pubmed: 25155243
doi: 10.1001/jamaneurol.2014.1205
Dang, L., Yen, K. & Attar, E. C. IDH mutations in cancer and progress toward development of targeted therapeutics. Ann. Oncol. 27, 599–608 (2016).
pubmed: 27005468
doi: 10.1093/annonc/mdw013
Capper, D. et al. Characterization of R132H mutation-specific IDH1 antibody binding in brain tumors. Brain Pathol. 20, 245–254 (2010).
pubmed: 19903171
doi: 10.1111/j.1750-3639.2009.00352.x
Andronesi, O. C. et al. Detection of 2-hydroxyglutarate in IDH-mutated glioma patients by in vivo spectral-editing and 2D correlation magnetic resonance spectroscopy. Sci. Transl. Med. 4, 116ra4 (2012).
pubmed: 22238332
pmcid: 3720836
doi: 10.1126/scitranslmed.3002693
Guo, D., Meng, Y., Jiang, X. & Lu, Z. Hexokinases in cancer and other pathologies. Cell Insight 2, 100077 (2023).
pubmed: 37192912
pmcid: 10120283
doi: 10.1016/j.cellin.2023.100077
Ciscato, F., Ferrone, L., Masgras, I., Laquatra, C. & Rasola, A. Hexokinase 2 in cancer: a prima donna playing multiple characters. Int. J. Mol. Sci. 22, 4716 (2021).
pubmed: 33946854
pmcid: 8125560
doi: 10.3390/ijms22094716
Kim, J., Gao, P., Liu, Y.-C., Semenza, G. L. & Dang, C. V. Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1. Mol. Cell. Biol. 27, 7381–7393 (2007).
pubmed: 17785433
pmcid: 2169056
doi: 10.1128/MCB.00440-07
Liu, Y. et al. Prognostic significance of the metabolic marker hexokinase-2 in various solid tumors: a meta-analysis. PLoS ONE 11, e0166230 (2016).
pubmed: 27824926
pmcid: 5100994
doi: 10.1371/journal.pone.0166230
Patra, K. C. et al. Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer. Cancer Cell 24, 213–228 (2013).
pubmed: 23911236
pmcid: 3753022
doi: 10.1016/j.ccr.2013.06.014
Akinleye, A. & Rasool, Z. Immune checkpoint inhibitors of PD-L1 as cancer therapeutics. J. Hematol. Oncol. 12, 92 (2019).
pubmed: 31488176
pmcid: 6729004
doi: 10.1186/s13045-019-0779-5
Keir, M. E., Butte, M. J., Freeman, G. J. & Sharpe, A. H. PD-1 and its ligands in tolerance and immunity. Annu Rev. Immunol. 26, 677–704 (2008).
pubmed: 18173375
pmcid: 10637733
doi: 10.1146/annurev.immunol.26.021607.090331
Ishida, Y., Agata, Y., Shibahara, K. & Honjo, T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 11, 3887–3895 (1992).
pubmed: 1396582
pmcid: 556898
doi: 10.1002/j.1460-2075.1992.tb05481.x
Nishimura, H., Nose, M., Hiai, H., Minato, N. & Honjo, T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 11, 141–151 (1999).
pubmed: 10485649
doi: 10.1016/S1074-7613(00)80089-8
Freeman, G. J. et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med. 192, 1027–1034 (2000).
pubmed: 11015443
pmcid: 2193311
doi: 10.1084/jem.192.7.1027
Dong, H. et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat. Med. 8, 793–800 (2002).
pubmed: 12091876
doi: 10.1038/nm730
Zou, W. & Chen, L. Inhibitory B7-family molecules in the tumour microenvironment. Nat. Rev. Immunol. 8, 467–477 (2008).
pubmed: 18500231
doi: 10.1038/nri2326
Chang, C.-H. et al. The prognostic significance of PD1 and PDL1 gene expression in lung cancer: a meta-analysis. Front. Oncol. 11, 759497 (2021).
pubmed: 34868974
pmcid: 8639141
doi: 10.3389/fonc.2021.759497
Oh, S. Y. et al. Soluble PD-L1 is a predictive and prognostic biomarker in advanced cancer patients who receive immune checkpoint blockade treatment. Sci. Rep. 11, 19712 (2021).
pubmed: 34611279
pmcid: 8492653
doi: 10.1038/s41598-021-99311-y
Müller, T. et al. PD-L1: a novel prognostic biomarker in head and neck squamous cell carcinoma. Oncotarget 8, 52889–52900 (2017).
pubmed: 28881780
pmcid: 5581079
doi: 10.18632/oncotarget.17547
Rosellini, M. et al. Prognostic and predictive biomarkers for immunotherapy in advanced renal cell carcinoma. Nat. Rev. Urol. 20, 133–157 (2023).
pubmed: 36414800
doi: 10.1038/s41585-022-00676-0
Gu, L. et al. PD-L1 and gastric cancer prognosis: a systematic review and meta-analysis. PLoS ONE 12, e0182692 (2017).
pubmed: 28796808
pmcid: 5552131
doi: 10.1371/journal.pone.0182692
Brunet, J. F. et al. A new member of the immunoglobulin superfamily–CTLA-4. Nature 328, 267–270 (1987).
pubmed: 3496540
doi: 10.1038/328267a0
Rotte, A. Combination of CTLA-4 and PD-1 blockers for treatment of cancer. J. Exp. Clin. Cancer Res. 38, 255 (2019).
pubmed: 31196207
pmcid: 6567914
doi: 10.1186/s13046-019-1259-z
Rowshanravan, B., Halliday, N. & Sansom, D. M. CTLA-4: a moving target in immunotherapy. Blood 131, 58–67 (2018).
pubmed: 29118008
doi: 10.1182/blood-2017-06-741033
Hu, P. et al. The prognostic value of cytotoxic T-lymphocyte antigen 4 in cancers: a systematic review and meta-analysis. Sci. Rep. 7, 42913 (2017).
pubmed: 28211499
pmcid: 5314410
doi: 10.1038/srep42913
Mao, H. et al. New Insights of CTLA-4 into its biological function in breast cancer. Curr. Cancer Drug Targets 10, 728–736 (2010).
pubmed: 20578982
doi: 10.2174/156800910793605811
Zhang, C.-Y. et al. Prognostic value of combined analysis of CTLA-4 and PLR in esophageal squamous cell carcinoma (ESCC) patients. Dis. Markers 2019, 1601072 (2019).
pubmed: 31485274
pmcid: 6710793
doi: 10.1155/2019/1601072
Zheng, S. et al. Differentiation therapy: unlocking phenotypic plasticity of hepatocellular carcinoma. Crit. Rev. Oncol. Hematol. 180, 103854 (2022).
pubmed: 36257532
doi: 10.1016/j.critrevonc.2022.103854
Waddington, C. H. The epigenotype. 1942. Int. J. Epidemiol. 41, 10–13 (2012).
pubmed: 22186258
doi: 10.1093/ije/dyr184
Nishiyama, A. & Nakanishi, M. Navigating the DNA methylation landscape of cancer. Trends Genet. 37, 1012–1027 (2021).
pubmed: 34120771
doi: 10.1016/j.tig.2021.05.002
Cheng, Y. et al. Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduct. Target Ther. 4, 62 (2019).
pubmed: 31871779
pmcid: 6915746
doi: 10.1038/s41392-019-0095-0
Meng, H. et al. DNA methylation, its mediators and genome integrity. Int. J. Biol. Sci. 11, 604–617 (2015).
pubmed: 25892967
pmcid: 4400391
doi: 10.7150/ijbs.11218
Koch, A. et al. Analysis of DNA methylation in cancer: location revisited. Nat. Rev. Clin. Oncol. 15, 459–466 (2018).
pubmed: 29666440
doi: 10.1038/s41571-018-0004-4
Baylin, S. B. & Jones, P. A. A decade of exploring the cancer epigenome - biological and translational implications. Nat. Rev. Cancer 11, 726–734 (2011).
pubmed: 21941284
pmcid: 3307543
doi: 10.1038/nrc3130
Dawson, M. A. & Kouzarides, T. Cancer epigenetics: from mechanism to therapy. Cell 150, 12–27 (2012).
pubmed: 22770212
doi: 10.1016/j.cell.2012.06.013
Van Vlodrop, I. J. H. et al. Prognostic significance of Gremlin1 (GREM1) promoter CpG island hypermethylation in clear cell renal cell carcinoma. Am. J. Pathol. 176, 575–584 (2010).
pubmed: 20042676
pmcid: 2808066
doi: 10.2353/ajpath.2010.090442
Kim, M. S. et al. A promoter methylation pattern in the N-methyl-D-aspartate receptor 2B gene predicts poor prognosis in esophageal squamous cell carcinoma. Clin. Cancer Res. 13, 6658–6665 (2007).
pubmed: 18006766
doi: 10.1158/1078-0432.CCR-07-1178
Claus, R. et al. Quantitative DNA methylation analysis identifies a single CpG dinucleotide important for ZAP-70 expression and predictive of prognosis in chronic lymphocytic leukemia. J. Clin. Oncol. 30, 2483–2491 (2012).
pubmed: 22564988
pmcid: 3397783
doi: 10.1200/JCO.2011.39.3090
Yuan, G. et al. Defining optimal cutoff value of MGMT promoter methylation by ROC analysis for clinical setting in glioblastoma patients. J. Neurooncol. 133, 193–201 (2017).
pubmed: 28516344
doi: 10.1007/s11060-017-2433-9
Das, P. M. & Singal, R. DNA methylation and cancer. J. Clin. Oncol. 22, 4632–4642 (2004).
pubmed: 15542813
doi: 10.1200/JCO.2004.07.151
Falkenberg, K. J. & Johnstone, R. W. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat. Rev. Drug Discov. 13, 673–691 (2014).
pubmed: 25131830
doi: 10.1038/nrd4360
Seligson, D. B. et al. Global histone modification patterns predict risk of prostate cancer recurrence. Nature 435, 1262–1266 (2005).
pubmed: 15988529
doi: 10.1038/nature03672
Avvakumov, N. & Côté, J. The MYST family of histone acetyltransferases and their intimate links to cancer. Oncogene 26, 5395–5407 (2007).
pubmed: 17694081
doi: 10.1038/sj.onc.1210608
Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007).
pubmed: 17512414
doi: 10.1016/j.cell.2007.05.009
Heintzman, N. D. et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet. 39, 311–318 (2007).
pubmed: 17277777
doi: 10.1038/ng1966
Ntziachristos, P. et al. Genetic inactivation of the polycomb repressive complex 2 in T cell acute lymphoblastic leukemia. Nat. Med. 18, 298–301 (2012).
pubmed: 22237151
pmcid: 3274628
doi: 10.1038/nm.2651
Johnstone, R. W. & Licht, J. D. Histone deacetylase inhibitors in cancer therapy: is transcription the primary target? Cancer Cell 4, 13–18 (2003).
pubmed: 12892709
doi: 10.1016/S1535-6108(03)00165-X
Sears, C. L. & Garrett, W. S. Microbes, microbiota, and colon cancer. Cell Host Microbe 15, 317–328 (2014).
pubmed: 24629338
pmcid: 4003880
doi: 10.1016/j.chom.2014.02.007
de Martel, C. et al. Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol. 13, 607–615 (2012).
pubmed: 22575588
doi: 10.1016/S1470-2045(12)70137-7
Ferreira, R. M. et al. Gastric microbial community profiling reveals a dysbiotic cancer-associated microbiota. Gut 67, 226–236 (2018).
pubmed: 29102920
doi: 10.1136/gutjnl-2017-314205
Banerjee, S. et al. The ovarian cancer oncobiome. Oncotarget 8, 36225–36245 (2017).
pubmed: 28410234
pmcid: 5482651
doi: 10.18632/oncotarget.16717
Louis, P., Hold, G. L. & Flint, H. J. The gut microbiota, bacterial metabolites and colorectal cancer. Nat. Rev. Microbiol. 12, 661–672 (2014).
pubmed: 25198138
doi: 10.1038/nrmicro3344
Pushalkar, S. et al. The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression. Cancer Discov. 8, 403–416 (2018).
pubmed: 29567829
pmcid: 6225783
doi: 10.1158/2159-8290.CD-17-1134
Sfanos, K. S. et al. A molecular analysis of prokaryotic and viral DNA sequences in prostate tissue from patients with prostate cancer indicates the presence of multiple and diverse microorganisms. Prostate 68, 306–320 (2008).
pubmed: 18163428
doi: 10.1002/pros.20680
Mima, K. et al. The microbiome and hepatobiliary-pancreatic cancers. Cancer Lett. 402, 9–15 (2017).
pubmed: 28527946
doi: 10.1016/j.canlet.2017.05.001
Mao, Q. et al. Interplay between the lung microbiome and lung cancer. Cancer Lett. 415, 40–48 (2018).
pubmed: 29197615
doi: 10.1016/j.canlet.2017.11.036
Urbaniak, C. et al. The microbiota of breast tissue and its association with breast cancer. Appl. Environ. Microbiol. 82, 5039–5048 (2016).
pubmed: 27342554
pmcid: 4968547
doi: 10.1128/AEM.01235-16
Avilés-Jiménez, F. et al. Microbiota studies in the bile duct strongly suggest a role for Helicobacter pylori in extrahepatic cholangiocarcinoma. Clin. Microbiol. Infect. 22, 178.e11–178.e22 (2016).
pubmed: 26493848
doi: 10.1016/j.cmi.2015.10.008
Garrett, W. S. Cancer and the microbiota. Science 348, 80–86 (2015).
pubmed: 25838377
pmcid: 5535753
doi: 10.1126/science.aaa4972
Wang, Y. et al. Crosstalk between autophagy and microbiota in cancer progression. Mol. Cancer 20, 163 (2021).
pubmed: 34895252
pmcid: 8665582
doi: 10.1186/s12943-021-01461-0
Park, E. M. et al. Targeting the gut and tumor microbiota in cancer. Nat. Med. 28, 690–703 (2022).
pubmed: 35440726
doi: 10.1038/s41591-022-01779-2
Di Domenico, E. G., Cavallo, I., Pontone, M., Toma, L. & Ensoli, F. Biofilm producing Salmonella typhi: chronic colonization and development of gallbladder cancer. Int. J. Mol. Sci. 18, 1887 (2017).
pubmed: 28858232
pmcid: 5618536
doi: 10.3390/ijms18091887
Huang, Y. et al. Identification of helicobacter species in human liver samples from patients with primary hepatocellular carcinoma. J. Clin. Pathol. 57, 1273–1277 (2004).
pubmed: 15563667
pmcid: 1770525
doi: 10.1136/jcp.2004.018556
Wang, F., Meng, W., Wang, B. & Qiao, L. Helicobacter pylori-induced gastric inflammation and gastric cancer. Cancer Lett. 345, 196–202 (2014).
pubmed: 23981572
doi: 10.1016/j.canlet.2013.08.016
Helmink, B. A., Khan, M. A. W., Hermann, A., Gopalakrishnan, V. & Wargo, J. A. The microbiome, cancer, and cancer therapy. Nat. Med. 25, 377–388 (2019).
pubmed: 30842679
doi: 10.1038/s41591-019-0377-7
Sun, J. & Kato, I. Gut microbiota, inflammation and colorectal cancer. Genes Dis. 3, 130–143 (2016).
pubmed: 28078319
pmcid: 5221561
doi: 10.1016/j.gendis.2016.03.004
Mangerich, A. et al. Infection-induced colitis in mice causes dynamic and tissue-specific changes in stress response and DNA damage leading to colon cancer. Proc. Natl Acad. Sci. USA 109, E1820–E1829 (2012).
pubmed: 22689960
pmcid: 3390855
doi: 10.1073/pnas.1207829109
Kostic, A. D. et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 14, 207–215 (2013).
pubmed: 23954159
pmcid: 3772512
doi: 10.1016/j.chom.2013.07.007
Hu, D. et al. Cellular senescence and hematological malignancies: from pathogenesis to therapeutics. Pharm. Ther. 223, 107817 (2021).
doi: 10.1016/j.pharmthera.2021.107817
Hernandez-Segura, A., Nehme, J. & Demaria, M. Hallmarks of cellular senescence. Trends Cell Biol. 28, 436–453 (2018).
pubmed: 29477613
doi: 10.1016/j.tcb.2018.02.001
Wang, B., Kohli, J. & Demaria, M. Senescent cells in cancer therapy: friends or foes? Trends Cancer 6, 838–857 (2020).
pubmed: 32482536
doi: 10.1016/j.trecan.2020.05.004
Schmitt, C. A., Wang, B. & Demaria, M. Senescence and cancer — role and therapeutic opportunities. Nat. Rev. Clin. Oncol. 19, 619–636 (2022).
pubmed: 36045302
pmcid: 9428886
doi: 10.1038/s41571-022-00668-4
Birch, J. & Gil, J. Senescence and the SASP: many therapeutic avenues. Genes Dev. 34, 1565–1576 (2020).
pubmed: 33262144
pmcid: 7706700
doi: 10.1101/gad.343129.120
Rao, S. G. & Jackson, J. G. SASP: tumor suppressor or promoter? Yes! Trends Cancer 2, 676–687 (2016).
pubmed: 28741506
doi: 10.1016/j.trecan.2016.10.001
Kansara, M. et al. Immune response to RB1-regulated senescence limits radiation-induced osteosarcoma formation. J. Clin. Invest. 123, 5351–5360 (2013).
pubmed: 24231354
pmcid: 3859382
doi: 10.1172/JCI70559
Lesina, M. et al. RelA regulates CXCL1/CXCR2-dependent oncogene-induced senescence in murine Kras-driven pancreatic carcinogenesis. J. Clin. Invest. 126, 2919–2932 (2016).
pubmed: 27454298
pmcid: 4966329
doi: 10.1172/JCI86477
Chen, Z. et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436, 725–730 (2005).
pubmed: 16079851
pmcid: 1939938
doi: 10.1038/nature03918
Gruenbaum, Y. & Foisner, R. Lamins: nuclear intermediate filament proteins with fundamental functions in nuclear mechanics and genome regulation. Annu. Rev. Biochem. 84, 131–164 (2015).
pubmed: 25747401
doi: 10.1146/annurev-biochem-060614-034115
Freund, A., Laberge, R.-M., Demaria, M. & Campisi, J. Lamin B1 loss is a senescence-associated biomarker. Mol. Biol. Cell 23, 2066–2075 (2012).
pubmed: 22496421
pmcid: 3364172
doi: 10.1091/mbc.e11-10-0884
Shimi, T. et al. The role of nuclear lamin B1 in cell proliferation and senescence. Genes Dev. 25, 2579–2593 (2011).
pubmed: 22155925
pmcid: 3248680
doi: 10.1101/gad.179515.111
Shah, P. P. et al. Lamin B1 depletion in senescent cells triggers large-scale changes in gene expression and the chromatin landscape. Genes Dev. 27, 1787–1799 (2013).
pubmed: 23934658
pmcid: 3759695
doi: 10.1101/gad.223834.113
Qin, H. et al. Pan-cancer analysis identifies LMNB1 as a target to redress Th1/Th2 imbalance and enhance PARP inhibitor response in human cancers. Cancer Cell Int. 22, 101 (2022).
pubmed: 35241075
pmcid: 8896121
doi: 10.1186/s12935-022-02467-4
Yang, Y. et al. Lamin B1 is a potential therapeutic target and prognostic biomarker for hepatocellular carcinoma. Bioengineered 13, 9211–9231 (2022).
