Optimization of methods for intrasplenic administration of human amniotic epithelial cells in order to perform safe and effective cell-based therapy for liver diseases.

Cell transplantation Cell-based therapy Human amniotic epithelial cells Intrasplenic administration Liver failure Splenic port

Journal

Stem cell reviews and reports
ISSN: 2629-3277
Titre abrégé: Stem Cell Rev Rep
Pays: United States
ID NLM: 101752767

Informations de publication

Date de publication:
21 May 2024
Historique:
accepted: 11 05 2024
medline: 21 5 2024
pubmed: 21 5 2024
entrez: 20 5 2024
Statut: aheadofprint

Résumé

In animal experimental models the administration of stem cells into the spleen should ensure high effectiveness of their implantation in the liver due to a direct vascular connection between the two organs. The aim of this study was to update the methods of experimental intrasplenic cell transplantation using human amniotic epithelial cells (hAECs) which are promising cells in the treatment of liver diseases. BALB/c mice were administered intrasplenically with 0.5, 1, and 2 million hAECs by direct bolus injection (400 µl/min) and via a subcutaneous splenic port by fast (20 μl/min) and slow (10 μl/min) infusion. The port was prepared by translocating the spleen to the skin pocket. The spleen, liver, and lungs were collected at 3 h, 6 h, and 24 h after the administration of cells. The distribution of hAECs, histopathological changes in the organs, complete blood count, and biochemical markers of liver damage were assessed. It has been shown that the method of intrasplenic cell administration affects the degree of liver damage. The largest number of mice showing significant liver damage was observed after direct administration and the lowest after slow administration through a port. Liver damage increased with the number of administered cells, which, paradoxically, resulted in increased liver colonization efficiency. It was concluded that the administration of 1 × 10

Identifiants

pubmed: 38769232
doi: 10.1007/s12015-024-10735-1
pii: 10.1007/s12015-024-10735-1
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. The Author(s).

