Epidemiological trends and age-period-cohort effects on cardiovascular diseases burden attributable to ambient air pollution across BRICS.
Humans
Cardiovascular Diseases
/ epidemiology
Air Pollution
/ adverse effects
South Africa
/ epidemiology
China
/ epidemiology
Russia
/ epidemiology
Particulate Matter
/ adverse effects
Female
India
/ epidemiology
Male
Middle Aged
Aged
Brazil
/ epidemiology
Adult
Environmental Exposure
/ adverse effects
Disability-Adjusted Life Years
Air Pollutants
/ adverse effects
Cohort Studies
Age-period-cohort analysis
Ambient air pollution
BRICS
Cardiovascular disease burden
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
20 05 2024
20 05 2024
Historique:
received:
04
03
2024
accepted:
15
05
2024
medline:
21
5
2024
pubmed:
21
5
2024
entrez:
20
5
2024
Statut:
epublish
Résumé
Long-term exposure to ambient air pollution raises the risk of deaths and morbidity worldwide. From 1990 to 2019, we observed the epidemiological trends and age-period-cohort effects on the cardiovascular diseases (CVD) burden attributable to ambient air pollution across Brazil, Russia, India, China, and South Africa (BRICS). The number of CVD deaths related to ambient particulate matter (PM) pollution increased nearly fivefold in China [5.0% (95% CI 4.7, 5.2)] and India [5.7% (95% CI 5.1, 6.3)] during the study period. The age-standardized CVD deaths and disability-adjusted life years (DALYs) due to ambient PM pollution significantly increased in India and China but decreased in Brazil and Russia. Due to air pollution, the relative risk (RR) of premature CVD mortality (< 70 years) was higher in Russia [RR 12.6 (95% CI 8.7, 17.30)] and India [RR 9.2 (95% CI 7.6, 11.20)]. A higher period risk (2015-2019) for CVD deaths was found in India [RR 1.4 (95% CI 1.4, 1.4)] followed by South Africa [RR 1.3 (95% CI 1.3, 1.3)]. Across the BRICS countries, the RR of CVD mortality markedly decreased from the old birth cohort to young birth cohorts. In conclusion, China and India showed an increasing trend of CVD mortality and morbidity due to ambient PM pollution and higher risk of premature CVD deaths were observed in Russia and India.
Identifiants
pubmed: 38769093
doi: 10.1038/s41598-024-62295-6
pii: 10.1038/s41598-024-62295-6
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
11464Subventions
Organisme : This work is supported by the Xiamen's Science and Technology Program
ID : (Grant No: 3502Z20209007).
Informations de copyright
© 2024. The Author(s).
Références
Roth Gregory, A. et al. Global burden of cardiovascular diseases and risk factors, 1990–2019. J. Am. Coll. Cardiol. 76, 2982–3021. https://doi.org/10.1016/j.jacc.2020.11.010 (2020).
doi: 10.1016/j.jacc.2020.11.010
pubmed: 33309175
pmcid: 7755038
Roth Gregory, A. et al. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J. Am. Coll. Cardiol. 70, 1–25. https://doi.org/10.1016/j.jacc.2017.04.052 (2017).
doi: 10.1016/j.jacc.2017.04.052
pubmed: 28527533
pmcid: 5491406
Lozano, R. et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the global burden of disease study 2010. Lancet 380, 2095–2128. https://doi.org/10.1016/S0140-6736(12)61728-0 (2012).
doi: 10.1016/S0140-6736(12)61728-0
pubmed: 23245604
pmcid: 10790329
Radulescu, I. G., Panait, M. & Voica, C. Brics countries challenge to the world economy new trends. Procedia Econ. Financ. 8, 605–613. https://doi.org/10.1016/S2212-5671(14)00135-X (2014).
doi: 10.1016/S2212-5671(14)00135-X
Zou, Z. et al. Time trends in cardiovascular disease mortality across the BRICS: An age-period-cohort analysis of key nations with emerging economies using the global burden of disease study 2017. Circulation 141, 790–799 (2020).