pubmed: 35436411
pmcid: 9161935
doi: 10.1080/21655979.2022.2057896
Radspieler, M. M. et al. Lamin-B1 is a senescence-associated biomarker in clear-cell renal cell carcinoma. Oncol. Lett. 18, 2654–2660 (2019).
pubmed: 31402955
pmcid: 6676677
Li, W. et al. Lamin B1 overexpresses in lung adenocarcinoma and promotes proliferation in lung cancer cells via AKT pathway. Onco. Targets Ther. 13, 3129–3139 (2020).
pubmed: 32346296
pmcid: 7167283
doi: 10.2147/OTT.S229997
Yu, D. et al. Exosomes as a new frontier of cancer liquid biopsy. Mol. Cancer 21, 56 (2022).
pubmed: 35180868
pmcid: 8855550
doi: 10.1186/s12943-022-01509-9
Dang, D. K. & Park, B. H. Circulating tumor DNA: current challenges for clinical utility. J. Clin. Invest. 132, e154941 (2022).
pubmed: 35703177
pmcid: 9197509
doi: 10.1172/JCI154941
Bettegowda, C. et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci. Transl. Med. 6, 224ra24 (2014).
pubmed: 24553385
pmcid: 4017867
doi: 10.1126/scitranslmed.3007094
Aucamp, J., Bronkhorst, A. J., Badenhorst, C. P. S. & Pretorius, P. J. The diverse origins of circulating cell-free DNA in the human body: a critical re-evaluation of the literature. Biol. Rev. Camb. Philos. Soc. 93, 1649–1683 (2018).
pubmed: 29654714
doi: 10.1111/brv.12413
Snyder, M. W., Kircher, M., Hill, A. J., Daza, R. M. & Shendure, J. Cell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-of-origin. Cell 164, 57–68 (2016).
pubmed: 26771485
pmcid: 4715266
doi: 10.1016/j.cell.2015.11.050
Cheng, M. L. et al. Circulating tumor DNA in advanced solid tumors: clinical relevance and future directions. CA Cancer J. Clin. 71, 176–190 (2021).
pubmed: 33165928
doi: 10.3322/caac.21650
Higgins, M. J. et al. Detection of tumor PIK3CA status in metastatic breast cancer using peripheral blood. Clin. Cancer Res. 18, 3462–3469 (2012).
pubmed: 22421194
pmcid: 3533370
doi: 10.1158/1078-0432.CCR-11-2696
Magbanua, M. J. M. et al. Circulating tumor DNA and magnetic resonance imaging to predict neoadjuvant chemotherapy response and recurrence risk. NPJ Breast Cancer 7, 32 (2021).
pubmed: 33767190
pmcid: 7994408
doi: 10.1038/s41523-021-00239-3
Pellini, B. & Chaudhuri, A. A. Circulating tumor DNA minimal residual disease detection of non-small-cell lung cancer treated with curative intent. J. Clin. Oncol. 40, 567–575 (2022).
pubmed: 34985936
pmcid: 8853615
doi: 10.1200/JCO.21.01929
Malla, M., Loree, J. M., Kasi, P. M. & Parikh, A. R. Using circulating tumor DNA in colorectal cancer: current and evolving practices. J. Clin. Oncol. 40, 2846–2857 (2022).
pubmed: 35839443
pmcid: 9390824
doi: 10.1200/JCO.21.02615
Oxnard, G. R. et al. Assessment of resistance mechanisms and clinical implications in patients with EGFR T790M-positive lung cancer and acquired resistance to osimertinib. JAMA Oncol. 4, 1527–1534 (2018).
pubmed: 30073261
doi: 10.1001/jamaoncol.2018.2969
Quigley, D. et al. Analysis of circulating cell-free DNA identifies multiclonal heterogeneity of BRCA2 reversion mutations associated with resistance to PARP inhibitors. Cancer Discov. 7, 999–1005 (2017).
pubmed: 28450426
pmcid: 5581695
doi: 10.1158/2159-8290.CD-17-0146
Ma, S. et al. Clinical application and detection techniques of liquid biopsy in gastric cancer. Mol. Cancer 22, 7 (2023).
pubmed: 36627698
pmcid: 9832643
doi: 10.1186/s12943-023-01715-z
Aceto, N., Toner, M., Maheswaran, S. & Haber, D. A. En route to metastasis: circulating tumor cell clusters and epithelial-to-mesenchymal transition. Trends Cancer 1, 44–52 (2015).
pubmed: 28741562
doi: 10.1016/j.trecan.2015.07.006
van de Stolpe, A., Pantel, K., Sleijfer, S., Terstappen, L. W. & den Toonder, J. M. J. Circulating tumor cell isolation and diagnostics: toward routine clinical use. Cancer Res. 71, 5955–5960 (2011).
pubmed: 21896640
doi: 10.1158/0008-5472.CAN-11-1254
Castro-Giner, F. & Aceto, N. Tracking cancer progression: from circulating tumor cells to metastasis. Genome Med. 12, 31 (2020).
pubmed: 32192534
pmcid: 7082968
doi: 10.1186/s13073-020-00728-3
Alix-Panabières, C. & Pantel, K. Circulating tumor cells: liquid biopsy of cancer. Clin. Chem. 59, 110–118 (2013).
pubmed: 23014601
doi: 10.1373/clinchem.2012.194258
Kostopoulos, I. V. et al. Circulating plasma cells in newly diagnosed multiple myeloma: prognostic and more. J. Clin. Oncol. 41, 708–710 (2023).
pubmed: 36179274
doi: 10.1200/JCO.22.01606
Paoletti, C. et al. Comprehensive mutation and copy number profiling in archived circulating breast cancer tumor cells documents heterogeneous resistance mechanisms. Cancer Res. 78, 1110–1122 (2018).
pubmed: 29233927
doi: 10.1158/0008-5472.CAN-17-2686
Boral, D. et al. Molecular characterization of breast cancer CTCs associated with brain metastasis. Nat. Commun. 8, 196 (2017).
pubmed: 28775303
pmcid: 5543046
doi: 10.1038/s41467-017-00196-1
Scher, H. I. et al. Association of AR-V7 on circulating tumor cells as a treatment-specific biomarker with outcomes and survival in castration-resistant prostate cancer. JAMA Oncol. 2, 1441–1449 (2016).
pubmed: 27262168
pmcid: 5206761
doi: 10.1001/jamaoncol.2016.1828
Chemi, F. et al. Pulmonary venous circulating tumor cell dissemination before tumor resection and disease relapse. Nat. Med. 25, 1534–1539 (2019).
pubmed: 31591595
pmcid: 6986897
doi: 10.1038/s41591-019-0593-1
Miyamoto, D. T., Ting, D. T., Toner, M., Maheswaran, S. & Haber, D. A. Single-cell analysis of circulating tumor cells as a window into tumor heterogeneity. Cold Spring Harb. Symp. Quant. Biol. 81, 269–274 (2016).
pubmed: 28389596
doi: 10.1101/sqb.2016.81.031120
Pan, B. T. & Johnstone, R. M. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell 33, 967–978 (1983).
pubmed: 6307529
doi: 10.1016/0092-8674(83)90040-5
Kalluri, R. & LeBleu, V. S. The biology, function, and biomedical applications of exosomes. Science 367, eaau6977 (2020).
pubmed: 32029601
pmcid: 7717626
doi: 10.1126/science.aau6977
Paskeh, M. D. A. et al. Emerging role of exosomes in cancer progression and tumor microenvironment remodeling. J. Hematol. Oncol. 15, 83 (2022).
pubmed: 35765040
pmcid: 9238168
doi: 10.1186/s13045-022-01305-4
Kalluri, R. The biology and function of exosomes in cancer. J. Clin. Invest. 126, 1208–1215 (2016).
pubmed: 27035812
pmcid: 4811149
doi: 10.1172/JCI81135
Dai, J. et al. Exosomes: key players in cancer and potential therapeutic strategy. Signal Transduct. Target Ther. 5, 145 (2020).
pubmed: 32759948
pmcid: 7406508
doi: 10.1038/s41392-020-00261-0
Cui, S., Cheng, Z., Qin, W. & Jiang, L. Exosomes as a liquid biopsy for lung cancer. Lung Cancer 116, 46–54 (2018).
pubmed: 29413050
doi: 10.1016/j.lungcan.2017.12.012
Guo, W. et al. Liquid biopsy analysis of lipometabolic exosomes in pancreatic cancer. Cytokine Growth Factor Rev. 73, 69–77 (2023).
pubmed: 37684117
doi: 10.1016/j.cytogfr.2023.07.006
Fu, M. et al. Exosomes in gastric cancer: roles, mechanisms, and applications. Mol. Cancer 18, 41 (2019).
pubmed: 30876419
pmcid: 6419325
doi: 10.1186/s12943-019-1001-7
Yang, S. et al. Detection of mutant KRAS and TP53 DNA in circulating exosomes from healthy individuals and patients with pancreatic cancer. Cancer Biol. Ther. 18, 158–165 (2017).
pubmed: 28121262
pmcid: 5389423
doi: 10.1080/15384047.2017.1281499
Kahlert, C. et al. Identification of double-stranded genomic DNA spanning all chromosomes with mutated KRAS and p53 DNA in the serum exosomes of patients with pancreatic cancer. J. Biol. Chem. 289, 3869–3875 (2014).
pubmed: 24398677
pmcid: 3924256
doi: 10.1074/jbc.C113.532267
Salehi, M. & Sharifi, M. Exosomal miRNAs as novel cancer biomarkers: challenges and opportunities. J. Cell. Physiol. 233, 6370–6380 (2018).
pubmed: 29323722
doi: 10.1002/jcp.26481
Thind, A. & Wilson, C. Exosomal miRNAs as cancer biomarkers and therapeutic targets. Extracell. Vesicles 5, 31292 (2016).
doi: 10.3402/jev.v5.31292
Bhagirath, D. et al. microRNA-1246 is an exosomal biomarker for aggressive prostate cancer. Cancer Res. 78, 1833–1844 (2018).
pubmed: 29437039
pmcid: 5890910
doi: 10.1158/0008-5472.CAN-17-2069
Zhou, W. et al. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell 25, 501–515 (2014).
pubmed: 24735924
pmcid: 4016197
doi: 10.1016/j.ccr.2014.03.007
Kucharzewska, P. et al. Exosomes reflect the hypoxic status of glioma cells and mediate hypoxia-dependent activation of vascular cells during tumor development. Proc. Natl Acad. Sci. USA 110, 7312–7317 (2013).
pubmed: 23589885
pmcid: 3645587
doi: 10.1073/pnas.1220998110
Yokoi, A. et al. Malignant extracellular vesicles carrying MMP1 mRNA facilitate peritoneal dissemination in ovarian cancer. Nat. Commun. 8, 14470 (2017).
pubmed: 28262727
pmcid: 5343481
doi: 10.1038/ncomms14470
Peinado, H. et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat. Med. 18, 883–891 (2012).
pubmed: 22635005
pmcid: 3645291
doi: 10.1038/nm.2753
Costa-Silva, B. et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat. Cell Biol. 17, 816–826 (2015).
pubmed: 25985394
pmcid: 5769922
doi: 10.1038/ncb3169
Zhang, H. et al. Exosome-delivered EGFR regulates liver microenvironment to promote gastric cancer liver metastasis. Nat. Commun. 8, 15016 (2017).
pubmed: 28393839
pmcid: 5394240
doi: 10.1038/ncomms15016
Le, M. T. N. et al. miR-200-containing extracellular vesicles promote breast cancer cell metastasis. J. Clin. Invest. 124, 5109–5128 (2014).
pubmed: 25401471
pmcid: 4348969
doi: 10.1172/JCI75695
Hu, Y. et al. Fibroblast-derived exosomes contribute to chemoresistance through priming cancer stem cells in colorectal cancer. PLoS ONE 10, e0125625 (2015).
pubmed: 25938772
pmcid: 4418721
doi: 10.1371/journal.pone.0125625
Chen, W. et al. Exosomes from drug-resistant breast cancer cells transmit chemoresistance by a horizontal transfer of microRNAs. PLoS ONE 9, e95240 (2014).
pubmed: 24740415
pmcid: 3989268
doi: 10.1371/journal.pone.0095240
Au Yeung, C. L. et al. Exosomal transfer of stroma-derived miR21 confers paclitaxel resistance in ovarian cancer cells through targeting APAF1. Nat. Commun. 7, 11150 (2016).
pubmed: 27021436
pmcid: 4820618
doi: 10.1038/ncomms11150
Binenbaum, Y. et al. Transfer of miRNA in macrophage-derived exosomes induces drug resistance in pancreatic adenocarcinoma. Cancer Res. 78, 5287–5299 (2018).
pubmed: 30042153
doi: 10.1158/0008-5472.CAN-18-0124
Zhou, Y., Zhang, Y., Gong, H., Luo, S. & Cui, Y. The role of exosomes and their applications in cancer. Int. J. Mol. Sci. 22, 12204 (2021).
pubmed: 34830085
pmcid: 8622108
doi: 10.3390/ijms222212204
Wu, Q., Qian, W., Sun, X. & Jiang, S. Small-molecule inhibitors, immune checkpoint inhibitors, and more: FDA-approved novel therapeutic drugs for solid tumors from 1991 to 2021. J. Hematol. Oncol. 15, 143 (2022).
pubmed: 36209184
pmcid: 9548212
doi: 10.1186/s13045-022-01362-9
Li, G., Qin, Y., Xie, C., Wu, Y.-L. & Chen, X. Trends in oncology drug innovation in China. Nat. Rev. Drug Discov. 20, 15–16 (2021).
pubmed: 33154536
doi: 10.1038/d41573-020-00195-w
Cohen, P., Cross, D. & Jänne, P. A. Kinase drug discovery 20 years after imatinib: progress and future directions. Nat. Rev. Drug Discov. 20, 551–569 (2021).
pubmed: 34002056
pmcid: 8127496
doi: 10.1038/s41573-021-00195-4
Patricelli, M. P. et al. Selective inhibition of oncogenic KRAS output with small molecules targeting the inactive state. Cancer Discov. 6, 316–329 (2016).
pubmed: 26739882
doi: 10.1158/2159-8290.CD-15-1105
Parikh, K. et al. Drugging KRAS: current perspectives and state-of-art review. J. Hematol. Oncol. 15, 152 (2022).
pubmed: 36284306
pmcid: 9597994
doi: 10.1186/s13045-022-01375-4
LoRusso, P. M. & Sebolt-Leopold, J. S. One step at a time — clinical evidence that KRAS is indeed druggable. N. Engl. J. Med. 383, 1277–1278 (2020).
pubmed: 32955175
doi: 10.1056/NEJMe2026372
Keeton, A. B., Salter, E. A. & Piazza, G. A. The RAS-effector interaction as a drug target. Cancer Res. 77, 221–226 (2017).
pubmed: 28062402
pmcid: 5243175
doi: 10.1158/0008-5472.CAN-16-0938
Canon, J. et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature 575, 217–223 (2019).
pubmed: 31666701
doi: 10.1038/s41586-019-1694-1
Ostrem, J. M., Peters, U., Sos, M. L., Wells, J. A. & Shokat, K. M. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature 503, 548–551 (2013).
pubmed: 24256730
pmcid: 4274051
doi: 10.1038/nature12796
Skoulidis, F. et al. Sotorasib for lung cancers with KRAS p.G12C mutation. N. Engl. J. Med. 384, 2371–2381 (2021).
pubmed: 34096690
pmcid: 9116274
doi: 10.1056/NEJMoa2103695
Hong, D. S. et al. KRAS(G12C) inhibition with sotorasib in advanced solid tumors. N. Engl. J. Med. 383, 1207–1217 (2020).
pubmed: 32955176
pmcid: 7571518
doi: 10.1056/NEJMoa1917239
de Langen, A. J. et al. Sotorasib versus docetaxel for previously treated non-small-cell lung cancer with KRAS(G12C) mutation: a randomised, open-label, phase 3 trial. Lancet 401, 733–746 (2023).
pubmed: 36764316
doi: 10.1016/S0140-6736(23)00221-0
Fakih, M. G. et al. Sotorasib for previously treated colorectal cancers with KRAS(G12C) mutation (CodeBreaK100): a prespecified analysis of a single-arm, phase 2 trial. Lancet Oncol. 23, 115–124 (2022).
pubmed: 34919824
doi: 10.1016/S1470-2045(21)00605-7
Hallin, J. et al. The KRAS(G12C) inhibitor MRTX849 provides insight toward therapeutic susceptibility of KRAS-mutant cancers in mouse models and patients. Cancer Discov. 10, 54–71 (2020).
pubmed: 31658955
doi: 10.1158/2159-8290.CD-19-1167
Sabari, J. K. et al. Activity of adagrasib (MRTX849) in brain metastases: preclinical models and clinical data from patients with KRASG12C-mutant non-small cell lung cancer. Clin. Cancer Res. 28, 3318–3328 (2022).
pubmed: 35404402
pmcid: 9662862
doi: 10.1158/1078-0432.CCR-22-0383
Weiss, J. et al. LBA6 KRYSTAL-1: adagrasib (MRTX849) as monotherapy or combined with cetuximab (Cetux) in patients (Pts) with colorectal cancer (CRC) harboring a KRASG12C mutation. Ann. Oncol. 32, S1294 (2021).
doi: 10.1016/j.annonc.2021.08.2093
Yaeger, R. & Solit, D. B. Overcoming adaptive resistance to KRAS inhibitors through vertical pathway targeting. Clin. Cancer Res. 26, 1538–1540 (2020).
pubmed: 32001483
pmcid: 7453631
doi: 10.1158/1078-0432.CCR-19-4060
Singh, A. et al. A gene expression signature associated with “K-Ras addiction” reveals regulators of EMT and tumor cell survival. Cancer Cell 15, 489–500 (2009).
pubmed: 19477428
pmcid: 2743093
doi: 10.1016/j.ccr.2009.03.022
Muzumdar, M. D. et al. Survival of pancreatic cancer cells lacking KRAS function. Nat. Commun. 8, 1090 (2017).
pubmed: 29061961
pmcid: 5653666
doi: 10.1038/s41467-017-00942-5
Tanaka, N. et al. Clinical acquired resistance to KRAS(G12C) inhibition through a novel KRAS switch-II pocket mutation and polyclonal alterations converging on RAS-MAPK reactivation. Cancer Discov. 11, 1913–1922 (2021).
pubmed: 33824136
pmcid: 8338755
doi: 10.1158/2159-8290.CD-21-0365
Amodio, V. et al. EGFR blockade reverts resistance to KRAS(G12C) inhibition in colorectal cancer. Cancer Discov. 10, 1129–1139 (2020).
pubmed: 32430388
pmcid: 7416460
doi: 10.1158/2159-8290.CD-20-0187
Tsai, Y. S. et al. Rapid idiosyncratic mechanisms of clinical resistance to KRAS G12C inhibition. J. Clin. Invest. 132, e155523 (2022).
pubmed: 34990404
pmcid: 8843735
doi: 10.1172/JCI155523
Wang, X. et al. Identification of MRTX1133, a noncovalent, potent, and selective KRAS(G12D) inhibitor. J. Med. Chem. 65, 3123–3133 (2022).
pubmed: 34889605
doi: 10.1021/acs.jmedchem.1c01688
Hallin, J. et al. Anti-tumor efficacy of a potent and selective non-covalent KRAS(G12D) inhibitor. Nat. Med. 28, 2171–2182 (2022).
pubmed: 36216931
doi: 10.1038/s41591-022-02007-7
Ryan, M. B. & Corcoran, R. B. Therapeutic strategies to target RAS-mutant cancers. Nat. Rev. Clin. Oncol. 15, 709–720 (2018).
