Flow modeling and structural characterization in fungal pellets.

Fluid mechanics Laccaria trichodermophora Mathematical model Upscaling

Journal

Journal of theoretical biology
ISSN: 1095-8541
Titre abrégé: J Theor Biol
Pays: England
ID NLM: 0376342

Informations de publication

Date de publication:
18 May 2024
Historique:
received: 19 12 2023
revised: 11 04 2024
accepted: 14 05 2024
medline: 21 5 2024
pubmed: 21 5 2024
entrez: 20 5 2024
Statut: aheadofprint

Résumé

Fungal pellets are hierarchical systems that can be found in an ample variety of applications. Modeling transport phenomena in this type of systems is a challenging but necessary task to provide knowledge-based processes that improve the outcome of their biotechnological applications. In this work, an upscaled model for total mass and momentum transport in fungal pellets is implemented and analyzed, using elements of the volume averaging and adjoint homogenization methods departing from the governing equations at the microscale in the intracellular and extracellular phases. The biomass is assumed to be composed of a non-Newtonian fluid and the organelles impervious to momentum transport are modeled as a rigid solid phase. The upscaled equations contain effective-medium coefficients, which are predicted from the solution of adjoint closure problems in a three-dimensional periodic domains representative of the microstructure. The construction of these domains was performed for Laccaria trichodermophora based on observations of actual biological structures. The upscaled model was validated with direct numerical simulations in homogeneous portions of the pellets core. It is shown that no significant differences are observed when the dolipores are open or closed to fluid flow. By comparing the predictions of the average velocity in the extracellular phase resulting from the upscaled model with those from the classical Darcy equation (i.e., assuming that the biomass is a solid phase) the contribution of the intracellular fluid phase was evidenced. This work sets the foundations for further studies dedicated to transport phenomena in this type of systems.

Identifiants

pubmed: 38768893
pii: S0022-5193(24)00134-6
doi: 10.1016/j.jtbi.2024.111853
pii:
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

111853

Informations de copyright

Copyright © 2024. Published by Elsevier Ltd.

Déclaration de conflit d'intérêts

Declaration of competing interest The authors have no relevant financial or non-financial interests to disclose.

Auteurs

J Sánchez-Vargas (J)

Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, CDMX, Mexico; Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, 04510, CDMX, Mexico.

F J Valdés-Parada (FJ)

División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, 09340, CDMX, Mexico.

L Peraza-Reyes (L)

Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, CDMX, Mexico.

D Lasseux (D)

University of Bordeaux, CNRS, Bordeaux INP, I2M, UMR 5295, Bordeaux, F-33400, Talence, France.

M A Trujillo-Roldán (MA)

Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, CDMX, Mexico; Departamento de Bionanotecnología, Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Baja California, Mexico. Electronic address: maurotru@iibiomedicas.unam.mx.

Classifications MeSH