doi: 10.1161/CIRCULATIONAHA.119.042864
pubmed: 31941371
Zhao, D., Liu, J., Wang, M., Zhang, X. & Zhou, M. Epidemiology of cardiovascular disease in China: Current features and implications. Nat. Rev. Cardiol. 16, 203–212 (2019).
doi: 10.1038/s41569-018-0119-4
pubmed: 30467329
Ribeiro, A. L. P. et al. Cardiovascular health in Brazil: Trends and perspectives. Circulation 133, 422–433 (2016).
doi: 10.1161/CIRCULATIONAHA.114.008727
pubmed: 26811272
Reddy, P. et al. A decade of tobacco control: The South African case of politics, health policy, health promotion and behaviour change. S. Afr. Med. J. 103, 835–840 (2013).
doi: 10.7196/samj.6910
pubmed: 24148167
Reddy, K. S. & Prabhakaran, D. Reducing the risk of cardiovascular disease: Brick by BRICS. Circulation 141(10), 800–802 (2020).
doi: 10.1161/CIRCULATIONAHA.119.044757
pubmed: 32150471
Majeed, S. B. Role and responsibility of BRICS countries in air pollution control: An evaluation of scholarly communication. J. Sci. Res. 8, 94–101 (2019).
doi: 10.5530/jscires.8.2.15
Vaduganathan, M., Mensah George, A., Turco Justine, V., Fuster, V. & Roth Gregory, A. The global burden of cardiovascular diseases and risk. J. Am. Coll. Cardiol. 80, 2361–2371. https://doi.org/10.1016/j.jacc.2022.11.005 (2022).
doi: 10.1016/j.jacc.2022.11.005
pubmed: 36368511
Collaborators, G. & Ärnlöv, J. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: A systematic analysis for the global burden of disease study 2019. Lancet 396, 1223–1249 (2020).
doi: 10.1016/S0140-6736(20)30752-2
Liang, F. et al. The 17-y spatiotemporal trend of PM2.5 and its mortality burden in China. Proc. Natl. Acad. Sci. 117, 25601–25608. https://doi.org/10.1073/pnas.1919641117 (2020).
doi: 10.1073/pnas.1919641117
pubmed: 32958653
pmcid: 7568266
Yu, P. et al. Loss of life expectancy from PM2.5 in Brazil: A national study from 2010 to 2018. Environ. Int. 166, 107350. https://doi.org/10.1016/j.envint.2022.107350 (2022).
doi: 10.1016/j.envint.2022.107350
pubmed: 35749993
Yin, P. et al. The effect of air pollution on deaths, disease burden, and life expectancy across China and its provinces, 1990–2017: An analysis for the global burden of disease study 2017. Lancet Planet. Health 4, e386–e398 (2020).
doi: 10.1016/S2542-5196(20)30161-3
pubmed: 32818429
pmcid: 7487771
Chowdhury, S. & Dey, S. Cause-specific premature death from ambient PM2.5 exposure in India: Estimate adjusted for baseline mortality. Environ. Int. 91, 283–290. https://doi.org/10.1016/j.envint.2016.03.004 (2016).
doi: 10.1016/j.envint.2016.03.004
pubmed: 27063285
Golub, A. & Strukova, E. Evaluation and identification of priority air pollutants for environmental management on the basis of risk analysis in Russia. J. Toxicol. Environ. Health Part A 71, 86–91. https://doi.org/10.1080/15287390701558238 (2008).
doi: 10.1080/15287390701558238
Bagula, H. et al. Ambient air pollution and cardiorespiratory outcomes amongst adults residing in four informal settlements in the western province of South Africa. Int. J. Environ. Res. Pub. Health https://doi.org/10.3390/ijerph182413306 (2021).
doi: 10.3390/ijerph182413306
Cohen, A. J. et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the global burden of diseases study 2015. Lancet 389, 1907–1918 (2017).
doi: 10.1016/S0140-6736(17)30505-6
pubmed: 28408086
pmcid: 5439030
Coleman, N. C. et al. Fine particulate matter exposure and cancer incidence: Analysis of SEER cancer registry data from 1992–2016. Environ. Health Perspect. 128, 107004 (2020).