pubmed: 30275515
doi: 10.1038/s41571-018-0105-0
Welsch, M. E. et al. Multivalent small-molecule Pan-RAS inhibitors. Cell 168, 878–889.e29 (2017).
pubmed: 28235199
pmcid: 5362268
doi: 10.1016/j.cell.2017.02.006
Hong, S. H. et al. A Sos proteomimetic as a pan-Ras inhibitor. Proc. Natl Acad. Sci. USA 118, e2101027118 (2021).
pubmed: 33926964
pmcid: 8106295
doi: 10.1073/pnas.2101027118
Athuluri-Divakar, S. K. et al. A small molecule RAS-mimetic disrupts RAS association with effector proteins to block signaling. Cell 165, 643–655 (2016).
pubmed: 27104980
pmcid: 5006944
doi: 10.1016/j.cell.2016.03.045
Ross, S. J. et al. Targeting KRAS-dependent tumors with AZD4785, a high-affinity therapeutic antisense oligonucleotide inhibitor of KRAS. Sci. Transl. Med. 9, eaal5253 (2017).
pubmed: 28615361
doi: 10.1126/scitranslmed.aal5253
Spencer-Smith, R. et al. Inhibition of RAS function through targeting an allosteric regulatory site. Nat. Chem. Biol. 13, 62–68 (2017).
pubmed: 27820802
doi: 10.1038/nchembio.2231
Bond, M. J., Chu, L., Nalawansha, D. A., Li, K. & Crews, C. M. Targeted degradation of oncogenic KRAS(G12C) by VHL-recruiting PROTACs. ACS Cent. Sci. 6, 1367–1375 (2020).
pubmed: 32875077
pmcid: 7453568
doi: 10.1021/acscentsci.0c00411
Papke, B. & Der, C. J. Drugging RAS: know the enemy. Science 355, 1158–1163 (2017).
pubmed: 28302824
doi: 10.1126/science.aam7622
Kamerkar, S. et al. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature 546, 498–503 (2017).
pubmed: 28607485
pmcid: 5538883
doi: 10.1038/nature22341
Hou, P. & Wang, Y. A. Conquering oncogenic KRAS and its bypass mechanisms. Theranostics 12, 5691–5709 (2022).
pubmed: 35966590
pmcid: 9373815
doi: 10.7150/thno.71260
Karp, J. E. & Lancet, J. E. Tipifarnib in the treatment of newly diagnosed acute myelogenous leukemia. Biologics 2, 491–500 (2008).
pubmed: 19707379
pmcid: 2721391
Ho, A. L. et al. Tipifarnib in head and neck squamous cell carcinoma with HRAS mutations. J. Clin. Oncol. 39, 1856–1864 (2021).
pubmed: 33750196
pmcid: 8189627
doi: 10.1200/JCO.20.02903
Lee, H. W. et al. A phase II trial of tipifarnib for patients with previously treated, metastatic urothelial carcinoma harboring HRAS mutations. Clin. Cancer Res. 26, 5113–5119 (2020).
pubmed: 32636318
doi: 10.1158/1078-0432.CCR-20-1246
Hanna, G. J. et al. Tipifarnib in recurrent, metastatic HRAS-mutant salivary gland cancer. Cancer 126, 3972–3981 (2020).
pubmed: 32557577
doi: 10.1002/cncr.33036
Untch, B. R. et al. Tipifarnib inhibits HRAS-driven dedifferentiated thyroid cancers. Cancer Res. 78, 4642–4657 (2018).
pubmed: 29760048
pmcid: 6095730
doi: 10.1158/0008-5472.CAN-17-1925
Dhillon, S. Lonafarnib: first approval. Drugs 81, 283–289 (2021).
pubmed: 33590450
pmcid: 7985116
doi: 10.1007/s40265-020-01464-z
Bustinza-Linares, E., Kurzrock, R. & Tsimberidou, A. M. Salirasib in the treatment of pancreatic cancer. Future Oncol. 6, 885–891 (2010).
pubmed: 20528225
doi: 10.2217/fon.10.71
Yue, W., Wang, J., Li, Y., Fan, P. & Santen, R. J. Farnesylthiosalicylic acid blocks mammalian target of rapamycin signaling in breast cancer cells. Int. J. Cancer 117, 746–754 (2005).
pubmed: 15957161
doi: 10.1002/ijc.21222
Goldberg, L. & Kloog, Y. A Ras inhibitor tilts the balance between Rac and Rho and blocks phosphatidylinositol 3-kinase-dependent glioblastoma cell migration. Cancer Res. 66, 11709–11717 (2006).
pubmed: 17178866
doi: 10.1158/0008-5472.CAN-06-1878
Blum, R., Jacob-Hirsch, J., Amariglio, N., Rechavi, G. & Kloog, Y. Ras inhibition in glioblastoma down-regulates hypoxia-inducible factor-1alpha, causing glycolysis shutdown and cell death. Cancer Res. 65, 999–1006 (2005).
pubmed: 15705901
doi: 10.1158/0008-5472.999.65.3
Halaschek-Wiener, J. et al. A novel Ras antagonist regulates both oncogenic Ras and the tumor suppressor p53 in colon cancer cells. Mol. Med. 6, 693–704 (2000).
pubmed: 11055588
pmcid: 1949977
doi: 10.1007/BF03402049
Halaschek-Wiener, J., Kloog, Y., Wacheck, V. & Jansen, B. Farnesyl thiosalicylic acid chemosensitizes human melanoma in vivo. J. Invest. Dermatol. 120, 1–7 (2003).
doi: 10.1046/j.1523-1747.2003.12009.x
Beiner, M. E. et al. Ras antagonist inhibits growth and chemosensitizes human epithelial ovarian cancer cells. Int. J. Gynecol. Cancer 16, 200–206 (2006).
pubmed: 16515591
doi: 10.1136/ijgc-00009577-200602001-00032
Stärkel, P. et al. Ras inhibition in hepatocarcinoma by S-trans-trans-farnesylthiosalicyclic acid: Association of its tumor preventive effect with cell proliferation, cell cycle events, and angiogenesis. Mol. Carcinog. 51, 816–825 (2012).
pubmed: 21882255
doi: 10.1002/mc.20849
Gana-Weisz, M. et al. The Ras inhibitor S-trans,trans-farnesylthiosalicylic acid chemosensitizes human tumor cells without causing resistance. Clin. Cancer Res. 8, 555–565 (2002).
pubmed: 11839677
Riely, G. J. et al. A phase II trial of salirasib in patients with lung adenocarcinomas with KRAS mutations. J. Thorac. Oncol. 6, 1435–1437 (2011).
pubmed: 21847063
doi: 10.1097/JTO.0b013e318223c099
Chandra, A. et al. The GDI-like solubilizing factor PDEδ sustains the spatial organization and signalling of Ras family proteins. Nat. Cell Biol. 14, 148–158 (2011).
pubmed: 22179043
doi: 10.1038/ncb2394
Zimmermann, G. et al. Small molecule inhibition of the KRAS-PDEδ interaction impairs oncogenic KRAS signalling. Nature 497, 638–642 (2013).
pubmed: 23698361
doi: 10.1038/nature12205
Papke, B. et al. Identification of pyrazolopyridazinones as PDEδ inhibitors. Nat. Commun. 7, 11360 (2016).
pubmed: 27094677
pmcid: 4843002
doi: 10.1038/ncomms11360
Cheng, J., Li, Y., Wang, X., Dong, G. & Sheng, C. Discovery of novel PDEδ degraders for the treatment of KRAS mutant colorectal cancer. J. Med. Chem. 63, 7892–7905 (2020).
pubmed: 32603594
doi: 10.1021/acs.jmedchem.0c00929
Sun, Q. et al. Discovery of small molecules that bind to K-Ras and inhibit Sos-mediated activation. Angew. Chem. Int. Ed. Engl. 51, 6140–6143 (2012).
pubmed: 22566140
pmcid: 3620661
doi: 10.1002/anie.201201358
Leshchiner, E. S. et al. Direct inhibition of oncogenic KRAS by hydrocarbon-stapled SOS1 helices. Proc. Natl Acad. Sci. USA 112, 1761–1766 (2015).
pubmed: 25624485
pmcid: 4330742
doi: 10.1073/pnas.1413185112
Hillig, R. C. et al. Discovery of potent SOS1 inhibitors that block RAS activation via disruption of the RAS–SOS1 interaction. Proc. Natl Acad. Sci. USA 116, 2551–2560 (2019).
pubmed: 30683722
pmcid: 6377443
doi: 10.1073/pnas.1812963116
Chen, T. et al. Inhibition of son of sevenless homologue 1 (SOS1): promising therapeutic treatment for KRAS-mutant cancers. Eur. J. Med. Chem. 261, 115828 (2023).
pubmed: 37778239
doi: 10.1016/j.ejmech.2023.115828
Hofmann, M. H. et al. Bi-3406, a potent and selective sos1–kras interaction inhibitor, is effective in kras-driven cancers through combined mek inhibition. Cancer Discov. 11, 142–157 (2021).
pubmed: 32816843
doi: 10.1158/2159-8290.CD-20-0142
Zhou, Z. et al. Discovery of a potent, cooperative, and selective SOS1 PROTAC ZZ151 with in vivo antitumor efficacy in KRAS-mutant cancers. J. Med. Chem. 66, 4197–4214 (2023).
pubmed: 36897932
doi: 10.1021/acs.jmedchem.3c00075
Ruess, D. A. et al. Mutant KRAS-driven cancers depend on PTPN11/SHP2 phosphatase. Nat. Med. 24, 954–960 (2018).
pubmed: 29808009
doi: 10.1038/s41591-018-0024-8
Liu, C. et al. Combinations with allosteric SHP2 inhibitor TNO155 to block receptor tyrosine kinase signaling. Clin. Cancer Res. 27, 342–354 (2021).
pubmed: 33046519
doi: 10.1158/1078-0432.CCR-20-2718
Lamarche, M. J. et al. Identification of TNO155, an allosteric SHP2 inhibitor for the treatment of cancer. J. Med. Chem. 63, 13578–13594 (2020).
pubmed: 32910655
doi: 10.1021/acs.jmedchem.0c01170
Chen, Y. N. P. et al. Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases. Nature 535, 148–152 (2016).
pubmed: 27362227
doi: 10.1038/nature18621
De Santis, M. C., Gulluni, F., Campa, C. C., Martini, M. & Hirsch, E. Targeting PI3K signaling in cancer: Challenges and advances. Biochim. Biophys. Acta Rev. Cancer 1871, 361–366 (2019).
pubmed: 30946868
doi: 10.1016/j.bbcan.2019.03.003
Stephen, A. G., Esposito, D., Bagni, R. K. & McCormick, F. Dragging ras back in the ring. Cancer Cell 25, 272–281 (2014).
pubmed: 24651010
doi: 10.1016/j.ccr.2014.02.017
Meng, D. et al. Development of PI3K inhibitors: advances in clinical trials and new strategies (Review). Pharmacol. Res. 173, 105900 (2021).
pubmed: 34547385
doi: 10.1016/j.phrs.2021.105900
Liu, N. et al. BAY 80-6946 is a highly selective intravenous pI3K inhibitor with potent p110α and p110δ activities in tumor cell lines and xenograft models. Mol. Cancer Ther. 12, 2319–2330 (2013).
pubmed: 24170767
doi: 10.1158/1535-7163.MCT-12-0993-T
Kojima, T. et al. Phase II study of BKM120 in patients with advanced esophageal squamous cell carcinoma (EPOC1303). Esophagus 19, 702–710 (2022).
pubmed: 35904643
pmcid: 9436835
doi: 10.1007/s10388-022-00928-3
De Gooijer, M. C. et al. Buparlisib is a brain penetrable pan-PI3K inhibitor. Sci. Rep. 8, 10784 (2018).
Song, K. W. et al. RTK-dependent inducible degradation of mutant PI3Kα drives GDC-0077 (Inavolisib) efficacy. Cancer Discov. 12, 204–219 (2022).
pubmed: 34544753
doi: 10.1158/2159-8290.CD-21-0072
Mateo, J. et al. A first-time-in-human study of GSK2636771, a phosphoinositide 3 kinase beta-selective inhibitor, in patients with advanced solid tumors. Clin. Cancer Res. 23, 5981–5992 (2017).
pubmed: 28645941
doi: 10.1158/1078-0432.CCR-17-0725
Barlaam, B. et al. Discovery of (R)-8-(1-(3,5-difluorophenylamino)ethyl)-N,N-dimethyl-2-morpholino-4-oxo-4H-chromene-6-carboxamide (AZD8186): a potent and selective inhibitor of PI3Kβ and PI3Kδ for the treatment of PTEN-deficient cancers. J. Med. Chem. 58, 943–962 (2015).
pubmed: 25514658
doi: 10.1021/jm501629p
Yu, M. et al. Development and safety of PI3K inhibitors in cancer. Arch. Toxicol. 97, 635–650 (2023).
pubmed: 36773078
pmcid: 9968701
doi: 10.1007/s00204-023-03440-4
Dhillon, S. & Keam, S. J. Umbralisib: first approval. Drugs 81, 857–866 (2021).
pubmed: 33797740
doi: 10.1007/s40265-021-01504-2
Roskoski, R. J. Properties of FDA-approved small molecule phosphatidylinositol 3-kinase inhibitors prescribed for the treatment of malignancies. Pharmacol. Res. 168, 105579 (2021).
pubmed: 33774181
doi: 10.1016/j.phrs.2021.105579
Rodon, J., Dienstmann, R., Serra, V. & Tabernero, J. Development of PI3K inhibitors: lessons learned from early clinical trials. Nat. Rev. Clin. Oncol. 10, 143–153 (2013).
pubmed: 23400000
doi: 10.1038/nrclinonc.2013.10
Addie, M. et al. Discovery of 4-amino-N-[(1 S)-1-(4-chlorophenyl)-3-hydroxypropyl]-1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperidine-4-carboxamide (AZD5363), an orally bioavailable, potent inhibitor of Akt kinases. J. Med. Chem. 56, 2059–2073 (2013).
pubmed: 23394218
doi: 10.1021/jm301762v
Lin, J. et al. Targeting activated Akt with GDC-0068, a novel selective Akt inhibitor that is efficacious in multiple tumor models. Clin. Cancer Res. 19, 1760–1772 (2013).
pubmed: 23287563
doi: 10.1158/1078-0432.CCR-12-3072
Toson, B., Fortes, I. S., Roesler, R. & Andrade, S. F. Targeting Akt/PKB in pediatric tumors: a review from preclinical to clinical trials. Pharm. Res. 183, 106403 (2022).
doi: 10.1016/j.phrs.2022.106403
Chen, Y. & Zhou, X. Research progress of mTOR inhibitors. Eur. J. Med. Chem. 208, 112820 (2020).
pubmed: 32966896
doi: 10.1016/j.ejmech.2020.112820
Coppin, C. Everolimus: the first approved product for patients with advanced renal cell cancer after sunitinib and/or sorafenib. Biologics 4, 91–101 (2010).
pubmed: 20531964
pmcid: 2880340
Raphael, J. et al. Everolimus in advanced breast cancer: a systematic review and meta-analysis. Target Oncol. 15, 723–732 (2020).
pubmed: 33151471
doi: 10.1007/s11523-020-00770-6
Kwitkowski, V. E. et al. FDA approval summary: temsirolimus as treatment for advanced renal cell carcinoma. Oncologist 15, 428–435 (2010).
pubmed: 20332142
pmcid: 3227966
doi: 10.1634/theoncologist.2009-0178
Dancey, J. MTOR signaling and drug development in cancer. Nat. Rev. Clin. Oncol. 7, 209–219 (2010).
pubmed: 20234352
doi: 10.1038/nrclinonc.2010.21
Davies, H. et al. Mutations of the BRAF gene in human cancer. Nature 417, 949–954 (2002).
pubmed: 12068308
doi: 10.1038/nature00766
Sullivan, R. J. et al. First-in-class ERK1/2 inhibitor ulixertinib (BVD-523) in patients with MAPK mutant advanced solid tumors: results of a phase I dose-escalation and expansion study. Cancer Discov. 8, 184–195 (2018).
pubmed: 29247021
doi: 10.1158/2159-8290.CD-17-1119
Callahan, M. K. et al. Progression of RAS-mutant leukemia during RAF inhibitor treatment. N. Engl. J. Med. 367, 2316–2321 (2012).
pubmed: 23134356
pmcid: 3627494
doi: 10.1056/NEJMoa1208958
Degirmenci, U., Yap, J., Sim, Y. R. M., Qin, S. & Hu, J. Drug resistance in targeted cancer therapies with RAF inhibitors. Cancer Drug Resist. 4, 665–683 (2021).
pubmed: 35582307
pmcid: 9094075
Peng, S. B. et al. Inhibition of RAF isoforms and active dimers by LY3009120 leads to anti-tumor activities in RAS or BRAF mutant cancers. Cancer Cell 28, 384–398 (2015).
pubmed: 26343583
doi: 10.1016/j.ccell.2015.08.002
Monaco, K. A. et al. LXH254, a potent and selective ARAF-Sparing inhibitor of BRAF and CRAF for the treatment of MAPK-Driven tumors. Clin. Cancer Res. 27, 2061–2073 (2021).
pubmed: 33355204
doi: 10.1158/1078-0432.CCR-20-2563
Sullivan, R. J. et al. A phase I study of LY3009120, a pan-RAF inhibitor, in patients with advanced or metastatic cancer. Mol. Cancer Ther. 19, 460–467 (2020).
pubmed: 31645440
doi: 10.1158/1535-7163.MCT-19-0681
Zhang, C. et al. RAF inhibitors that evade paradoxical MAPK pathway activation. Nature 526, 583–586 (2015).
pubmed: 26466569
doi: 10.1038/nature14982
Moschos, S. J. et al. Development of MK-8353, an orally administered ERK1/2 inhibitor, in patients with advanced solid tumors. JCI Insight 3, e92352 (2018).
pubmed: 29467321
pmcid: 5916243
doi: 10.1172/jci.insight.92352
Morris, E. J. et al. Discovery of a novel ERK inhibitor with activity in models of acquired resistance to BRAF and MEK inhibitors. Cancer Discov. 3, 742–750 (2013).
pubmed: 23614898
doi: 10.1158/2159-8290.CD-13-0070
Poulikakos, P. I. & Solit, D. B. Resistance to MEK inhibitors: should we co-target upstream? Sci. Signal 4, pe16 (2011).
pubmed: 21447797
doi: 10.1126/scisignal.2001948
Engelman, J. A. et al. Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat. Med. 14, 1351–1356 (2008).
pubmed: 19029981
pmcid: 2683415
doi: 10.1038/nm.1890
Posch, C. et al. Combined targeting of MEK and PI3K/mTOR effector pathways is necessary to effectively inhibit NRAS mutant melanoma in vitro and in vivo. Proc. Natl Acad. Sci. USA 110, 4015–4020 (2013).
pubmed: 23431193
pmcid: 3593920
doi: 10.1073/pnas.1216013110
Junttila, M. R. et al. Modeling targeted inhibition of MEK and PI3 kinase in human pancreatic cancer. Mol. Cancer Ther. 14, 40–47 (2015).
pubmed: 25376606
doi: 10.1158/1535-7163.MCT-14-0030
She, Q. B. et al. 4E-BP1 is a key effector of the oncogenic activation of the AKT and ERK signaling pathways that integrates their function in tumors. Cancer Cell 18, 39–51 (2010).