Références

Strom, S. C., Skvorak, K., Gramignoli, R., Marongiu, F., & Miki, T. (2013). Translation of amnion stem cells to the clinic. Stem Cells and Development,22(1), 96–102. https://doi.org/10.1089/scd.2013.0391
doi: 10.1089/scd.2013.0391 pubmed: 24304085
Puppi, J., Strom, S. C., Hughes, R. D., Bansal, S., Castell, J. V., Dagher, I., Ellis, E. C., Nowak, G., Ericzon, B. G., Fox, I. J., Gómez-Lechón, M. J., Guha, C., Gupta, S., Mitry, R. R., Ohashi, K., Ott, M., Reid, L. M., Roy-Chowdhury, J., Sokal, E., … Dhawan, A. (2012). Improving the techniques for human hepatocyte transplantation: Report from a consensus meeting in London. Cell Transplantation,21(1), 1–10. https://doi.org/10.3727/096368911X566208
Gramignoli, R. (2016). Therapeutic use of human amnion-derived products: Cell-based therapy for liver disease. Current Pathobiology Reports,4, 157–167. https://doi.org/10.1007/s40139-016-0112-84
doi: 10.1007/s40139-016-0112-84
Banas, R. A., Trumpower, C., Bentlejewski, C., Marshall, V., Sing, G., & Zeevi, A. (2008). Immunogenicity and immunomodulatory effects of amnion-derived multipotent progenitor cells. Human Immunology,69(6), 321–328. https://doi.org/10.1016/j.humimm.2008.04.007
doi: 10.1016/j.humimm.2008.04.007 pubmed: 18571002
Kolanko, E., Grajoszek, A., & Czekaj, P. (2021). Immunosuppressive potential of activated human amniotic cells in an experimental murine model of skin Allo- and Xenotransplantation. Frontiers in Medicine (Lausanne),8, 715590. https://doi.org/10.3389/fmed.2021.715590
doi: 10.3389/fmed.2021.715590
Skvorak, K. J., Dorko, K., Marongiu, F., Tahan, V., Hansel, M. C., Gramignoli, R., Gibson, K. M., & Strom, S. C. (2013). Placental stem cell correction of murine intermediate maple syrup urine disease. Hepatology,57(3), 1017–1023. https://doi.org/10.1002/hep.26150
doi: 10.1002/hep.26150 pubmed: 23175463
Wagner, J., Kean, T., Young, R., Dennis, J. E., & Caplan, A. I. (2009). Optimizing mesenchymal stem cell-based therapeutics. Current Opinion in Biotechnology,20(5), 531–536. https://doi.org/10.1016/j.copbio.2009.08.009
doi: 10.1016/j.copbio.2009.08.009 pubmed: 19783424
Jorns, C., Ellis, E. C., Nowak, G., Fischler, B., Nemeth, A., Strom, S. C., & Ericzon, B. G. (2012). Hepatocyte transplantation for inherited metabolic diseases of the liver. Journal of Internal Medicine,272(3), 201–223. https://doi.org/10.1111/j.1365-2796.2012.02574
doi: 10.1111/j.1365-2796.2012.02574 pubmed: 22789058
Khan, Z., & Strom, S. C. (2017). Hepatocyte Transplantation in Special Populations: Clinical Use in Children. Methods in Molecular Biology,1506, 3–16. https://doi.org/10.1007/978-1-4939-6506-9_1
doi: 10.1007/978-1-4939-6506-9_1 pubmed: 27830542
Srinivasan, R. C., Kannisto, K., Strom, S. C., & Gramignoli, R. (2019). Evaluation of different routes of administration and biodistribution of human amnion epithelial cells in mice. Cytotherapy,21(1), 113–124. https://doi.org/10.1016/j.jcyt.2018.10.007
doi: 10.1016/j.jcyt.2018.10.007 pubmed: 30409699
Chamberlain, J., Yamagami, T., Colletti, E., Theise, N. D., Desai, J., Frias, A., Pixley, J., Zanjani, E. D., Porada, C. D., & Almeida-Porada, G. (2007). Efficient generation of human hepatocytes by the intrahepatic delivery of clonal human mesenchymal stem cells in fetal sheep. Hepatology,46(6), 1935–1945. https://doi.org/10.1002/hep.21899
doi: 10.1002/hep.21899 pubmed: 17705296
Miki, T., Takano, C., Garcia, I. M., & Grubbs, B. H. (2019). Construction and Evaluation of a Subcutaneous Splenic Injection Port for Serial Intraportal Vein Cell Delivery in Murine Disease Models. Stem Cells International,2(2019), 5419501. https://doi.org/10.1155/2019/5419501
doi: 10.1155/2019/5419501
Schrepfer, S., Deuse, T., Reichenspurner, H., Fischbein, M. P., Robbins, R. C., & Pelletier, M. P. (2007). Stem cell transplantation: The lung barrier. Transplantation Proceedings,39(2), 573–576. https://doi.org/10.1016/j.transproceed.2006.12.019