doi: 10.1289/EHP7246
pubmed: 33035119
pmcid: 7546438
Crouse, D. L. et al. Complex relationships between greenness, air pollution, and mortality in a population-based Canadian cohort. Environ. Int. 128, 292–300. https://doi.org/10.1016/j.envint.2019.04.047 (2019).
doi: 10.1016/j.envint.2019.04.047
pubmed: 31075749
Sang, S., Chu, C., Zhang, T., Chen, H. & Yang, X. The global burden of disease attributable to ambient fine particulate matter in 204 countries and territories, 1990–2019: A systematic analysis of the global burden of disease study 2019. Ecotoxicol. Environ. Saf. 238, 113588. https://doi.org/10.1016/j.ecoenv.2022.113588 (2022).
doi: 10.1016/j.ecoenv.2022.113588
pubmed: 35525115
HEI. State of global air 2020, special report. Health Effects Institute (2020).
Bu, X. et al. Global PM2.5-attributable health burden from 1990 to 2017: Estimates from the global burden of disease study 2017. Environ. Res. 197, 111123. https://doi.org/10.1016/j.envres.2021.111123 (2021).
doi: 10.1016/j.envres.2021.111123
pubmed: 33823194
Zou, Z. et al. Time trends in tuberculosis mortality across the BRICS: An age-period-cohort analysis for the GBD 2019. eClinicalMedicine 53, 101646. https://doi.org/10.1016/j.eclinm.2022.101646 (2022).
doi: 10.1016/j.eclinm.2022.101646
pubmed: 36147625
pmcid: 9486016
Mubarik, S., Luo, L., Iqbal, M., Bai, J. & Yu, C. More recent insights into the breast cancer burden across BRICS-plus: Health consequences in key nations with emerging economies using the global burden of disease study 2019. Front. Oncol. https://doi.org/10.3389/fonc.2023.1100300 (2023).
doi: 10.3389/fonc.2023.1100300
pubmed: 36845742
pmcid: 9954621
de Fatima Andrade, M. et al. Air quality in the megacity of São Paulo: Evolution over the last 30 years and future perspectives. Atmos. Environ. 159, 66–82 (2017).
doi: 10.1016/j.atmosenv.2017.03.051
Carvalho, V. S. B. et al. Air quality status and trends over the metropolitan area of São Paulo, Brazil as a result of emission control policies. Environ. Sci. 47, 68–79 (2015).
Schmidt, M. et al. Chronic non-communicable diseases in Brazil: Burden and current challenges. Lancet 377, 1949–1961 (2011).
doi: 10.1016/S0140-6736(11)60135-9
pubmed: 21561658
Mücke, H. G. Air quality management in the WHO European region—Results of a quality assurance and control programme on air quality monitoring (1994–2004). Environ. Int. 34, 648–653. https://doi.org/10.1016/j.envint.2007.12.008 (2008).
doi: 10.1016/j.envint.2007.12.008
pubmed: 18234339
World Health Organization, Regional Offfice for E. Health Basis for Air Quality Management in Eastern Europe Caucasus and Central Asia: Report from a WHO Consultative Meeting Moscow Russian Federation (World Health Organization Regional Office for Europe, 2005).
Cheng, Z. et al. Status and characteristics of ambient PM2.5 pollution in global megacities. Environ. Int. 89–90, 212–221. https://doi.org/10.1016/j.envint.2016.02.003 (2016).
doi: 10.1016/j.envint.2016.02.003
pubmed: 26891184
Zou, B. et al. Efforts in reducing air pollution exposure risk in China: State versus individuals. Environ. Int. 137, 105504. https://doi.org/10.1016/j.envint.2020.105504 (2020).
doi: 10.1016/j.envint.2020.105504
pubmed: 32032774
Yue, H., He, C., Huang, Q., Yin, D. & Bryan, B. A. Stronger policy required to substantially reduce deaths from PM2.5 pollution in China. Nat. Commun. 11, 1462. https://doi.org/10.1038/s41467-020-15319-4 (2020).