pubmed: 20609351
pmcid: 3286650
doi: 10.1016/j.ccr.2010.05.023
Mughal, M. J., Bhadresha, K. & Kwok, H. F. CDK inhibitors from past to present: a new wave of cancer therapy. Semin. Cancer Biol. 88, 106–122 (2023).
pubmed: 36565895
doi: 10.1016/j.semcancer.2022.12.006
Wang, S. & Chen, F.-E. Small-molecule MDM2 inhibitors in clinical trials for cancer therapy. Eur. J. Med. Chem. 236, 114334 (2022).
pubmed: 35429910
doi: 10.1016/j.ejmech.2022.114334
Ingham, M. & Schwartz, G. K. Cell-cycle therapeutics come of age. J. Clin. Oncol. 35, 2949–2959 (2017).
pubmed: 28580868
pmcid: 6075824
doi: 10.1200/JCO.2016.69.0032
Goel, S., Bergholz, J. S. & Zhao, J. J. Targeting CDK4 and CDK6 in cancer. Nat. Rev. Cancer 22, 356–372 (2022).
pubmed: 35304604
pmcid: 9149100
doi: 10.1038/s41568-022-00456-3
Fassl, A., Geng, Y. & Sicinski, P. CDK4 and CDK6 kinases: from basic science to cancer therapy. Science 375, eabc1495 (2022).
pubmed: 35025636
pmcid: 9048628
doi: 10.1126/science.abc1495
Dhillon, S. Palbociclib: first global approval. Drugs 75, 543–551 (2015).
pubmed: 25792301
doi: 10.1007/s40265-015-0379-9
Corona, S. P. & Generali, D. Abemaciclib: a CDK4/6 inhibitor for the treatment of HR + /HER2- advanced breast cancer. Drug Des. Devel. Ther. 12, 321–330 (2018).
pubmed: 29497278
pmcid: 5818877
doi: 10.2147/DDDT.S137783
Hortobagyi, G. N. et al. Ribociclib as first-line therapy for HR-positive, advanced breast cancer. N. Engl. J. Med. 375, 1738–1748 (2016).
pubmed: 27717303
doi: 10.1056/NEJMoa1609709
Wedam, S. et al. FDA approval summary: palbociclib for male patients with metastatic breast cancer. Clin. Cancer Res. 26, 1208–1212 (2020).
pubmed: 31649043
doi: 10.1158/1078-0432.CCR-19-2580
Maurer, C., Martel, S., Zardavas, D. & Ignatiadis, M. New agents for endocrine resistance in breast cancer. Breast 34, 1–11 (2017).
pubmed: 28448864
doi: 10.1016/j.breast.2017.04.007
Finn, R. S. et al. Overall survival results from the randomized phase 2 study of palbociclib in combination with letrozole versus letrozole alone for first-line treatment of ER + /HER2- advanced breast cancer (PALOMA-1, TRIO-18). Breast Cancer Res. Treat. 183, 419–428 (2020).
pubmed: 32683565
pmcid: 7383036
doi: 10.1007/s10549-020-05755-7
Barroso-Sousa, R., Shapiro, G. I. & Tolaney, S. M. Clinical development of the CDK4/6 inhibitors ribociclib and abemaciclib in breast cancer. Breast Care 11, 167–173 (2016).
pubmed: 27493615
pmcid: 4960359
doi: 10.1159/000447284
Tripathy, D. et al. Ribociclib plus endocrine therapy for premenopausal women with hormone-receptor-positive, advanced breast cancer (MONALEESA-7): a randomised phase 3 trial. Lancet Oncol. 19, 904–915 (2018).
pubmed: 29804902
doi: 10.1016/S1470-2045(18)30292-4
Fujiwara, Y. et al. Phase 1 study of abemaciclib, an inhibitor of CDK 4 and 6, as a single agent for Japanese patients with advanced cancer. Cancer Chemother. Pharmacol. 78, 281–288 (2016).
pubmed: 27312735
doi: 10.1007/s00280-016-3085-8
Torres-Guzmán, R. et al. Preclinical characterization of abemaciclib in hormone receptor positive breast cancer. Oncotarget 8, 69493–69507 (2017).
pubmed: 29050219
pmcid: 5642494
doi: 10.18632/oncotarget.17778
Palumbo, A., Lau, G. & Saraceni, M. Abemaciclib: the newest CDK4/6 inhibitor for the treatment of breast cancer. Ann. Pharmacother. 53, 178–185 (2019).
pubmed: 30099886
doi: 10.1177/1060028018795146
Patnaik, A. et al. Efficacy and safety of abemaciclib, an inhibitor of CDK4 and CDK6, for patients with breast cancer, non-small cell lung cancer, and other solid tumors. Cancer Discov. 6, 740–753 (2016).
pubmed: 27217383
doi: 10.1158/2159-8290.CD-16-0095
Sledge, G. W. et al. MONARCH 2: abemaciclib in combination with fulvestrant in women with HR + /HER2-advanced breast cancer who had progressed while receiving endocrine therapy. J. Clin. Oncol. 35, 2875–2884 (2017).
pubmed: 28580882
doi: 10.1200/JCO.2017.73.7585
Dickler, M. N. et al. MONARCH 1, a phase II study of abemaciclib, a CDK4 and CDK6 inhibitor, as a single agent, in patients with refractory HR+/HER2− metastatic breast cancer. Clin. Cancer Res. 24, 5485–5485 (2018).
Goetz, M. P. et al. MONARCH 3: abemaciclib as initial therapy for advanced breast cancer. J. Clin. Oncol. 35, 3638–3646 (2017).
pubmed: 28968163
doi: 10.1200/JCO.2017.75.6155
Dhillon, S. Trilaciclib: first approval. Drugs 81, 867–874 (2021).
pubmed: 33861388
doi: 10.1007/s40265-021-01508-y
Hu, W., Wang, L., Luo, J., Zhang, J. & Li, N. The potent novel CDK4/6 inhibitor TQB3616 in hormone receptor positive breast cancer: preclinical characterization with in vitro and human tumor xenograft models. Breast Cancer 15, 899–912 (2023).
pubmed: 38090281
pmcid: 10715022
Liao, X. et al. SPH3643: a novel cyclin-dependent kinase 4/6 inhibitor with good anticancer efficacy and strong blood-brain barrier permeability. Cancer Sci. 111, 1761–1773 (2020).
pubmed: 32103527
pmcid: 7226180
doi: 10.1111/cas.14367
Zhang, P. et al. A phase 1 study of dalpiciclib, a cyclin-dependent kinase 4/6 inhibitor in Chinese patients with advanced breast cancer. Biomark. Res. 9, 24 (2021).
pubmed: 33845905
pmcid: 8042970
doi: 10.1186/s40364-021-00271-2
Sedlacek, H. et al. Flavopiridol (L86 8275; NSC 649890), a new kinase inhibitor for tumor therapy. Int. J. Oncol. 9, 1143–1168 (1996).
pubmed: 21541623
Murphy, C. G. & Dickler, M. N. The role of CDK4/6 inhibition in breast cancer. Oncologist 20, 483–490 (2015).
pubmed: 25876993
pmcid: 4425391
doi: 10.1634/theoncologist.2014-0443
Kussie, P. H. et al. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274, 948–953 (1996).
pubmed: 8875929
doi: 10.1126/science.274.5289.948
Konopleva, M. et al. MDM2 inhibition: an important step forward in cancer therapy. Leukemia 34, 2858–2874 (2020).
pubmed: 32651541
doi: 10.1038/s41375-020-0949-z
Vassilev, L. T. et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303, 844–848 (2004).
pubmed: 14704432
doi: 10.1126/science.1092472
Andreeff, M. et al. Results of the phase I trial of RG7112, a small-molecule MDM2 antagonist in leukemia. Clin. Cancer Res. 22, 868–876 (2016).
pubmed: 26459177
doi: 10.1158/1078-0432.CCR-15-0481
Ding, Q. et al. Discovery of RG7388, a potent and selective p53-MDM2 inhibitor in clinical development. J. Med. Chem. 56, 5979–5983 (2013).
pubmed: 23808545
doi: 10.1021/jm400487c
Erba, H. P. et al. Phase 1b study of the MDM2 inhibitor AMG 232 with or without trametinib in relapsed/refractory acute myeloid leukemia. Blood Adv. 3, 1939–1949 (2019).
pubmed: 31253596
pmcid: 6616264
doi: 10.1182/bloodadvances.2019030916
Wang, S. et al. SAR405838: an optimized inhibitor of MDM2-p53 interaction that induces complete and durable tumor regression. Cancer Res. 74, 5855–5865 (2014).
pubmed: 25145672
pmcid: 4247201
doi: 10.1158/0008-5472.CAN-14-0799
Aguilar, A. et al. Discovery of 4-((3’R,4’S,5’R)-6″-chloro-4’-(3-chloro-2-fluorophenyl)-1’-ethyl-2″-oxodispiro[cyclohexane-1,2’-pyrrolidine-3’,3″-indoline]-5’-carboxamido)bicyclo[2.2.2]octane-1-carboxylic acid (AA-115/APG-115): a potent and orally active murine double minute 2 (MDM2) inhibitor in clinical development. J. Med. Chem. 60, 2819–2839 (2017).
Holzer, P. et al. Discovery of a dihydroisoquinolinone derivative (NVP-CGM097): a highly potent and selective MDM2 inhibitor undergoing phase 1 clinical trials in p53wt tumors. J. Med. Chem. 58, 6348–6358 (2015).
pubmed: 26181851
doi: 10.1021/acs.jmedchem.5b00810
Stein, E. M. et al. Results from a first-in-human phase I study of siremadlin (HDM201) in patients with advanced wild-type TP53 solid tumors and acute leukemia. Clin. Cancer Res. 28, 870–881 (2022).
pubmed: 34862243
doi: 10.1158/1078-0432.CCR-21-1295
Wagner, A. J. et al. Phase I trial of the human double minute 2 inhibitor MK-8242 in patients with advanced solid tumors. J. Clin. Oncol. 35, 1304–1311 (2017).
pubmed: 28240971
pmcid: 5946729
doi: 10.1200/JCO.2016.70.7117
Ravandi, F. et al. A phase I trial of the human double minute 2 inhibitor (MK-8242) in patients with refractory/recurrent acute myelogenous leukemia (AML). Leuk. Res. 48, 92–100 (2016).
pubmed: 27544076
pmcid: 5408350
doi: 10.1016/j.leukres.2016.07.004
Senapati, J. et al. A phase I study of milademetan (DS3032b) in combination with low dose cytarabine with or without venetoclax in acute myeloid leukemia: clinical safety, efficacy, and correlative analysis. Blood Cancer J. 13, 101 (2023).
pubmed: 37386016
pmcid: 10310786
doi: 10.1038/s41408-023-00871-1
Fang, Y., Liao, G. & Yu, B. Small-molecule MDM2/X inhibitors and PROTAC degraders for cancer therapy: advances and perspectives. Acta Pharm. Sin. B 10, 1253–1278 (2020).
pubmed: 32874827
pmcid: 7452049
doi: 10.1016/j.apsb.2020.01.003
Jackson, M. R. et al. Radiolabeled oligonucleotides targeting the RNA subunit of telomerase inhibit telomerase and induce DNA damage in telomerase-positive cancer cells. Cancer Res. 79, 4627–4637 (2019).
pubmed: 31311806
pmcid: 7611324
doi: 10.1158/0008-5472.CAN-18-3594
Guterres, A. N. & Villanueva, J. Targeting telomerase for cancer therapy. Oncogene 39, 5811–5824 (2020).
pubmed: 32733068
pmcid: 7678952
doi: 10.1038/s41388-020-01405-w
Lai, T. P. et al. A method for measuring the distribution of the shortest telomeres in cells and tissues. Nat. Commun. 8, 1356 (2017).
pubmed: 29116081
pmcid: 5676791
doi: 10.1038/s41467-017-01291-z
Joseph, I. et al. The telomerase inhibitor imetelstat depletes cancer stem cells in breast and pancreatic cancer cell lines. Cancer Res. 70, 9494–9504 (2010).
pubmed: 21062983
doi: 10.1158/0008-5472.CAN-10-0233
Dikmen, Z. G. et al. In vivo inhibition of lung cancer by GRN163L: a novel human telomerase inhibitor. Cancer Res. 65, 7866–7873 (2005).
pubmed: 16140956
doi: 10.1158/0008-5472.CAN-05-1215
Marian, C. O., Wright, W. E. & Shay, J. W. The effects of telomerase inhibition on prostate tumor-initiating cells. Int. J. Cancer 127, 321–331 (2010).
pubmed: 19908230
doi: 10.1002/ijc.25043
Burchett, K. M., Yan, Y. & Ouellette, M. M. Telomerase inhibitor imetelstat (GRN163L) limits the lifespan of human pancreatic cancer cells. PLoS ONE 9, e85155 (2014).
pubmed: 24409321
pmcid: 3883701
doi: 10.1371/journal.pone.0085155
Hu, Y., Bobb, D., He, J., Hill, D. A. & Dome, J. S. The HSP90 inhibitor alvespimycin enhances the potency of telomerase inhibition by imetelstat in human osteosarcoma. Cancer Biol. Ther. 16, 949–957 (2015).
pubmed: 25920748
pmcid: 4622625
doi: 10.1080/15384047.2015.1040964
Marian, C. O. et al. The telomerase antagonist, imetelstat, efficiently targets glioblastoma tumor-initiating cells leading to decreased proliferation and tumor growth. Clin. Cancer Res. 16, 154–163 (2010).
pubmed: 20048334
pmcid: 2883447
doi: 10.1158/1078-0432.CCR-09-2850
Vonderheide, R. H. Telomerase as a universal tumor-associated antigen for cancer immunotherapy. Oncogene 21, 674–679 (2002).
pubmed: 11850795
doi: 10.1038/sj.onc.1205074
Ruden, M. & Puri, N. Novel anticancer therapeutics targeting telomerase. Cancer Treat. Rev. 39, 444–456 (2013).
pubmed: 22841437
doi: 10.1016/j.ctrv.2012.06.007
Kyte, J. A. Cancer vaccination with telomerase peptide GV1001. Expert Opin. Investig. Drugs 18, 687–694 (2009).
pubmed: 19388882
doi: 10.1517/13543780902897631
Hemann, M. T. & Greider, C. W. Wild-derived inbred mouse strains have short telomeres. Nucleic Acids Res. 28, 4474–4478 (2000).
pubmed: 11071935
pmcid: 113886
doi: 10.1093/nar/28.22.4474
Greenberg, R. A., Allsopp, R. C., Chin, L., Morin, G. B. & DePinho, R. A. Expression of mouse telomerase reverse transcriptase during development, differentiation and proliferation. Oncogene 16, 1723–1730 (1998).
pubmed: 9582020
doi: 10.1038/sj.onc.1201933
Sherwood, L. M., Parris, E. E. & Folkman, J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285, 1182–1186 (1971).
Gasparini, G., Longo, R., Toi, M. & Ferrara, N. Angiogenic inhibitors: a new therapeutic strategy in oncology. Nat. Clin. Pract. Oncol. 2, 562–577 (2005).
pubmed: 16270097
doi: 10.1038/ncponc0342
Wilke, H. et al. Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): a double-blind, randomised phase 3 trial. Lancet Oncol. 15, 1224–1235 (2014).
pubmed: 25240821
doi: 10.1016/S1470-2045(14)70420-6
Itatani, Y., Kawada, K., Yamamoto, T. & Sakai, Y. Resistance to anti-angiogenic therapy in cancer-alterations to anti-VEGF pathway. Int. J. Mol. Sci. 19, 1–18 (2018).
doi: 10.3390/ijms19041232
Kelly, R. J., Darnell, C. & Rixe, O. Target inhibition in antiangiogenic therapy a wide spectrum of selectivity and specificity. Cancer J. 16, 635–642 (2010).
pubmed: 21131797
doi: 10.1097/PPO.0b013e3181ff37cf
de Oliveira Dias, J. R., de Andrade, G. C., Novais, E. A., Farah, M. E. & Rodrigues, E. B. Fusion proteins for treatment of retinal diseases: aflibercept, ziv-aflibercept, and conbercept. Int. J. Retin. Vitr. 2, 3 (2016).
doi: 10.1186/s40942-016-0026-y
Gotink, K. J. & Verheul, H. M. W. Anti-angiogenic tyrosine kinase inhibitors: what is their mechanism of action? Angiogenesis 13, 1–14 (2010).
pubmed: 20012482
doi: 10.1007/s10456-009-9160-6
Akce, M., El-Rayes, B. F. & Bekaii-Saab, T. S. Frontline therapy for advanced hepatocellular carcinoma: an update. Ther. Adv. Gastroenterol. 15, 17562848221086126 (2022).
doi: 10.1177/17562848221086126
Cheng, A.-L. et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol. 10, 25–34 (2009).
pubmed: 19095497
doi: 10.1016/S1470-2045(08)70285-7
Zhao, Y., Zhang, Y.-N., Wang, K.-T. & Chen, L. Lenvatinib for hepatocellular carcinoma: from preclinical mechanisms to anti-cancer therapy. Biochim Biophys. Acta Rev. Cancer 1874, 188391 (2020).
pubmed: 32659252
doi: 10.1016/j.bbcan.2020.188391
Matsuki, M. et al. Targeting of tumor growth and angiogenesis underlies the enhanced antitumor activity of lenvatinib in combination with everolimus. Cancer Sci. 108, 763–771 (2017).
pubmed: 28107584
pmcid: 5406533
doi: 10.1111/cas.13169
Yamamoto, Y. et al. Lenvatinib, an angiogenesis inhibitor targeting VEGFR/FGFR, shows broad antitumor activity in human tumor xenograft models associated with microvessel density and pericyte coverage. Vasc. Cell 6, 18 (2014).
pubmed: 25197551
pmcid: 4156793
doi: 10.1186/2045-824X-6-18
Matsui, J. et al. E7080, a novel inhibitor that targets multiple kinases, has potent antitumor activities against stem cell factor producing human small cell lung cancer H146, based on angiogenesis inhibition. Int. J. Cancer 122, 664–671 (2008).
pubmed: 17943726
doi: 10.1002/ijc.23131
Matsui, J. et al. Multi-kinase inhibitor E7080 suppresses lymph node and lung metastases of human mammary breast tumor MDA-MB-231 via inhibition of vascular endothelial growth factor-receptor (VEGF-R) 2 and VEGF-R3 kinase. Clin. Cancer Res. 14, 5459–5465 (2008).
pubmed: 18765537
doi: 10.1158/1078-0432.CCR-07-5270
Ogasawara, S. et al. Antiproliferative effect of lenvatinib on human liver cancer cell lines in vitro and in vivo. Anticancer Res. 39, 5973–5982 (2019).
pubmed: 31704822
doi: 10.21873/anticanres.13802
Song, Y. et al. Anti-angiogenic agents in combination with immune checkpoint inhibitors: a promising strategy for cancer treatment. Front. Immunol. 11, 1–17 (2020).
doi: 10.3389/fimmu.2020.01956
Zhang, Y. et al. Maintenance of antiangiogenic and antitumor effects by orally active low-dose capecitabine for long-term cancer therapy. Proc. Natl Acad. Sci. USA 114, E5226–E5235 (2017).
pubmed: 28607065
pmcid: 5495268
Babina, I. S. & Turner, N. C. Advances and challenges in targeting FGFR signalling in cancer. Nat. Rev. Cancer 17, 318–332 (2017).