doi: 10.1016/j.transproceed.2006.12.019 pubmed: 17362785
Batts, K. P., & Ludwig, J. (1995). Chronic hepatitis. An update on terminology and reporting. American Journal of Surgical Pathology,19(12), 1409–1417. https://doi.org/10.1097/00000478-199512000-00007
doi: 10.1097/00000478-199512000-00007 pubmed: 7503362
Goodman, Z. D. (2007). Grading and staging systems for inflammation and fibrosis in chronic liver diseases. Journal of Hepatology,47(4), 598–607. https://doi.org/10.1016/j.jhep.2007.07.006
doi: 10.1016/j.jhep.2007.07.006 pubmed: 17692984
Krishna, M. (2021). Histological Grading and Staging of Chronic Hepatitis. Clinical Liver Disease (Hoboken),17(4), 222–226. https://doi.org/10.1002/cld.1014
doi: 10.1002/cld.1014
Gibson-Corley, K. N., Olivier, A. K., & Meyerholz, D. K. (2013). Principles for valid histopathologic scoring in research. Veterinary Pathology,50(6), 1007–1015. https://doi.org/10.1177/0300985813485099
doi: 10.1177/0300985813485099 pubmed: 23558974
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J. Y., White, D. J., Hartenstein, V., Eliceiri, K., Tomancak, P., & Cardona, A. (2012). Fiji: An open-source platform for biological-image analysis. Nature Methods,9(7), 676–682. https://doi.org/10.1038/nmeth.2019
doi: 10.1038/nmeth.2019 pubmed: 22743772
Festing, M. F., Diamanti, P., & Turton, J. A. (2001). Strain differences in haematological response to chloramphenicol succinate in mice: Implications for toxicological research. Food Chemical Toxicology,39(4), 375–383. https://doi.org/10.1016/s0278-6915(00)00149-6
doi: 10.1016/s0278-6915(00)00149-6 pubmed: 11295484
Jablonska, A., Janowski, M., & Lukomska, B. (2013). Different methods of immunosuppresion do not prolong the survival of human cord blood-derived neural stem cells transplanted into focal brain-injured immunocompetent rats. Acta Neurobiologiae Experimentalis (Wars),73(1), 88–101. https://doi.org/10.55782/ane-2013-1924
doi: 10.55782/ane-2013-1924
Lim, R., Malhotra, A., Tan, J., Chan, S. T., Lau, S., Zhu, D., Mockler, J. C., & Wallace, E. M. (2018). First-In-Human Administration of Allogeneic Amnion Cells in Premature Infants With Bronchopulmonary Dysplasia: A Safety Study. Stem Cells Translational Medicine,7(9), 628–635. https://doi.org/10.1002/sctm.18-0079
doi: 10.1002/sctm.18-0079 pubmed: 30078207 pmcid: 6127230
Bauer, G., Elsallab, M., & Abou-El-Enein, M. (2018). Concise Review: A Comprehensive Analysis of Reported Adverse Events in Patients Receiving Unproven Stem Cell-Based Interventions. Stem Cells Translational Medicine,7(9), 676–685. https://doi.org/10.1002/sctm.17-0282
doi: 10.1002/sctm.17-0282 pubmed: 30063299 pmcid: 6127222
Penack, O., & Koenecke, C. (2020). Complications after CD19+ CAR T-Cell Therapy. Cancers (Basel),12(11), 3445. https://doi.org/10.3390/cancers12113445
doi: 10.3390/cancers12113445 pubmed: 33228221
Dobkin, B. H., Curt, A., & Guest, J. (2006). Cellular transplants in China: Observational study from the largest human experiment in chronic spinal cord injury. Neurorehabilitation and Neural Repair,20(1), 5–13. https://doi.org/10.1177/1545968305284675
doi: 10.1177/1545968305284675 pubmed: 16467274 pmcid: 4169140
Erdö, F., Bührle, C., Blunk, J., Hoehn, M., Xia, Y., Fleischmann, B., Föcking, M., Küstermann, E., Kolossov, E., Hescheler, J., Hossmann, K. A., & Trapp, T. (2003). Host-dependent tumorigenesis of embryonic stem cell transplantation in experimental stroke. Journal of Cerebral Blood Flow and Metabolism,23(7), 780–785. https://doi.org/10.1097/01.WCB.0000071886.63724.FB
doi: 10.1097/01.WCB.0000071886.63724.FB pubmed: 12843782