doi: 10.1038/s41467-020-15319-4
pubmed: 32193475
pmcid: 7081205
Jaiswal, A., Knowlton, K. & Limaye, V. Highlighting city actions to reduce air pollution in India. Nat. Resour. Def. Counc. (2019). https://www.nrdc.org/bio/anjali-jaiswal/highlighting-city-actions-reduce-air-pollution-india . Accessed 13 June 2023
Fuller, R. et al. Pollution and health: A progress update. Lancet Planet. Health https://doi.org/10.1016/S2542-5196(22)00090-0 (2022).
doi: 10.1016/S2542-5196(22)00090-0
pubmed: 35594895
Katoto, P. D. M. C. et al. Ambient air pollution and health in sub-saharan Africa: Current evidence, perspectives and a call to action. Environ. Res. 173, 174–188. https://doi.org/10.1016/j.envres.2019.03.029 (2019).
doi: 10.1016/j.envres.2019.03.029
pubmed: 30913485
Fisher, S. et al. Air pollution and development in Africa: Impacts on health, the economy, and human capital. Lancet Planet. Health 5, e681–e688. https://doi.org/10.1016/S2542-5196(21)00201-1 (2021).
doi: 10.1016/S2542-5196(21)00201-1
pubmed: 34627472
Olutola, B. G., Mwase, N. S., Shirinde, J. & Wichmann, J. Apparent temperature modifies the effects of air pollution on cardiovascular disease mortality in cape town South Africa. Climate https://doi.org/10.3390/cli11020030 (2023).
doi: 10.3390/cli11020030
Adebayo-Ojo, T. C. et al. Short-term joint effects of PM10, NO
doi: 10.3390/ijerph19010495
Rodgers, J. L. et al. Cardiovascular risks associated with gender and aging. J. Cardiovasc. Dev. Dis. https://doi.org/10.3390/jcdd6020019 (2019).
doi: 10.3390/jcdd6020019
pubmed: 31035613
pmcid: 6616540
Yazdanyar, A. & Newman, A. B. The burden of cardiovascular disease in the elderly: Morbidity, mortality, and costs. Clin. Geriatr. Med. 25, 563–577 (2009).
doi: 10.1016/j.cger.2009.07.007
pubmed: 19944261
pmcid: 2797320
Lelieveld, J., Barlas, C., Giannadaki, D. & Pozzer, A. Model calculated global, regional and megacity premature mortality due to air pollution. Atmos. Chem. Phys. 13, 7023–7037. https://doi.org/10.5194/acp-13-7023-2013 (2013).
doi: 10.5194/acp-13-7023-2013
Ke, C. et al. Divergent trends in ischaemic heart disease and stroke mortality in India from 2000 to 2015: A nationally representative mortality study. Lancet Glob. Health 6, e914–e923. https://doi.org/10.1016/S2214-109X(18)30242-0 (2018).
doi: 10.1016/S2214-109X(18)30242-0
pubmed: 30012272
pmcid: 6942542
Nair, M., Bherwani, H., Mirza, S., Anjum, S. & Kumar, R. Valuing burden of premature mortality attributable to air pollution in major million-plus non-attainment cities of India. Sci. Rep. 11, 22771. https://doi.org/10.1038/s41598-021-02232-z (2021).
doi: 10.1038/s41598-021-02232-z
pubmed: 34857768
pmcid: 8640062
Nansai, K. et al. Consumption in the G20 nations causes particulate air pollution resulting in two million premature deaths annually. Nat. Commun. 12, 6286. https://doi.org/10.1038/s41467-021-26348-y (2021).
doi: 10.1038/s41467-021-26348-y
pubmed: 34728619
pmcid: 8563796
David, L. M. et al. Premature mortality due to PM2. 5 over India: Effect of atmospheric transport and anthropogenic emissions. GeoHealth 3, 2–10 (2019).
doi: 10.1029/2018GH000169
pubmed: 32159019
pmcid: 7007096
Pollution, A. J. P. H. F. o. I. C. f. e. H., India. Health in India: A review of the current evidence and opportunities for the future July 2017. 1–64 (2017).