pubmed: 28303906
doi: 10.1038/nrc.2017.8
Hallinan, N. et al. Targeting the fibroblast growth factor receptor family in cancer. Cancer Treat. Rev. 46, 51–62 (2016).
pubmed: 27109926
doi: 10.1016/j.ctrv.2016.03.015
André, F. et al. Targeting FGFR with dovitinib (TKI258): Preclinical and clinical data in breast cancer. Clin. Cancer Res. 19, 3693–3702 (2013).
pubmed: 23658459
doi: 10.1158/1078-0432.CCR-13-0190
Angevin, E. et al. Phase I study of dovitinib (TKI258), an oral FGFR, VEGFR, and PDGFR inhibitor, in advanced or metastatic renal cell carcinoma. Clin. Cancer Res. 19, 1257–1268 (2013).
pubmed: 23339124
doi: 10.1158/1078-0432.CCR-12-2885
Okamoto, I. et al. Phase I safety, pharmacokinetic, and biomarker study of BIBF 1120, an oral triple tyrosine kinase inhibitor in patients with advanced solid tumors. Mol. Cancer Ther. 9, 2825–2833 (2010).
pubmed: 20688946
doi: 10.1158/1535-7163.MCT-10-0379
Soria, J.-C. et al. Phase I/IIa study evaluating the safety, efficacy, pharmacokinetics, and pharmacodynamics of lucitanib in advanced solid tumors. Ann. Oncol. 25, 2244–2251 (2014).
pubmed: 25193991
doi: 10.1093/annonc/mdu390
Tan, F. H., Putoczki, T. L., Stylli, S. S. & Luwor, R. B. Ponatinib: a novel multi-tyrosine kinase inhibitor against human malignancies. Onco. Targets Ther. 12, 635–645 (2019).
pubmed: 30705592
pmcid: 6343508
doi: 10.2147/OTT.S189391
Kang, C. Infigratinib: first approval. Drugs 81, 1355–1360 (2021).
pubmed: 34279850
pmcid: 8610935
doi: 10.1007/s40265-021-01567-1
Markham, A. Erdafitinib: first global approval. Drugs 79, 1017–1021 (2019).
pubmed: 31161538
doi: 10.1007/s40265-019-01142-9
Syed, Y. Y. Futibatinib: first approval. Drugs 82, 1737–1743 (2022).
pubmed: 36441501
doi: 10.1007/s40265-022-01806-z
Gandhy, S. U. et al. FDA approval summary: futibatinib for unresectable advanced or metastatic, chemotherapy refractory intrahepatic cholangiocarcinoma with FGFR2 fusions or other rearrangements. Clin. Cancer Res. 29, 4027–4031 (2023).
pubmed: 37289037
pmcid: 10592512
doi: 10.1158/1078-0432.CCR-23-1042
Liang, G., Chen, G., Wei, X., Zhao, Y. & Li, X. Small molecule inhibition of fibroblast growth factor receptors in cancer. Cytokine Growth Factor Rev. 24, 467–475 (2013).
pubmed: 23830577
doi: 10.1016/j.cytogfr.2013.05.002
Roberts, W. G. et al. Antiangiogenic and antitumor activity of a selective PDGFR tyrosine kinase inhibitor, CP-673,451. Cancer Res 65, 957–966 (2005).
pubmed: 15705896
doi: 10.1158/0008-5472.957.65.3
Wang, Q. et al. Discovery of 4-((N-(2-(dimethylamino)ethyl)acrylamido)methyl)-N-(4-methyl-3-((4-(pyridin-3-yl)pyrimidin-2-yl)amino)phenyl)benzamide (CHMFL-PDGFR-159) as a highly selective type II PDGFRα kinase inhibitor for PDGFRα driving chronic eosinophilic leukemia. Eur. J. Med. Chem. 150, 366–384 (2018).
pubmed: 29544149
doi: 10.1016/j.ejmech.2018.03.003
Papadopoulos, N. & Lennartsson, J. The PDGF/PDGFR pathway as a drug target. Mol. Asp. Med. 62, 75–88 (2018).
doi: 10.1016/j.mam.2017.11.007
Ferrari, S. M. et al. Sunitinib in the treatment of thyroid cancer. Curr. Med. Chem. 26, 963–972 (2019).
pubmed: 28990511
doi: 10.2174/0929867324666171006165942
Schmid, T. A. & Gore, M. E. Sunitinib in the treatment of metastatic renal cell carcinoma. Ther. Adv. Urol. 8, 348–371 (2016).
pubmed: 27904651
pmcid: 5117167
doi: 10.1177/1756287216663979
He, W. et al. Artesunate regulates neurite outgrowth inhibitor protein B receptor to overcome resistance to sorafenib in hepatocellular carcinoma cells. Front. Pharmacol. 12, 615889 (2021).
pubmed: 33716742
pmcid: 7946852
doi: 10.3389/fphar.2021.615889
Mehta, M. et al. Regorafenib sensitizes human breast cancer cells to radiation by inhibiting multiple kinases and inducing DNA damage. Int. J. Radiat. Biol. 97, 1109–1120 (2021).
pubmed: 32052681
doi: 10.1080/09553002.2020.1730012
Arai, H. et al. Molecular insight of regorafenib treatment for colorectal cancer. Cancer Treat. Rev. 81, 101912 (2019).
pubmed: 31715423
pmcid: 7491975
doi: 10.1016/j.ctrv.2019.101912
Kantarjian, H. M. et al. Long-term outcomes with frontline nilotinib versus imatinib in newly diagnosed chronic myeloid leukemia in chronic phase: ENESTnd 10-year analysis. Leukemia 35, 440–453 (2021).
pubmed: 33414482
pmcid: 7862065
doi: 10.1038/s41375-020-01111-2
Naqvi, K. et al. Long-term follow-up of lower dose dasatinib (50 mg daily) as frontline therapy in newly diagnosed chronic-phase chronic myeloid leukemia. Cancer 126, 67–75 (2020).
pubmed: 31553487
doi: 10.1002/cncr.32504
Stone, R. M. et al. Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation. N. Engl. J. Med. 377, 454–464 (2017).
pubmed: 28644114
pmcid: 5754190
doi: 10.1056/NEJMoa1614359
Fischer, T. et al. Phase IIB trial of oral midostaurin (PKC412), the FMS-like tyrosine kinase 3 receptor (FLT3) and multi-targeted kinase inhibitor, in patients with acute myeloid leukemia and high-risk myelodysplastic syndrome with either wild-type or mutated FLT3. J. Clin. Oncol. 28, 4339–4345 (2010).
pubmed: 20733134
pmcid: 4135183
doi: 10.1200/JCO.2010.28.9678
Roskoski, R. J. Properties of FDA-approved small molecule protein kinase inhibitors: a 2022 update. Pharmacol. Res. 175, 106037 (2022).
pubmed: 34921994
doi: 10.1016/j.phrs.2021.106037
Soleimani, M., Nappi, L. & Kollmannsberger, C. Avelumab and axitinib combination therapy for the treatment of advanced renal cell carcinoma. Future Oncol. 16, 3021–3034 (2020).
pubmed: 32856478
doi: 10.2217/fon-2020-0586
Grünwald, V. et al. Randomized comparison of pazopanib and doxorubicin as first-line treatment in patients with metastatic soft tissue sarcoma age 60 years or older: results of a German Intergroup Study. J. Clin. Oncol. 38, 3555–3564 (2020).
pubmed: 32840417
doi: 10.1200/JCO.20.00714
Lowery, C. D. et al. Olaratumab exerts antitumor activity in preclinical models of pediatric bone and soft tissue tumors through inhibition of platelet-derived growth factor receptor α. Clin. Cancer Res. 24, 847–857 (2018).
pubmed: 29191969
doi: 10.1158/1078-0432.CCR-17-1258
Wang, F. et al. Gint4.T-modified DNA tetrahedrons loaded with doxorubicin inhibits glioma cell proliferation by targeting PDGFRβ. Nanoscale Res. Lett. 15, 150 (2020).
pubmed: 32691170
pmcid: 7371771
doi: 10.1186/s11671-020-03377-y
Camorani, S. et al. Targeted imaging and inhibition of triple-negative breast cancer metastases by a PDGFRβ aptamer. Theranostics 8, 5178–5199 (2018).
pubmed: 30429893
pmcid: 6217067
doi: 10.7150/thno.27798
Yoshida, S. et al. Extrahepatic platelet-derived growth factor-β, delivered by platelets, promotes activation of hepatic stellate cells and biliary fibrosis in mice. Gastroenterology 147, 1378–1392 (2014).
pubmed: 25173753
doi: 10.1053/j.gastro.2014.08.038
Zeitelhofer, M. et al. Preclinical toxicological assessment of a novel monoclonal antibody targeting human platelet-derived growth factor CC (PDGF-CC) in PDGF-CChum mice. PLoS ONE 13, e0200649 (2018).
pubmed: 30021009
pmcid: 6051635
doi: 10.1371/journal.pone.0200649
Falcon, B. L. et al. Increased vascular delivery and efficacy of chemotherapy after inhibition of platelet-derived growth factor-B. Am. J. Pathol. 178, 2920–2930 (2011).
pubmed: 21641409
pmcid: 3124291
doi: 10.1016/j.ajpath.2011.02.019
Karashima, T. et al. Blockade of the vascular endothelial growth factor-receptor 2 pathway inhibits the growth of human renal cell carcinoma, RBM1-IT4, in the kidney but not in the bone of nude mice. Int. J. Oncol. 30, 937–945 (2007).
pubmed: 17332933
Leenders, W. P. J. et al. Antiangiogenic therapy of cerebral melanoma metastases results in sustained tumor progression via vessel co-option. Clin. Cancer Res. 10, 6222–6230 (2004).
pubmed: 15448011
doi: 10.1158/1078-0432.CCR-04-0823
Motzer, R. J. et al. Activity of SU11248, a multitargeted inhibitor of vascular endothelial growth factor receptor and platelet-derived growth factor receptor, in patients with metastatic renal cell carcinoma. J. Clin. Oncol. 24, 16–24 (2006).
pubmed: 16330672
doi: 10.1200/JCO.2005.02.2574
Batchelor, T. T. et al. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 11, 83–95 (2007).
pubmed: 17222792
pmcid: 2748664
doi: 10.1016/j.ccr.2006.11.021
Yu, J. L., Rak, J. W., Coomber, B. L., Hicklin, D. J. & Kerbel, R. S. Effect of p53 status on tumor response to antiangiogenic therapy. Science 295, 1526–1528 (2002).
pubmed: 11859195
doi: 10.1126/science.1068327
Whitmarsh-Everiss, T. & Laraia, L. Small molecule probes for targeting autophagy. Nat. Chem. Biol. 17, 653–664 (2021).
pubmed: 34035513
doi: 10.1038/s41589-021-00768-9
Galluzzi, L., Bravo-San Pedro, J. M., Levine, B., Green, D. R. & Kroemer, G. Pharmacological modulation of autophagy: Therapeutic potential and persisting obstacles. Nat. Rev. Drug Discov. 16, 487–511 (2017).
pubmed: 28529316
pmcid: 5713640
doi: 10.1038/nrd.2017.22
Gwinn, D. M. et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 30, 214–226 (2008).
pubmed: 18439900
pmcid: 2674027
doi: 10.1016/j.molcel.2008.03.003
Sabatini, D. M., Erdjument-Bromage, H., Lui, M., Tempst, P. & Snyder, S. H. RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell 78, 35–43 (1994).
pubmed: 7518356
doi: 10.1016/0092-8674(94)90570-3
Chresta, C. M. et al. AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity. Cancer Res. 70, 288–298 (2010).
pubmed: 20028854
doi: 10.1158/0008-5472.CAN-09-1751
Sarkar, S. et al. Small molecules enhance autophagy and reduce toxicity in Huntington’s disease models. Nat. Chem. Biol. 3, 331–338 (2007).
pubmed: 17486044
pmcid: 2635561
doi: 10.1038/nchembio883
Kuo, S. Y. et al. Small-molecule enhancers of autophagy modulate cellular disease phenotypes suggested by human genetics. Proc. Natl Acad. Sci. USA 112, E4281–E4287 (2015).
pubmed: 26195741
pmcid: 4534235
doi: 10.1073/pnas.1512289112
Lim, C.-Y. et al. ER-lysosome contacts enable cholesterol sensing by mTORC1 and drive aberrant growth signalling in Niemann-Pick type C. Nat. Cell Biol. 21, 1206–1218 (2019).
pubmed: 31548609
pmcid: 6936960
doi: 10.1038/s41556-019-0391-5
Burgett, A. W. G. et al. Natural products reveal cancer cell dependence on oxysterol-binding proteins. Nat. Chem. Biol. 7, 639–647 (2011).
pubmed: 21822274
pmcid: 3158287
doi: 10.1038/nchembio.625
Scotto Rosato, A. et al. TRPML1 links lysosomal calcium to autophagosome biogenesis through the activation of the CaMKKβ/VPS34 pathway. Nat. Commun. 10, 5630 (2019).
pubmed: 31822666
pmcid: 6904751
doi: 10.1038/s41467-019-13572-w
Robke, L. et al. Phenotypic identification of a novel autophagy inhibitor chemotype targeting lipid kinase VPS34. Angew. Chem. Int. Ed. Engl. 56, 8153–8157 (2017).
pubmed: 28544137
doi: 10.1002/anie.201703738
Foley, D. J. et al. Phenotyping reveals targets of a pseudo-natural-product autophagy inhibitor. Angew. Chem. Int. Ed. Engl. 59, 12470–12476 (2020).
pubmed: 32108411
pmcid: 7383971
doi: 10.1002/anie.202000364
Petherick, K. J. et al. Pharmacological inhibition of ULK1 kinase blocks mammalian target of rapamycin (mTOR)-dependent autophagy. J. Biol. Chem. 290, 11376–11383 (2015).
pubmed: 25833948
pmcid: 4416842
doi: 10.1074/jbc.C114.627778
Egan, D. F. et al. Small molecule inhibition of the autophagy kinase ULK1 and identification of ULK1 substrates. Mol. Cell 59, 285–297 (2015).
pubmed: 26118643
pmcid: 4530630
doi: 10.1016/j.molcel.2015.05.031
Bosc, D. et al. A new quinoline-based chemical probe inhibits the autophagy-related cysteine protease ATG4B. Sci. Rep. 8, 11653 (2018).
pubmed: 30076329
pmcid: 6076261
doi: 10.1038/s41598-018-29900-x
Samie, M. et al. A TRP channel in the lysosome regulates large particle phagocytosis via focal exocytosis. Dev. Cell 26, 511–524 (2013).
pubmed: 23993788
pmcid: 3794471
doi: 10.1016/j.devcel.2013.08.003
Njomen, E. & Tepe, J. J. Regulation of autophagic flux by the 20 S proteasome. Cell Chem. Biol. 26, 1283–1294.e5 (2019).
pubmed: 31327703
pmcid: 6754308
doi: 10.1016/j.chembiol.2019.07.002
Xie, X.-S. et al. Salicylihalamide A inhibits the V0 sector of the V-ATPase through a mechanism distinct from bafilomycin A1. J. Biol. Chem. 279, 19755–19763 (2004).
pubmed: 14998996
doi: 10.1074/jbc.M313796200
Boyd, M. R. et al. Discovery of a novel antitumor benzolactone enamide class that selectively inhibits mammalian vacuolar-type (H + )-ATPases. J. Pharmacol. Exp. Ther. 297, 114–120 (2001).
pubmed: 11259534
McAfee, Q. et al. Autophagy inhibitor Lys05 has single-agent antitumor activity and reproduces the phenotype of a genetic autophagy deficiency. Proc. Natl Acad. Sci. USA 109, 8253–8258 (2012).
pubmed: 22566612
pmcid: 3361415
doi: 10.1073/pnas.1118193109
Goodall, M. L. et al. Development of potent autophagy inhibitors that sensitize oncogenic BRAF V600E mutant melanoma tumor cells to vemurafenib. Autophagy 10, 1120–1136 (2014).
pubmed: 24879157
pmcid: 4091172
doi: 10.4161/auto.28594
Ferreira, P. M. P. et al. Chloroquine and hydroxychloroquine in antitumor therapies based on autophagy-related mechanisms. Pharmacol. Res. 168, 105582 (2021).
pubmed: 33775862
doi: 10.1016/j.phrs.2021.105582
Solomon, V. R. & Lee, H. Chloroquine and its analogs: a new promise of an old drug for effective and safe cancer therapies. Eur. J. Pharm. 625, 220–233 (2009).
doi: 10.1016/j.ejphar.2009.06.063
Silva, V. R. et al. Challenges and therapeutic opportunities of autophagy in cancer therapy. Cancers 12, 3461 (2020).
pubmed: 33233671
pmcid: 7699739
doi: 10.3390/cancers12113461
Ashrafizadeh, M. et al. Targeting autophagy in prostate cancer: preclinical and clinical evidence for therapeutic response. J. Exp. Clin. Cancer Res 41, 105 (2022).
pubmed: 35317831
pmcid: 8939209
doi: 10.1186/s13046-022-02293-6
Morel, E. et al. Autophagy: a druggable process. Annu. Rev. Pharmacol. Toxicol. 57, 375–398 (2017).
pubmed: 28061686
doi: 10.1146/annurev-pharmtox-010716-104936
Galluzzi, L. & Green, D. R. Autophagy-independent functions of the autophagy machinery. Cell 177, 1682–1699 (2019).
pubmed: 31199916
pmcid: 7173070
doi: 10.1016/j.cell.2019.05.026
Ebrahim, A. S. et al. PNT2258, a novel deoxyribonucleic acid inhibitor, induces cell cycle arrest and apoptosis via a distinct mechanism of action: a new class of drug for non-Hodgkin’s lymphoma. Oncotarget 7, 42374–42384 (2016).
pubmed: 27283896
pmcid: 5173141
doi: 10.18632/oncotarget.9872
Tse, C. et al. ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res. 68, 3421–3428 (2008).
pubmed: 18451170
doi: 10.1158/0008-5472.CAN-07-5836
Chen, J. et al. The Bcl-2/Bcl-X L/Bcl-w inhibitor, navitoclax, enhances the activity of chemotherapeutic agents in vitro and in vivo. Mol. Cancer Ther. 10, 2340–2349 (2011).
pubmed: 21914853
doi: 10.1158/1535-7163.MCT-11-0415
Lakhani, N. J. et al. First-in-human study of palcitoclax (APG-1252), a novel dual Bcl-2/Bcl-xL inhibitor, demonstrated advantages in platelet safety while maintaining anticancer effect in U.S. patients with metastatic solid tumors. J. Clin. Oncol. 38, 3509 (2020).
doi: 10.1200/JCO.2020.38.15_suppl.3509
Brinkmann, K., Ng, A. P., de Graaf, C. A. & Strasser, A. What can we learn from mice lacking pro-survival BCL-2 proteins to advance BH3 mimetic drugs for cancer therapy? Cell Death Differ. 29, 1079–1093 (2022).
pubmed: 35388168
pmcid: 9177562
doi: 10.1038/s41418-022-00987-0
Del Gaizo Moore, V. et al. Chronic lymphocytic leukemia requires BCL2 to sequester prodeath BIM, explaining sensitivity to BCL2 antagonist ABT-737. J. Clin. Invest. 117, 112–121 (2007).
pubmed: 17200714
pmcid: 1716201
doi: 10.1172/JCI28281
Cory, S. & Adams, J. M. Killing cancer cells by flipping the Bcl-2/Bax switch. Cancer Cell 8, 5–6 (2005).
pubmed: 16023593
doi: 10.1016/j.ccr.2005.06.012
Arulananda, S. et al. A novel BH3-mimetic, AZD0466, targeting BCL-XL and BCL-2 is effective in pre-clinical models of malignant pleural mesothelioma. Cell Death Discov. 7, 122 (2021).
pubmed: 34050131
pmcid: 8163735
doi: 10.1038/s41420-021-00505-0
Roberts, A. W., Wei, A. H. & Huang, D. C. S. BCL2 and MCL1 inhibitors for hematologic malignancies. Blood 138, 1120–1136 (2021).
pubmed: 34320168
doi: 10.1182/blood.2020006785
Zhu, R. et al. FLT3 tyrosine kinase inhibitors synergize with BCL-2 inhibition to eliminate FLT3/ITD acute leukemia cells through BIM activation. Signal Transduct. Target. Ther. 6, 186 (2021).
pubmed: 34024909
pmcid: 8141515
doi: 10.1038/s41392-021-00578-4
Roberts, A. W. et al. Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia. N. Engl. J. Med. 374, 311–322 (2016).
pubmed: 26639348
doi: 10.1056/NEJMoa1513257
Casara, P. et al. S55746 is a novel orally active BCL-2 selective and potent inhibitor that impairs hematological tumor growth. Oncotarget 9, 20075–20088 (2018).
pubmed: 29732004
pmcid: 5929447
doi: 10.18632/oncotarget.24744
Deng, J. et al. Lisaftoclax (APG-2575) is a novel BCL-2 inhibitor with robust antitumor activity in preclinical models of hematologic malignancy. Clin. Cancer Res. 28, 5455–5468 (2022).
pubmed: 36048524
doi: 10.1158/1078-0432.CCR-21-4037
Xin, M. et al. Small-molecule Bax agonists for cancer therapy. Nat. Commun. 5, 4935 (2014).
Reyna, D. E. et al. Direct activation of BAX by BTSA1 overcomes apoptosis resistance in acute myeloid leukemia. Cancer Cell 32, 490–505.e10 (2017).
pubmed: 29017059
pmcid: 5793879
doi: 10.1016/j.ccell.2017.09.001
Zang, X., Song, J., Li, Y. & Han, Y. Targeting necroptosis as an alternative strategy in tumor treatment: From drugs to nanoparticles. J. Control. Release 349, 213–226 (2022).
pubmed: 35793737
doi: 10.1016/j.jconrel.2022.06.060
Degterev, A. et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat. Chem. Biol. 1, 112–119 (2005).
pubmed: 16408008
doi: 10.1038/nchembio711
Degterev, A. et al. Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat. Chem. Biol. 4, 313–321 (2008).
pubmed: 18408713
pmcid: 5434866
doi: 10.1038/nchembio.83
Takahashi, N. et al. Necrostatin-1 analogues: critical issues on the specificity, activity and in vivo use in experimental disease models. Cell Death Dis. 3, e437 (2012).
pubmed: 23190609
pmcid: 3542611
doi: 10.1038/cddis.2012.176
Cao, L. & Mu, W. Necrostatin-1 and necroptosis inhibition: pathophysiology and therapeutic implications. Pharm. Res 163, 105297 (2021).
doi: 10.1016/j.phrs.2020.105297
Deeraksa, A. et al. Plk1 is upregulated in androgen-insensitive prostate cancer cells and its inhibition leads to necroptosis. Oncogene 32, 2973–2983 (2013).
pubmed: 22890325
doi: 10.1038/onc.2012.309
Fulda, S. Therapeutic exploitation of necroptosis for cancer therapy. Semin. Cell Dev. Biol. 35, 51–56 (2014).
pubmed: 25065969
doi: 10.1016/j.semcdb.2014.07.002
Han, W. et al. Shikonin circumvents cancer drug resistance by induction of a necroptotic death. Mol. Cancer Ther. 6, 1641–1649 (2007).
pubmed: 17513612
doi: 10.1158/1535-7163.MCT-06-0511
Huang, C. et al. Shikonin kills glioma cells through necroptosis mediated by RIP-1. PLoS ONE 8, e66326 (2013).
pubmed: 23840441
pmcid: 3695975
doi: 10.1371/journal.pone.0066326
Fu, Z. et al. The anti-tumor effect of shikonin on osteosarcoma by inducing RIP1 and RIP3 dependent necroptosis. BMC Cancer 13, 580 (2013).
Xuan, Y. & Hu, X. Naturally-occurring shikonin analogues–a class of necroptotic inducers that circumvent cancer drug resistance. Cancer Lett. 274, 233–242 (2009).
pubmed: 19027226
doi: 10.1016/j.canlet.2008.09.029
Basit, F., Cristofanon, S. & Fulda, S. Obatoclax (GX15-070) triggers necroptosis by promoting the assembly of the necrosome on autophagosomal membranes. Cell Death Differ. 20, 1161–1173 (2013).
pubmed: 23744296
pmcid: 3741498
doi: 10.1038/cdd.2013.45
Rizzi, F. et al. Polyphenon E®, a standardized green tea extract, induces endoplasmic reticulum stress, leading to death of immortalized PNT1a cells by anoikis and tumorigenic PC3 by necroptosis. Carcinogenesis 35, 828–839 (2014).
pubmed: 24343359
doi: 10.1093/carcin/bgt481
Zhou, B. et al. Bioactive staurosporine derivatives from the Streptomyces sp. NB-A13. Bioorg. Chem. 82, 33–40 (2019).
pubmed: 30268972
doi: 10.1016/j.bioorg.2018.09.016
Dunai, Z. A. et al. Staurosporine induces necroptotic cell death under caspase-compromised conditions in U937 cells. PLoS ONE 7, e41945 (2012).
pubmed: 22860037
pmcid: 3409216
doi: 10.1371/journal.pone.0041945
Saddoughi, S. A. et al. Sphingosine analogue drug FTY720 targets I2PP2A/SET and mediates lung tumour suppression via activation of PP2A-RIPK1-dependent necroptosis. EMBO Mol. Med. 5, 105–121 (2013).
pubmed: 23180565
doi: 10.1002/emmm.201201283
Zhang, L., Wang, H., Ding, K. & Xu, J. FTY720 induces autophagy-related apoptosis and necroptosis in human glioblastoma cells. Toxicol. Lett. 236, 43–59 (2015).
pubmed: 25939952
doi: 10.1016/j.toxlet.2015.04.015
Pasupuleti, N., Leon, L., Carraway, K. L. & Gorin, F. 5-Benzylglycinyl-amiloride kills proliferating and nonproliferating malignant glioma cells through caspase- independent necroptosis mediated by apoptosis-inducing factor. J. Pharmacol. Exp. Ther. 344, 600–615 (2013).
pubmed: 23241369
pmcid: 3583503
doi: 10.1124/jpet.112.200519
Zec, M. et al. Novel selenosemicarbazone metal complexes exert anti-tumor effect via alternative, caspase-independent necroptotic cell death. Med. Chem. 10, 759–771 (2014).
pubmed: 24678785
doi: 10.2174/1573406410666140327122009
Tufo, G. et al. The protein disulfide isomerases PDIA4 and PDIA6 mediate resistance to cisplatin-induced cell death in lung adenocarcinoma. Cell Death Differ. 21, 685–695 (2014).
pubmed: 24464223
pmcid: 3978299
doi: 10.1038/cdd.2013.193
Jouan-Lanhouet, S. et al. TRAIL induces necroptosis involving RIPK1/RIPK3-dependent PARP-1 activation. Cell Death Differ. 19, 2003–2014 (2012).
pubmed: 22814620
pmcid: 3504714
doi: 10.1038/cdd.2012.90
Pantel, K., Brakenhoff, R. H. & Brandt, B. Detection, clinical relevance and specific biological properties of disseminating tumour cells. Nat. Rev. Cancer 8, 329–340 (2008).
pubmed: 18404148
doi: 10.1038/nrc2375
Winer, A., Adams, S. & Mignatti, P. Matrix metalloproteinase inhibitors in cancer therapy: turning past failures into future successes. Mol. Cancer Ther. 17, 1147–1155 (2018).
pubmed: 29735645
pmcid: 5984693
doi: 10.1158/1535-7163.MCT-17-0646
Zucker, S., Cao, J. & Chen, W. T. Critical appraisal of the use of matrix metalloproteinase inhibitors in cancer treatment. Oncogene 19, 6642–6650 (2000).
pubmed: 11426650
doi: 10.1038/sj.onc.1204097
Gautam, J. et al. Down-regulation of cathepsin S and matrix metalloproteinase-9 via Src, a non-receptor tyrosine kinase, suppresses triple-negative breast cancer growth and metastasis. Exp. Mol. Med. 50, 1–14 (2018).
pubmed: 30185799
doi: 10.1038/s12276-018-0135-9
Macaulay, V. M. et al. Phase I study of intrapleural batimastat (BB-94), a matrix metalloproteinase inhibitor, in the treatment of malignant pleural effusions. Clin. Cancer Res. 5, 513–520 (1999).
pubmed: 10100701
Gatto, C. et al. BAY 12-9566, a novel inhibitor of matrix metalloproteinases with antiangiogenic activity. Clin. Cancer Res. 5, 3603–3607 (1999).
pubmed: 10589777
Baidya, S. K., Amin, S. A. & Jha, T. Outline of gelatinase inhibitors as anti-cancer agents: a patent mini-review for 2010-present. Eur. J. Med. Chem. 213, 113044 (2021).
pubmed: 33279289
doi: 10.1016/j.ejmech.2020.113044
Hirte, H. et al. A phase III randomized trial of BAY 12-9566 (tanomastat) as maintenance therapy in patients with advanced ovarian cancer responsive to primary surgery and paclitaxel/platinum containing chemotherapy: a National Cancer Institute of Canada Clinical Trials. Gynecol. Oncol. 102, 300–308 (2006).
pubmed: 16442153
doi: 10.1016/j.ygyno.2005.12.020
Rudek, M. A. et al. Phase I clinical trial of oral COL-3, a matrix metalloproteinase inhibitor, in patients with refractory metastatic cancer. J. Clin. Oncol. 19, 584–592 (2001).
pubmed: 11208854
doi: 10.1200/JCO.2001.19.2.584
Mao, J.-W., He, X.-M., Tang, H.-Y. & Wang, Y.-D. Protective role of metalloproteinase inhibitor (AE-941) on ulcerative colitis in rats. World J. Gastroenterol. 18, 7063–7069 (2012).
pubmed: 23323009
pmcid: 3531695
doi: 10.3748/wjg.v18.i47.7063
Deryugina, E. I., Ratnikov, B. I. & Strongin, A. Y. Prinomastat, a hydroxamate inhibitor of matrix metalloproteinases, has a complex effect on migration of breast carcinoma cells. Int. J. cancer 104, 533–541 (2003).
pubmed: 12594807
doi: 10.1002/ijc.10977
Rizvi, N. A. et al. A phase I study of oral BMS-275291, a novel nonhydroxamate sheddase-sparing matrix metalloproteinase inhibitor, in patients with advanced or metastatic cancer. Clin. Cancer Res. 10, 1963–1970 (2004).
pubmed: 15041713
doi: 10.1158/1078-0432.CCR-1183-02
Syed, S. et al. A phase I and pharmacokinetic study of Col-3 (Metastat), an oral tetracycline derivative with potent matrix metalloproteinase and antitumor properties. Clin. Cancer Res. 10, 6512–6521 (2004).
pubmed: 15475438
doi: 10.1158/1078-0432.CCR-04-0804
Maurya, S. K., Poddar, N., Tandon, P. & Yadav, A. K. In Pathophysiological Aspects of Proteases (eds Chakraborti, S. & Dhalla, N. S.) Ch.10 (Springer, 2017).
Parikh, P. K. & Ghate, M. D. Recent advances in the discovery of small molecule c-Met Kinase inhibitors. Eur. J. Med Chem. 143, 1103–1138 (2018).
pubmed: 29157685
doi: 10.1016/j.ejmech.2017.08.044
Markham, A. Tepotinib: first approval. Drugs 80, 829–833 (2020).
pubmed: 32361823
doi: 10.1007/s40265-020-01317-9
Mathieu, L. N. et al. FDA approval summary: capmatinib and tepotinib for the treatment of metastatic NSCLC harboring MET exon 14 skipping mutations or alterations. Clin. Cancer Res. 28, 249–254 (2022).
pubmed: 34344795
doi: 10.1158/1078-0432.CCR-21-1566
Dhillon, S. Capmatinib: first approval. Drugs 80, 1125–1131 (2020).
pubmed: 32557339
doi: 10.1007/s40265-020-01347-3
Zou, H. Y. et al. Sensitivity of selected human tumor models to PF-04217903, a novel selective c-Met kinase inhibitor. Mol. Cancer Ther. 11, 1036–1047 (2012).
pubmed: 22389468
doi: 10.1158/1535-7163.MCT-11-0839
Yakes, F. M. et al. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol. Cancer Ther. 10, 2298–2308 (2011).
pubmed: 21926191
doi: 10.1158/1535-7163.MCT-11-0264
Smith, D. C. et al. Cabozantinib in patients with advanced prostate cancer: results of a phase II randomized discontinuation trial. J. Clin. Oncol. 31, 412–419 (2013).
pubmed: 23169517
doi: 10.1200/JCO.2012.45.0494
Choueiri, T. K. et al. Cabozantinib versus everolimus in advanced renal-cell carcinoma. N. Engl. J. Med. 373, 1814–1823 (2015).
pubmed: 26406150
pmcid: 5024539
doi: 10.1056/NEJMoa1510016
Choueiri, T. K. et al. Cabozantinib versus everolimus in advanced renal cell carcinoma (METEOR): final results from a randomised, open-label, phase 3 trial. Lancet Oncol. 17, 917–927 (2016).
pubmed: 27279544
doi: 10.1016/S1470-2045(16)30107-3
Eder, J. P., Vande Woude, G. F., Boerner, S. A. & Lorusso, P. M. Novel therapeutic inhibitors of the c-Met signaling pathway in cancer. Clin. Cancer Res. 15, 2207–2214 (2009).
pubmed: 19318488
doi: 10.1158/1078-0432.CCR-08-1306
Eathiraj, S. et al. Discovery of a novel mode of protein kinase inhibition characterized by the mechanism of inhibition of human mesenchymal-epithelial transition factor (c-Met) protein autophosphorylation by ARQ 197. J. Biol. Chem. 286, 20666–20676 (2011).
pubmed: 21454604
pmcid: 3121448
doi: 10.1074/jbc.M110.213801
Zhao, S. et al. Selective inhibitor of the c-Met receptor tyrosine kinase in advanced hepatocellular carcinoma: no beneficial effect with the use of tivantinib? Front. Immunol. 12, 731527 (2021).
pubmed: 34804015
pmcid: 8600564
doi: 10.3389/fimmu.2021.731527
Merchant, M. et al. Monovalent antibody design and mechanism of action of onartuzumab, a MET antagonist with anti-tumor activity as a therapeutic agent. Proc. Natl Acad. Sci. USA 110, E2987–E2996 (2013).
pubmed: 23882082
pmcid: 3740879
doi: 10.1073/pnas.1302725110
Kim, K.-H. & Kim, H. Progress of antibody-based inhibitors of the HGF-cMET axis in cancer therapy. Exp. Mol. Med. 49, e307 (2017).
pubmed: 28336955
pmcid: 5382561
doi: 10.1038/emm.2017.17
Liu, L. et al. LY2875358, a neutralizing and internalizing anti-MET bivalent antibody, inhibits HGF-dependent and HGF-independent MET activation and tumor growth. Clin. Cancer Res. 20, 6059–6070 (2014).
pubmed: 25231402
doi: 10.1158/1078-0432.CCR-14-0543
Patnaik, A. et al. A phase I study of LY3164530, a bispecific antibody targeting MET and EGFR, in patients with advanced or metastatic cancer. Cancer Chemother. Pharmacol. 82, 407–418 (2018).
pubmed: 29926131
pmcid: 6105165
doi: 10.1007/s00280-018-3623-7
Park, K. et al. Amivantamab in EGFR exon 20 insertion-mutated non-small-cell lung cancer progressing on platinum chemotherapy: initial results from the CHRYSALIS phase I study. J. Clin. Oncol. 39, 3391–3402 (2021).
pubmed: 34339292
pmcid: 8791812
doi: 10.1200/JCO.21.00662
Moores, S. L. et al. A novel bispecific antibody targeting EGFR and cMet is effective against EGFR inhibitor-resistant lung tumors. Cancer Res. 76, 3942–3953 (2016).
pubmed: 27216193
doi: 10.1158/0008-5472.CAN-15-2833
Lee, J. M. et al. Cbl-independent degradation of Met: ways to avoid agonism of bivalent met-targeting antibody. Oncogene 33, 34–43 (2014).
pubmed: 23208509
doi: 10.1038/onc.2012.551
Lee, B.-S. et al. Met degradation by SAIT301, a Met monoclonal antibody, reduces the invasion and migration of nasopharyngeal cancer cells via inhibition of EGR-1 expression. Cell Death Dis. 5, e1159 (2014).
pubmed: 24722284
pmcid: 5424102
doi: 10.1038/cddis.2014.119
Lee, J. et al. Phase I trial of anti-MET monoclonal antibody in MET-overexpressed refractory cancer. Clin. Colorectal Cancer 17, 140–146 (2018).
pubmed: 29551559
doi: 10.1016/j.clcc.2018.01.005
Hultberg, A. et al. Depleting MET-expressing tumor cells by ADCC provides a therapeutic advantage over inhibiting HGF/MET signaling. Cancer Res. 75, 3373–3383 (2015).
pubmed: 26141862
doi: 10.1158/0008-5472.CAN-15-0356
Petrelli, A. et al. Ab-induced ectodomain shedding mediates hepatocyte growth factor receptor down-regulation and hampers biological activity. Proc. Natl Acad. Sci. USA 103, 5090–5095 (2006).
pubmed: 16547140
pmcid: 1458799
doi: 10.1073/pnas.0508156103
Pacchiana, G. et al. Monovalency unleashes the full therapeutic potential of the DN-30 anti-Met antibody. J. Biol. Chem. 285, 36149–36157 (2010).
pubmed: 20833723
pmcid: 2975237
doi: 10.1074/jbc.M110.134031
Burgess, T. L. et al. Biochemical characterization of AMG 102: a neutralizing, fully human monoclonal antibody to human and nonhuman primate hepatocyte growth factor. Mol. Cancer Ther. 9, 400–409 (2010).
pubmed: 20124448
doi: 10.1158/1535-7163.MCT-09-0824
Yap, T. A. & De Bono, J. S. Targeting the HGF/c-met axis: state of play. Mol. Cancer Ther. 9, 1077–1079 (2010).
pubmed: 20442310
doi: 10.1158/1535-7163.MCT-10-0122
Tarhini, A. A. et al. Phase 1/2 study of rilotumumab (AMG 102), a hepatocyte growth factor inhibitor, and erlotinib in patients with advanced non-small cell lung cancer. Cancer 123, 2936–2944 (2017).
pubmed: 28472537
doi: 10.1002/cncr.30717
Fiedler, U. et al. Potency of bortezomib in combination with MP0250, a bispecific VEGF- and HGF-targeting darpin, in a preclinical multiple myeloma model. J. Clin. Oncol. 32, e19574–e19574 (2014).
doi: 10.1200/jco.2014.32.15_suppl.e19574
Date, K., Matsumoto, K., Shimura, H., Tanaka, M. & Nakamura, T. HGF/NK4 is a specific antagonist for pleiotrophic actions of hepatocyte growth factor. FEBS Lett. 420, 1–6 (1997).