Yin, P. et al. The effect of air pollution on deaths, disease burden, and life expectancy across China and its provinces, 1990–2017: An analysis for the global burden of disease study 2017. Lancet Planet. Health 4, e386–e398. https://doi.org/10.1016/S2542-5196(20)30161-3 (2020).
doi: 10.1016/S2542-5196(20)30161-3
pubmed: 32818429
pmcid: 7487771
Huang, J., Pan, X., Guo, X. & Li, G. Health impact of China’s air pollution prevention and control action plan: An analysis of national air quality monitoring and mortality data. Lancet Planet. Health 2, e313–e323. https://doi.org/10.1016/S2542-5196(18)30141-4 (2018).
doi: 10.1016/S2542-5196(18)30141-4
pubmed: 30074894
Danish, W. Z. Does biomass energy consumption help to control environmental pollution? Evidence from BRICS countries. Sci. Total Environ. 670, 1075–1083. https://doi.org/10.1016/j.scitotenv.2019.03.268 (2019).
doi: 10.1016/j.scitotenv.2019.03.268
pubmed: 31018423
Hassan, S. T., Danish, S. U. D. K., Awais Baloch, M. & Tarar, Z. H. Is nuclear energy a better alternative for mitigating CO
doi: 10.1016/j.net.2020.05.016
Wang, Z., Wu, F. & Yang, Y. Air pollution measurement based on hybrid convolutional neural network with spatial-and-channel attention mechanism. Expert Syst. Appl. 233, 120921. https://doi.org/10.1016/j.eswa.2023.120921 (2023).
doi: 10.1016/j.eswa.2023.120921
Zhang, Q., Fu, F. & Tian, R. A deep learning and image-based model for air quality estimation. Sci. Total Environ. 724, 138178. https://doi.org/10.1016/j.scitotenv.2020.138178 (2020).
doi: 10.1016/j.scitotenv.2020.138178
pubmed: 32408444
Afshin, A. et al. Health effects of dietary risks in 195 countries, 1990–2017: A systematic analysis for the global burden of disease study 2017. Lancet 393, 1958–1972. https://doi.org/10.1016/S0140-6736(19)30041-8 (2019).
doi: 10.1016/S0140-6736(19)30041-8
Pelzer, B., Te Grotenhuis, M., Eisinga, R. & Schmidt-Catran, A. W. The non-uniqueness property of the intrinsic estimator in APC models. Demography 52, 315–327 (2015).
doi: 10.1007/s13524-014-0360-3
pubmed: 25550143
Vos, T. et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the global burden of disease study 2019. Lancet 396, 1204–1222. https://doi.org/10.1016/S0140-6736(20)30925-9 (2020).
doi: 10.1016/S0140-6736(20)30925-9
Roth, G. A. et al. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: A systematic analysis for the global burden of disease study 2017. Lancet 392, 1736–1788. https://doi.org/10.1016/S0140-6736(18)32203-7 (2018).
doi: 10.1016/S0140-6736(18)32203-7
Kyu, H. H. et al. Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2017: A systematic analysis for the global burden of disease study 2017. Lancet 392, 1859–1922. https://doi.org/10.1016/S0140-6736(18)32335-3 (2018).
doi: 10.1016/S0140-6736(18)32335-3
Wang, Z., Hu, S., Sang, S., Luo, L. & Yu, C. Age-period-cohort analysis of stroke mortality in China: Data from the global burden of disease study 2013. Stroke 48, 271–275 (2017).
doi: 10.1161/STROKEAHA.116.015031
pubmed: 27965429
Yang, Y., Fu, W. J. & Land, K. C. A methodological comparison of age-period-cohort models: The intrinsic estimator and conventional generalized linear models. Sociol. Methodol. 34, 75–110 (2004).
doi: 10.1111/j.0081-1750.2004.00148.x
Keyes, K. M. & Miech, R. Age, period, and cohort effects in heavy episodic drinking in the US from 1985 to 2009. Drug Alcohol Depend. 132, 140–148 (2013).
doi: 10.1016/j.drugalcdep.2013.01.019
pubmed: 23433898
pmcid: 4827021