pubmed: 9450538
doi: 10.1016/S0014-5793(97)01475-0
Mizuno, S. & Nakamura, T. HGF-MET cascade, a key target for inhibiting cancer metastasis: the impact of NK4 discovery on cancer biology and therapeutics. Int. J. Mol. Sci. 14, 888–919 (2013).
pubmed: 23296269
pmcid: 3565297
doi: 10.3390/ijms14010888
Matsumoto, K. & Nakamura, T. Mechanisms and significance of bifunctional NK4 in cancer treatment. Biochem. Biophys. Res. Commun. 333, 316–327 (2005).
pubmed: 15950947
doi: 10.1016/j.bbrc.2005.05.131
Matsumoto, K. & Nakamura, T. NK4 (HGF-antagonist/angiogenesis inhibitor) in cancer biology and therapeutics. Cancer Sci. 94, 321–327 (2003).
pubmed: 12824898
doi: 10.1111/j.1349-7006.2003.tb01440.x
Rivas, S., Marín, A., Samtani, S., González-Feliú, E. & Armisén, R. MET signaling pathways, resistance mechanisms, and opportunities for target therapies. Int. J. Mol. Sci. 23, 13898 (2022).
pubmed: 36430388
pmcid: 9697723
doi: 10.3390/ijms232213898
Dias, M. P., Moser, S. C., Ganesan, S. & Jonkers, J. Understanding and overcoming resistance to PARP inhibitors in cancer therapy. Nat. Rev. Clin. Oncol. 18, 773–791 (2021).
pubmed: 34285417
doi: 10.1038/s41571-021-00532-x
Tutt, A. N. J. et al. Adjuvant olaparib for patients with BRCA1- or BRCA2-mutated breast cancer. N. Engl. J. Med. 384, 2394–2405 (2021).
pubmed: 34081848
pmcid: 9126186
doi: 10.1056/NEJMoa2105215
Ledermann, J. et al. Olaparib maintenance therapy in platinum-sensitive relapsed ovarian cancer. N. Engl. J. Med. 366, 1382–1392 (2012).
pubmed: 22452356
doi: 10.1056/NEJMoa1105535
Moore, K. et al. Maintenance olaparib in patients with newly diagnosed advanced ovarian cancer. N. Engl. J. Med. 379, 2495–2505 (2018).
pubmed: 30345884
doi: 10.1056/NEJMoa1810858
Kristeleit, R. et al. Rucaparib versus standard-of-care chemotherapy in patients with relapsed ovarian cancer and a deleterious BRCA1 or BRCA2 mutation (ARIEL4): an international, open-label, randomised, phase 3 trial. Lancet Oncol. 23, 465–478 (2022).
pubmed: 35298906
doi: 10.1016/S1470-2045(22)00122-X
Robson, M. et al. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N. Engl. J. Med. 377, 523–533 (2017).
pubmed: 28578601
doi: 10.1056/NEJMoa1706450
Litton, J. K. et al. Talazoparib in patients with advanced breast cancer and a germline BRCA mutation. N. Engl. J. Med. 379, 753–763 (2018).
pubmed: 30110579
pmcid: 10600918
doi: 10.1056/NEJMoa1802905
Golan, T. et al. Maintenance olaparib for germline BRCA-mutated metastatic pancreatic cancer. N. Engl. J. Med. 381, 317–327 (2019).
pubmed: 31157963
pmcid: 6810605
doi: 10.1056/NEJMoa1903387
Abida, W. et al. Rucaparib in men with metastatic castration-resistant prostate cancer harboring a BRCA1 or BRCA2 gene alteration. J. Clin. Oncol. 38, 3763–3772 (2020).
pubmed: 32795228
pmcid: 7655021
doi: 10.1200/JCO.20.01035
Riches, L. C. et al. Pharmacology of the ATM inhibitor AZD0156: potentiation of irradiation and olaparib responses preclinically. Mol. Cancer Ther. 19, 13–25 (2020).
pubmed: 31534013
doi: 10.1158/1535-7163.MCT-18-1394
Durant, S. T. et al. The brain-penetrant clinical ATM inhibitor AZD1390 radiosensitizes and improves survival of preclinical brain tumor models. Sci. Adv. 4, eaat1719 (2018).
pubmed: 29938225
pmcid: 6010333
doi: 10.1126/sciadv.aat1719
Tew, B. Y. et al. ATM-inhibitor AZD1390 is a radiosensitizer for breast cancer CNS metastasis. Clin. Cancer Res. 29, 4492–4503 (2023).
pubmed: 37585496
pmcid: 10618650
doi: 10.1158/1078-0432.CCR-23-0290
Fuchss, T. et al. Abstract 3500: highly potent and selective ATM kinase inhibitor M4076: a clinical candidate drug with strong anti-tumor activity in combination therapies. Cancer Res. 79, 3500 (2019).
doi: 10.1158/1538-7445.AM2019-3500
Zimmermann, A. et al. A new class of selective ATM inhibitors as combination partners of DNA double-strand break inducing cancer therapies. Mol. Cancer Ther. 21, 859–870 (2022).
pubmed: 35405736
pmcid: 9381122
doi: 10.1158/1535-7163.MCT-21-0934
Hickson, I. et al. Identification and characterization of a novel and specific inhibitor of the ataxia-telangiectasia mutated kinase ATM. Cancer Res. 64, 9152–9159 (2004).
pubmed: 15604286
doi: 10.1158/0008-5472.CAN-04-2727
Bryant, H. E. & Helleday, T. Inhibition of poly (ADP-ribose) polymerase activates ATM which is required for subsequent homologous recombination repair. Nucleic Acids Res. 34, 1685–1691 (2006).
pubmed: 16556909
pmcid: 1410911
doi: 10.1093/nar/gkl108
Toledo, L. I. et al. A cell-based screen identifies ATR inhibitors with synthetic lethal properties for cancer-associated mutations. Nat. Struct. Mol. Biol. 18, 721–727 (2011).
pubmed: 21552262
pmcid: 4869831
doi: 10.1038/nsmb.2076
Boudny, M. & Trbusek, M. ATR-CHK1 pathway as a therapeutic target for acute and chronic leukemias. Cancer Treat. Rev. 88, 102026 (2020).
pubmed: 32592909
doi: 10.1016/j.ctrv.2020.102026
Middleton, M. R. et al. Phase 1 study of the ATR inhibitor berzosertib (formerly M6620, VX-970) combined with gemcitabine ± cisplatin in patients with advanced solid tumours. Br. J. Cancer 125, 510–519 (2021).
pubmed: 34040175
pmcid: 8368196
doi: 10.1038/s41416-021-01405-x
Wengner, A. M. et al. The novel ATR inhibitor BAY 1895344 is efficacious as monotherapy and combined with DNA damage-inducing or repair-compromising therapies in preclinical cancer models. Mol. Cancer Ther. 19, 26–38 (2020).
pubmed: 31582533
doi: 10.1158/1535-7163.MCT-19-0019
Kim, H. et al. Targeting the ATR/CHK1 axis with PARP inhibition results in tumor regression in BRCA-mutant ovarian cancer models. Clin. Cancer Res. 23, 3097–3108 (2017).
pubmed: 27993965
doi: 10.1158/1078-0432.CCR-16-2273
Brooks, K. et al. A potent Chk1 inhibitor is selectively cytotoxic in melanomas with high levels of replicative stress. Oncogene 32, 788–796 (2013).
pubmed: 22391562
doi: 10.1038/onc.2012.72
Massey, A. J. et al. mTORC1 and DNA-PKcs as novel molecular determinants of sensitivity to Chk1 inhibition. Mol. Oncol. 10, 101–112 (2016).
pubmed: 26471831
doi: 10.1016/j.molonc.2015.08.004
Qiu, Z., Oleinick, N. L. & Zhang, J. ATR/CHK1 inhibitors and cancer therapy. Radiol. Oncol. 126, 450–464 (2018).
doi: 10.1016/j.radonc.2017.09.043
Scagliotti, G. et al. Phase II evaluation of LY2603618, a first-generation CHK1 inhibitor, in combination with pemetrexed in patients with advanced or metastatic non-small cell lung cancer. Invest. N. Drugs 34, 625–635 (2016).
doi: 10.1007/s10637-016-0368-1
Wehler, T. et al. A randomized, phase 2 evaluation of the CHK1 inhibitor, LY2603618, administered in combination with pemetrexed and cisplatin in patients with advanced nonsquamous non-small cell lung cancer. Lung Cancer 108, 212–216 (2017).
pubmed: 28625637
doi: 10.1016/j.lungcan.2017.03.001
Li, Q. et al. A new wave of innovations within the DNA damage response. Signal Transduct. Target. Ther. 8, 338 (2023).
pubmed: 37679326
pmcid: 10485079
doi: 10.1038/s41392-023-01548-8
King, C. et al. LY2606368 causes replication catastrophe and antitumor effects through CHK1-dependent mechanisms. Mol. Cancer Ther. 14, 2004–2013 (2015).
pubmed: 26141948
doi: 10.1158/1535-7163.MCT-14-1037
Kristeleit, R. et al. A phase 1/2 trial of SRA737 (a Chk1 inhibitor) administered orally in patients with advanced cancer. Br. J. Cancer 129, 38–45 (2023).
pubmed: 37120671
pmcid: 10307885
doi: 10.1038/s41416-023-02279-x
Sausville, E. et al. Phase I dose-escalation study of AZD7762, a checkpoint kinase inhibitor, in combination with gemcitabine in US patients with advanced solid tumors. Cancer Chemother. Pharmacol. 73, 539–549 (2014).
pubmed: 24448638
pmcid: 4486055
doi: 10.1007/s00280-014-2380-5
Zhao, H. et al. Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct. Target Ther. 6, 263 (2021).
pubmed: 34248142
pmcid: 8273155
doi: 10.1038/s41392-021-00658-5
Crusz, S. M. & Balkwill, F. R. Inflammation and cancer: advances and new agents. Nat. Rev. Clin. Oncol. 12, 584–596 (2015).
pubmed: 26122183
doi: 10.1038/nrclinonc.2015.105
Jendrossek, V. Targeting apoptosis pathways by celecoxib in cancer. Cancer Lett. 332, 313–324 (2013).
pubmed: 21345578
doi: 10.1016/j.canlet.2011.01.012
Boudreau, D. M., Yu, O. & Johnson, J. Statin use and cancer risk: a comprehensive review. Expert Opin. Drug Saf. 9, 603–621 (2010).
pubmed: 20377474
pmcid: 2910322
doi: 10.1517/14740331003662620
Dinarello, C. A. Anti-inflammatory agents: present and future. Cell 140, 935–950 (2010).
pubmed: 20303881
pmcid: 3752337
doi: 10.1016/j.cell.2010.02.043
Deisseroth, A. et al. FDA approval: siltuximab for the treatment of patients with multicentric Castleman disease. Clin. Cancer Res. 21, 950–954 (2015).
pubmed: 25601959
doi: 10.1158/1078-0432.CCR-14-1678
Park, H., Lee, S., Lee, J., Moon, H. & Ro, S. W. Exploring the JAK/STAT signaling pathway in hepatocellular carcinoma: unraveling signaling complexity and therapeutic implications. Int. J. Mol. Sci. 24, 13764 (2023).
pubmed: 37762066
pmcid: 10531214
doi: 10.3390/ijms241813764
Quintás-Cardama, A. et al. Preclinical characterization of the selective JAK1/2 inhibitor INCB018424: therapeutic implications for the treatment of myeloproliferative neoplasms. Blood 115, 3109–3117 (2010).
pubmed: 20130243
pmcid: 3953826
doi: 10.1182/blood-2009-04-214957
William, A. D. et al. Discovery of the macrocycle 11-(2-pyrrolidin-1-yl-ethoxy)-14,19-dioxa-5,7,26-triaza-tetracyclo[19.3.1.1(2,6).1(8,12)]heptacosa-1(25),2(26),3,5,8,10,12(27),16,21,23-decaene (SB1518), a potent Janus kinase 2/fms-like tyrosine kinase-3 (JAK2/FLT3) inhibitor. J. Med. Chem. 54, 4638–4658 (2011).
pubmed: 21604762
doi: 10.1021/jm200326p
FARBER, S. & DIAMOND, L. K. Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid. N. Engl. J. Med. 238, 787–793 (1948).
pubmed: 18860765
doi: 10.1056/NEJM194806032382301
Stine, Z. E., Schug, Z. T., Salvino, J. M. & Dang, C. V. Targeting cancer metabolism in the era of precision oncology. Nat. Rev. Drug Discov. 21, 141–162 (2022).
pubmed: 34862480
doi: 10.1038/s41573-021-00339-6
Martinez-Outschoorn, U. E., Peiris-Pagés, M., Pestell, R. G., Sotgia, F. & Lisanti, M. P. Cancer metabolism: a therapeutic perspective. Nat. Rev. Clin. Oncol. 14, 11–31 (2017).
pubmed: 27141887
doi: 10.1038/nrclinonc.2016.60
Siebeneicher, H. et al. Identification and optimization of the first highly selective GLUT1 inhibitor BAY-876. ChemMedChem 11, 2261–2271 (2016).
pubmed: 27552707
pmcid: 5095872
doi: 10.1002/cmdc.201600276
Jin, J., Byun, J.-K., Choi, Y.-K. & Park, K.-G. Targeting glutamine metabolism as a therapeutic strategy for cancer. Exp. Mol. Med. 55, 706–715 (2023).
pubmed: 37009798
pmcid: 10167356
doi: 10.1038/s12276-023-00971-9
Varghese, S. et al. The glutaminase inhibitor CB-839 (Telaglenastat) enhances the antimelanoma activity of T-cell-mediated immunotherapies. Mol. Cancer Ther. 20, 500–511 (2021).
pubmed: 33361272
doi: 10.1158/1535-7163.MCT-20-0430
Kremer, D. M. & Lyssiotis, C. A. Targeting allosteric regulation of cancer metabolism. Nat. Chem. Biol. 18, 441–450 (2022).
pubmed: 35484254
doi: 10.1038/s41589-022-00997-6
Leone, R. D. et al. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science 366, 1013–1021 (2019).
pubmed: 31699883
pmcid: 7023461
doi: 10.1126/science.aav2588
Camarda, R. et al. Inhibition of fatty acid oxidation as a therapy for MYC-overexpressing triple-negative breast cancer. Nat. Med. 22, 427–432 (2016).
pubmed: 26950360
pmcid: 4892846
doi: 10.1038/nm.4055
Ray, K. K. et al. Safety and efficacy of bempedoic acid to reduce LDL cholesterol. N. Engl. J. Med. 380, 1022–1032 (2019).
pubmed: 30865796
doi: 10.1056/NEJMoa1803917
Wei, J. et al. An allosteric mechanism for potent inhibition of human ATP-citrate lyase. Nature 568, 566–570 (2019).
pubmed: 30944472
doi: 10.1038/s41586-019-1094-6
Sainero-Alcolado, L., Liaño-Pons, J., Ruiz-Pérez, M. V. & Arsenian-Henriksson, M. Targeting mitochondrial metabolism for precision medicine in cancer. Cell Death Differ. 29, 1304–1317 (2022).
pubmed: 35831624
pmcid: 9287557
doi: 10.1038/s41418-022-01022-y
Yan, H. et al. IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med. 360, 765–773 (2009).
pubmed: 19228619
pmcid: 2820383
doi: 10.1056/NEJMoa0808710
Yen, K. et al. AG-221, a first-in-class therapy targeting acute myeloid leukemia harboring oncogenic IDH2 mutations. Cancer Discov. 7, 478–493 (2017).
pubmed: 28193778
doi: 10.1158/2159-8290.CD-16-1034
Molina, J. R. et al. An inhibitor of oxidative phosphorylation exploits cancer vulnerability. Nat. Med. 24, 1036–1046 (2018).
pubmed: 29892070
doi: 10.1038/s41591-018-0052-4
Ducker, G. S. & Rabinowitz, J. D. One-carbon metabolism in health and disease. Cell Metab. 25, 27–42 (2017).
pubmed: 27641100
doi: 10.1016/j.cmet.2016.08.009
Locasale, J. W. Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat. Rev. Cancer 13, 572–583 (2013).
pubmed: 23822983
pmcid: 3806315
doi: 10.1038/nrc3557
Ju, H.-Q. et al. Modulation of redox homeostasis by inhibition of MTHFD2 in colorectal cancer: mechanisms and therapeutic implications. J. Natl Cancer Inst. 111, 584–596 (2019).
pubmed: 30534944
doi: 10.1093/jnci/djy160
Zhou, X. et al. Discovery of novel inhibitors of human phosphoglycerate dehydrogenase by activity-directed combinatorial chemical synthesis strategy. Bioorg. Chem. 115, 105159 (2021).
pubmed: 34298241
doi: 10.1016/j.bioorg.2021.105159
García-Cañaveras, J. C. et al. SHMT inhibition is effective and synergizes with methotrexate in T-cell acute lymphoblastic leukemia. Leukemia 35, 377–388 (2021).
pubmed: 32382081
doi: 10.1038/s41375-020-0845-6
Scaletti, E., Jemth, A.-S., Helleday, T. & Stenmark, P. Structural basis of inhibition of the human serine hydroxymethyltransferase SHMT2 by antifolate drugs. FEBS Lett. 593, 1863–1873 (2019).
pubmed: 31127856
doi: 10.1002/1873-3468.13455
Li, C. et al. Design, synthesis, and biological evaluation of a novel series of teriflunomide derivatives as potent human dihydroorotate dehydrogenase inhibitors for malignancy treatment. J. Med. Chem. 64, 18175–18192 (2021).
pubmed: 34905371
doi: 10.1021/acs.jmedchem.1c01711
Kanarek, N., Petrova, B. & Sabatini, D. M. Dietary modifications for enhanced cancer therapy. Nature 579, 507–517 (2020).
pubmed: 32214253
doi: 10.1038/s41586-020-2124-0
Caffa, I. et al. Fasting-mimicking diet and hormone therapy induce breast cancer regression. Nature 583, 620–624 (2020).
pubmed: 32669709
pmcid: 7881940
doi: 10.1038/s41586-020-2502-7
Martínez-Garay, C. & Djouder, N. Dietary interventions and precision nutrition in cancer therapy. Trends Mol. Med. 29, 489–511 (2023).
pubmed: 37263858
doi: 10.1016/j.molmed.2023.04.004
Taylor, S. R., Falcone, J. N., Cantley, L. C. & Goncalves, M. D. Developing dietary interventions as therapy for cancer. Nat. Rev. Cancer 22, 452–466 (2022).
pubmed: 35614234
doi: 10.1038/s41568-022-00485-y
Leach, D. R., Krummel, M. F. & Allison, J. P. Enhancement of antitumor immunity by CTLA-4 blockade. Science 271, 1734–1736 (1996).
pubmed: 8596936
doi: 10.1126/science.271.5256.1734
Wang, D.-R., Wu, X.-L. & Sun, Y.-L. Therapeutic targets and biomarkers of tumor immunotherapy: response versus non-response. Signal Transduct. Target. Ther. 7, 331 (2022).
pubmed: 36123348
pmcid: 9485144
doi: 10.1038/s41392-022-01136-2
Doroshow, D. B. et al. PD-L1 as a biomarker of response to immune-checkpoint inhibitors. Nat. Rev. Clin. Oncol. 18, 345–362 (2021).
pubmed: 33580222
doi: 10.1038/s41571-021-00473-5
Pérez-Ruiz, E. et al. Cancer immunotherapy resistance based on immune checkpoints inhibitors: Targets, biomarkers, and remedies. Drug Resist. Updat. 53, 100718 (2020).
pubmed: 32736034
doi: 10.1016/j.drup.2020.100718
Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).
pubmed: 20525992
pmcid: 3549297
doi: 10.1056/NEJMoa1003466
Zinn, S. et al. Advances in antibody-based therapy in oncology. Nat. cancer 4, 165–180 (2023).
pubmed: 36806801
doi: 10.1038/s43018-023-00516-z
Wang, K. et al. Overall survival of patients with hepatocellular carcinoma treated with sintilimab and disease outcome after treatment discontinuation. BMC Cancer 23, 1017 (2023).
pubmed: 37867191
pmcid: 10591394
doi: 10.1186/s12885-023-11485-y
André, T. et al. Antitumor activity and safety of dostarlimab monotherapy in patients with mismatch repair deficient solid tumors: a nonrandomized controlled trial. JAMA Netw. Open 6, e2341165 (2023).
pubmed: 37917058
pmcid: 10623195
doi: 10.1001/jamanetworkopen.2023.41165
Antonia, S. J. et al. Overall survival with durvalumab after chemoradiotherapy in stage III NSCLC. N. Engl. J. Med. 379, 2342–2350 (2018).
pubmed: 30280658
doi: 10.1056/NEJMoa1809697
Grivas, P. et al. Avelumab first-line maintenance treatment for advanced urothelial carcinoma: review of evidence to guide clinical practice. ESMO Open 8, 102050 (2023).
pubmed: 37976999
pmcid: 10685024
doi: 10.1016/j.esmoop.2023.102050
Cotton, A. D., Nguyen, D. P., Gramespacher, J. A., Seiple, I. B. & Wells, J. A. Development of antibody-based PROTACs for the degradation of the cell-surface immune checkpoint protein PD-L1. J. Am. Chem. Soc. 143, 593–598 (2021).
pubmed: 33395526
pmcid: 8154509
doi: 10.1021/jacs.0c10008
Li, S. et al. PROTACs: novel tools for improving immunotherapy in cancer. Cancer Lett. 560, 216128 (2023).
pubmed: 36933781
doi: 10.1016/j.canlet.2023.216128
Girardi, D. M. et al. Cabozantinib plus nivolumab phase I expansion study in patients with metastatic urothelial carcinoma refractory to immune checkpoint inhibitor therapy. Clin. Cancer Res. 28, 1353–1362 (2022).
pubmed: 35031545
pmcid: 9365339
doi: 10.1158/1078-0432.CCR-21-3726
Harding, J. J. et al. Blocking TIM-3 in treatment-refractory advanced solid tumors: a phase Ia/b study of LY3321367 with or without an anti-PD-L1 antibody. Clin. Cancer Res. 27, 2168–2178 (2021).
pubmed: 33514524
doi: 10.1158/1078-0432.CCR-20-4405
Addala, V. et al. Computational immunogenomic approaches to predict response to cancer immunotherapies. Nat. Rev. Clin. Oncol. 21, 28–46 (2023).
pubmed: 37907723
doi: 10.1038/s41571-023-00830-6
Powles, T. et al. Pembrolizumab plus axitinib versus sunitinib monotherapy as first-line treatment of advanced renal cell carcinoma (KEYNOTE-426): extended follow-up from a randomised, open-label, phase 3 trial. Lancet Oncol. 21, 1563–1573 (2020).
pubmed: 33284113
doi: 10.1016/S1470-2045(20)30436-8
De Thé, H. Differentiation therapy revisited. Nat. Rev. Cancer 18, 117–127 (2018).
pubmed: 29192213
doi: 10.1038/nrc.2017.103
Bates, S. E. Epigenetic therapies for cancer. N. Engl. J. Med. 383, 650–663 (2020).
pubmed: 32786190
doi: 10.1056/NEJMra1805035
Michalak, E. M., Burr, M. L., Bannister, A. J. & Dawson, M. A. The roles of DNA, RNA and histone methylation in ageing and cancer. Nat. Rev. Mol. Cell Biol. 20, 573–589 (2019).
pubmed: 31270442
doi: 10.1038/s41580-019-0143-1
Chen, C. et al. DNA methylation: from cancer biology to clinical perspectives. Front. Biosci. 27, 326 (2022).
doi: 10.31083/j.fbl2712326
Ma, J. & Ge, Z. Comparison between decitabine and azacitidine for patients with acute myeloid leukemia and higher-risk myelodysplastic syndrome: a systematic review and network meta-analysis. Front. Pharmacol. 12, 701690 (2021).
pubmed: 34483903
pmcid: 8416074
doi: 10.3389/fphar.2021.701690
Kantarjian, H. M. et al. Guadecitabine (SGI-110) in treatment-naive patients with acute myeloid leukaemia: phase 2 results from a multicentre, randomised, phase 1/2 trial. Lancet Oncol. 18, 1317–1326 (2017).
pubmed: 28844816
pmcid: 5925750
doi: 10.1016/S1470-2045(17)30576-4
Lim, B. et al. The preclinical efficacy of the novel hypomethylating agent NTX-301 as a monotherapy and in combination with venetoclax in acute myeloid leukemia. Blood Cancer J. 12, 57 (2022).
pubmed: 35410412
pmcid: 9001641
doi: 10.1038/s41408-022-00664-y
Pappalardi, M. B. et al. Discovery of a first-in-class reversible DNMT1-selective inhibitor with improved tolerability and efficacy in acute myeloid leukemia. Nat. Cancer 2, 1002–1017 (2021).
pubmed: 34790902
pmcid: 8594913
doi: 10.1038/s43018-021-00249-x
Plummer, R. et al. Phase I study of MG98, an oligonucleotide antisense inhibitor of human DNA methyltransferase 1, given as a 7-day infusion in patients with advanced solid tumors. Clin. Cancer Res. 15, 3177–3183 (2009).
pubmed: 19383817
doi: 10.1158/1078-0432.CCR-08-2859
Ramaiah, M. J., Tangutur, A. D. & Manyam, R. R. Epigenetic modulation and understanding of HDAC inhibitors in cancer therapy. Life Sci. 277, 119504 (2021).
pubmed: 33872660
doi: 10.1016/j.lfs.2021.119504
Marks, P. A. & Breslow, R. Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug. Nat. Biotechnol. 25, 84–90 (2007).
pubmed: 17211407
doi: 10.1038/nbt1272
Sun, Y. et al. Therapeutic potential of tucidinostat, a subtype-selective HDAC inhibitor, in cancer treatment. Front. Pharmacol. 13, 932914 (2022).
pubmed: 36120308
pmcid: 9481063
doi: 10.3389/fphar.2022.932914
Roche, J. & Bertrand, P. Inside HDACs with more selective HDAC inhibitors. Eur. J. Med. Chem. 121, 451–483 (2016).
pubmed: 27318122
doi: 10.1016/j.ejmech.2016.05.047
Yue, K. et al. Comparison of three zinc binding groups for HDAC inhibitors - A potency, selectivity and enzymatic kinetics study. Bioorg. Med. Chem. Lett. 70, 128797 (2022).
pubmed: 35580726
doi: 10.1016/j.bmcl.2022.128797
Su, M., Gong, X. & Liu, F. An update on the emerging approaches for histone deacetylase (HDAC) inhibitor drug discovery and future perspectives. Expert Opin. Drug Discov. 16, 745–761 (2021).
pubmed: 33530771
doi: 10.1080/17460441.2021.1877656
Connolly, R. M., Rudek, M. A. & Piekarz, R. Entinostat: a promising treatment option for patients with advanced breast cancer. Future Oncol. 13, 1137–1148 (2017).
pubmed: 28326839
pmcid: 5618943
doi: 10.2217/fon-2016-0526
Davalos, V. & Esteller, M. Cancer epigenetics in clinical practice. CA Cancer J. Clin. 73, 376–424 (2023).
pubmed: 36512337
doi: 10.3322/caac.21765
Hoy, S. M. Tazemetostat: first approval. Drugs 80, 513–521 (2020).
pubmed: 32166598
doi: 10.1007/s40265-020-01288-x
Zauderer, M. G. et al. EZH2 inhibitor tazemetostat in patients with relapsed or refractory, BAP1-inactivated malignant pleural mesothelioma: a multicentre, open-label, phase 2 study. Lancet Oncol. 23, 758–767 (2022).
pubmed: 35588752
doi: 10.1016/S1470-2045(22)00277-7
McCabe, M. T. et al. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature 492, 108–112 (2012).
pubmed: 23051747
doi: 10.1038/nature11606
Vaswani, R. G. et al. Identification of (R)-N-((4-methoxy-6-methyl-2-oxo-1,2-dihydropyridin-3-yl)methyl)-2-methyl-1-(1-(1-(2,2,2-trifluoroethyl)piperidin-4-yl)ethyl)-1H-indole-3-carboxamide (CPI-1205), a potent and selective inhibitor of histone methyltransferase EZH2, suitable for phase I clinical trials for B-cell lymphomas. J. Med. Chem. 59, 9928–9941 (2016).
pubmed: 27739677
pmcid: 5451150
doi: 10.1021/acs.jmedchem.6b01315
Nguyen, A. T., Taranova, O., He, J. & Zhang, Y. DOT1L, the H3K79 methyltransferase, is required for MLL-AF9-mediated leukemogenesis. Blood 117, 6912–6922 (2011).
pubmed: 21521783
pmcid: 3128482
doi: 10.1182/blood-2011-02-334359
Stein, E. M. et al. The DOT1L inhibitor pinometostat reduces H3K79 methylation and has modest clinical activity in adult acute leukemia. Blood 131, 2661–2669 (2018).
pubmed: 29724899
pmcid: 6265654
doi: 10.1182/blood-2017-12-818948
Waters, N. J. et al. Exploring drug delivery for the DOT1L inhibitor pinometostat (EPZ-5676): Subcutaneous administration as an alternative to continuous IV infusion, in the pursuit of an epigenetic target. J. Control. Release 220, 758–765 (2015).
pubmed: 26385168
doi: 10.1016/j.jconrel.2015.09.023
Wang, N., Ma, T. & Yu, B. Targeting epigenetic regulators to overcome drug resistance in cancers. Signal Transduct. Target. Ther. 8, 69 (2023).
pubmed: 36797239
pmcid: 9935618
doi: 10.1038/s41392-023-01341-7
Salamero, O. et al. First-in-human phase I study of Iadademstat (ORY-1001): a first-in-class lysine-specific histone demethylase 1 A inhibitor, in relapsed or refractory acute myeloid leukemia. J. Clin. Oncol. 38, 4260–4273 (2020).
pubmed: 33052756
pmcid: 7768337
doi: 10.1200/JCO.19.03250
Stathis, A. & Bertoni, F. BET proteins as targets for anticancer treatment. Cancer Discov. 8, 24–36 (2018).
pubmed: 29263030
doi: 10.1158/2159-8290.CD-17-0605
Doroshow, D. B., Eder, J. P. & LoRusso, P. M. BET inhibitors: a novel epigenetic approach. Ann. Oncol. 28, 1776–1787 (2017).
pubmed: 28838216
doi: 10.1093/annonc/mdx157
Pirozzi, C. J. & Yan, H. The implications of IDH mutations for cancer development and therapy. Nat. Rev. Clin. Oncol. 18, 645–661 (2021).
pubmed: 34131315
doi: 10.1038/s41571-021-00521-0
Xu, W. et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell 19, 17–30 (2011).
pubmed: 21251613
pmcid: 3229304
doi: 10.1016/j.ccr.2010.12.014
DiNardo, C. D. et al. Durable remissions with ivosidenib in IDH1-mutated relapsed or refractory AML. N. Engl. J. Med. 378, 2386–2398 (2018).
pubmed: 29860938
doi: 10.1056/NEJMoa1716984
Montesinos, P. et al. Ivosidenib and azacitidine in IDH1-mutated acute myeloid leukemia. N. Engl. J. Med. 386, 1519–1531 (2022).
pubmed: 35443108
doi: 10.1056/NEJMoa2117344
Zhu, A. X. et al. Final overall survival efficacy results of ivosidenib for patients with advanced cholangiocarcinoma with IDH1 mutation: the phase 3 randomized clinical ClarIDHy trial. JAMA Oncol. 7, 1669–1677 (2021).
pubmed: 34554208
doi: 10.1001/jamaoncol.2021.3836
Platten, M. et al. A vaccine targeting mutant IDH1 in newly diagnosed glioma. Nature 592, 463–468 (2021).
pubmed: 33762734
pmcid: 8046668
doi: 10.1038/s41586-021-03363-z
Danne, C., Rolhion, N. & Sokol, H. Recipient factors in faecal microbiota transplantation: one stool does not fit all. Nat. Rev. Gastroenterol. Hepatol. 18, 503–513 (2021).
pubmed: 33907321
doi: 10.1038/s41575-021-00441-5
Dizman, N. et al. Nivolumab plus ipilimumab with or without live bacterial supplementation in metastatic renal cell carcinoma: a randomized phase 1 trial. Nat. Med. 28, 704–712 (2022).
pubmed: 35228755
pmcid: 9018425
doi: 10.1038/s41591-022-01694-6
da Silva Duarte, V. et al. Chemoprevention of DMH-induced early colon carcinogenesis in male BALB/c mice by administration of Lactobacillus paracasei DTA81. Microorganisms 8, 1994 (2020).
pubmed: 33327620
pmcid: 7765108
doi: 10.3390/microorganisms8121994
Yang, J.-C., Lu, C.-W. & Lin, C.-J. Treatment of Helicobacter pylori infection: current status and future concepts. World J. Gastroenterol. 20, 5283–5293 (2014).
pubmed: 24833858
pmcid: 4017043
doi: 10.3748/wjg.v20.i18.5283
Vítor, J. M. B. & Vale, F. F. Alternative therapies for Helicobacter pylori: probiotics and phytomedicine. FEMS Immunol. Med Microbiol 63, 153–164 (2011).
pubmed: 22077218
doi: 10.1111/j.1574-695X.2011.00865.x
Haria, M., Bryson, H. M. & Goa, K. L. Itraconazole. A reappraisal of its pharmacological properties and therapeutic use in the management of superficial fungal infections. Drugs 51, 585–620 (1996).
pubmed: 8706596
doi: 10.2165/00003495-199651040-00006
Piérard, G. E., Arrese, J. E. & Piérard-Franchimont, C. Itraconazole. Expert Opin. Pharmacother. 1, 287–304 (2000).
pubmed: 11249550
doi: 10.1517/14656566.1.2.287
Ban, L. et al. Anti-fungal drug itraconazole exerts anti-cancer effects in oral squamous cell carcinoma via suppressing Hedgehog pathway. Life Sci. 254, 117695 (2020).
Deng, H. et al. Itraconazole inhibits the Hedgehog signaling pathway thereby inducing autophagy-mediated apoptosis of colon cancer cells. Cell Death Dis. 11, 539 (2020).
pubmed: 32681018
pmcid: 7367825
doi: 10.1038/s41419-020-02742-0
Wang, L., Lankhorst, L. & Bernards, R. Exploiting senescence for the treatment of cancer. Nat. Rev. Cancer 22, 340–355 (2022).
pubmed: 35241831
doi: 10.1038/s41568-022-00450-9
Prasanna, P. G. et al. Therapy-induced senescence: opportunities to improve anticancer therapy. J. Natl Cancer Inst. 113, 1285–1298 (2021).
pubmed: 33792717
pmcid: 8486333
doi: 10.1093/jnci/djab064
Gorgoulis, V. et al. Cellular senescence: defining a path forward. Cell 179, 813–827 (2019).
pubmed: 31675495
doi: 10.1016/j.cell.2019.10.005
Freeman-Cook, K. D. et al. Discovery of PF-06873600, a CDK2/4/6 inhibitor for the treatment of cancer. J. Med. Chem. 64, 9056–9077 (2021).
pubmed: 34110834
doi: 10.1021/acs.jmedchem.1c00159
Wang, C. et al. Inducing and exploiting vulnerabilities for the treatment of liver cancer. Nature 574, 268–272 (2019).
pubmed: 31578521
pmcid: 6858884
doi: 10.1038/s41586-019-1607-3
Waksal, J. A., Bruedigam, C., Komrokji, R. S., Jamieson, C. H. M. & Mascarenhas, J. O. Telomerase-targeted therapies in myeloid malignancies. Blood Adv. 7, 4302–4314 (2023).
pubmed: 37216228
pmcid: 10424149
doi: 10.1182/bloodadvances.2023009903
Kaletsch, A. et al. Effects of novel HDAC inhibitors on urothelial carcinoma cells. Clin. Epigenetics 10, 100 (2018).
pubmed: 30064501
pmcid: 6069857
doi: 10.1186/s13148-018-0531-y
Tuttle, R. et al. Novel senescence associated gene, YPEL3, is repressed by estrogen in ER+ mammary tumor cells and required for tamoxifen-induced cellular senescence. Int. J. Cancer 130, 2291–2299 (2012).
pubmed: 21671470
doi: 10.1002/ijc.26239
Rosemblit, C. et al. Oncodriver inhibition and CD4(+) Th1 cytokines cooperate through Stat1 activation to induce tumor senescence and apoptosis in HER2+ and triple negative breast cancer: implications for combining immune and targeted therapies. Oncotarget 9, 23058–23077 (2018).
pubmed: 29796172
pmcid: 5955413
doi: 10.18632/oncotarget.25208
Zhu, Y. et al. Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors. Aging Cell 15, 428–435 (2016).
pubmed: 26711051
pmcid: 4854923
doi: 10.1111/acel.12445
Bousset, L. & Gil, J. Targeting senescence as an anticancer therapy. Mol. Oncol. 16, 3855–3880 (2022).
pubmed: 36065138
pmcid: 9627790
doi: 10.1002/1878-0261.13312
Wakita, M. et al. A BET family protein degrader provokes senolysis by targeting NHEJ and autophagy in senescent cells. Nat. Commun. 11, 1935 (2020).
pubmed: 32321921
pmcid: 7176673
doi: 10.1038/s41467-020-15719-6
Amor, C. et al. Senolytic CAR T cells reverse senescence-associated pathologies. Nature 583, 127–132 (2020).
pubmed: 32555459
pmcid: 7583560
doi: 10.1038/s41586-020-2403-9
Huang, W., Hickson, L. J., Eirin, A., Kirkland, J. L. & Lerman, L. O. Cellular senescence: the good, the bad and the unknown. Nat. Rev. Nephrol. 18, 611–627 (2022).
pubmed: 35922662
pmcid: 9362342
doi: 10.1038/s41581-022-00601-z
Laberge, R.-M. et al. MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat. Cell Biol. 17, 1049–1061 (2015).
pubmed: 26147250
pmcid: 4691706
doi: 10.1038/ncb3195
Wang, R. et al. Rapamycin inhibits the secretory phenotype of senescent cells by a Nrf2-independent mechanism. Aging Cell 16, 564–574 (2017).
pubmed: 28371119
pmcid: 5418203
doi: 10.1111/acel.12587
Vargas, A. J. & Harris, C. C. Biomarker development in the precision medicine era: lung cancer as a case study. Nat. Rev. Cancer 16, 525–537 (2016).
pubmed: 27388699
pmcid: 6662593
doi: 10.1038/nrc.2016.56
Sveen, A., Kopetz, S. & Lothe, R. A. Biomarker-guided therapy for colorectal cancer: strength in complexity. Nat. Rev. Clin. Oncol. 17, 11–32 (2020).
pubmed: 31289352
doi: 10.1038/s41571-019-0241-1