Cui, L. L., Kerkelä, E., Bakreen, A., Nitzsche, F., Andrzejewska, A., Nowakowski, A., Janowski, M., Walczak, P., Boltze, J., Lukomska, B., & Jolkkonen, J. (2015). The cerebral embolism evoked by intra-arterial delivery of allogeneic bone marrow mesenchymal stem cells in rats is related to cell dose and infusion velocity. Stem Cell Research and Therapy,6(1), 11. https://doi.org/10.1186/scrt544
doi: 10.1186/scrt544 pubmed: 25971703 pmcid: 4429328
Madej, K., Jeleńska, M., & Romanowski, Ł. (2012). Acute postoperative liver failure caused by thrombosis of the celiac trunk — case report. Acta Angiologica,18, 177–182.
Corbacioglu, S., Jabbour, E. J., & Mohty, M. (2019). Risk Factors for Development of and Progression of Hepatic Veno-Occlusive Disease/Sinusoidal Obstruction Syndrome. Biology of Blood and Marrow Transplantation,25(7), 1271–1280. https://doi.org/10.1016/j.bbmt.2019.02.018
doi: 10.1016/j.bbmt.2019.02.018 pubmed: 30797942
Karp, J. M., & Leng Teo, G. S. (2009). Mesenchymal stem cell homing: The devil is in the details. Cell Stem Cells,4(3), 206–216. https://doi.org/10.1016/j.stem.2009.02.001
doi: 10.1016/j.stem.2009.02.001
Yoon, Y. J., Chang, S., Kim, O. Y., Kang, B. K., Park, J., Lim, J. H., Yun Huang, J., Kim, Y. K., Byun, J. H., & Gho, Y. S. (2013). Three-dimensional imaging of hepatic sinusoids in mice using synchrotron radiation micro-computed tomography. PLoS ONE,8(7), e68600. https://doi.org/10.1371/journal.pone.0068600
doi: 10.1371/journal.pone.0068600 pubmed: 23861925 pmcid: 3702620
Vollmar, B., & Menger, M. D. (2009). The hepatic microcirculation: Mechanistic contributions and therapeutic targets in liver injury and repair. Physiological Reviews,89(4), 1269–1339. https://doi.org/10.1152/physrev.00027.2008
doi: 10.1152/physrev.00027.2008 pubmed: 19789382
Mak, K. M., & Shin, D. W. (2021). Hepatic sinusoids versus central veins: Structures, markers, angiocrines, and roles in liver regeneration and homeostasis. Anatomical Record (Hoboken),304(8), 1661–1691. https://doi.org/10.1002/ar.24560
doi: 10.1002/ar.24560
García-Piñeres, A. J., Hildesheim, A., Williams, M., Trivett, M., Strobl, S., & Pinto, L. A. (2006). DNAse treatment following thawing of cryopreserved PBMC is a procedure suitable for lymphocyte functional studies. Journal of Immunological Methods,313(1–2), 209–213. https://doi.org/10.1016/j.jim.2006.04.004
doi: 10.1016/j.jim.2006.04.004 pubmed: 16737707
Timm, F., & Vollmar, B. (2013). Heterogeneity of the intrahepatic portal venous blood flow: Impact on hepatocyte transplantation. Microvascular Research,86, 34–41. https://doi.org/10.1016/j.mvr.2012.11.008
doi: 10.1016/j.mvr.2012.11.008 pubmed: 23220352
Gunardi, H., Alatas, F. S., Antarianto, R. D., & Rahayatri, T. H. (2024). The Effect of intrahepatic and intrasplenic administration of mesenchymal stem cell to liver function and degree of liver fibrosis in common bile duct ligation model in rabbit. Journal of Pediatric Surgery,59(4), 634–639. https://doi.org/10.1016/j.jpedsurg.2023.12.004
doi: 10.1016/j.jpedsurg.2023.12.004 pubmed: 38160190
Okuno, K., Ohnishi, H., Koh, K., Shindo, H., Yoshioka, H., & Yasutomi, M. (1992). Clinical trials of intrasplenic arterial infusion of interleukin-2 (IS-IL-2) to patients with advanced cancer. Biotherapy,4(4), 257–265. https://doi.org/10.1007/BF02172655
doi: 10.1007/BF02172655 pubmed: 1622739
Amer, M. E., El-Sayed, S. Z., El-Kheir, W. A., Gabr, H., Gomaa, A. A., El-Noomani, N., & Hegazy, M. (2011). Clinical and laboratory evaluation of patients with end-stage liver cell failure injected with bone marrow-derived hepatocyte-like cells. European Journal of Gastroenterology and Hepatology,23(10), 936–941. https://doi.org/10.1097/MEG.0b013e3283488b00
doi: 10.1097/MEG.0b013e3283488b00 pubmed: 21900788

Auteurs

Piotr Czekaj (P)

Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Medyków 18, Katowice, 40-752, Poland. pcz@sum.edu.pl.

Mateusz Król (M)

Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Medyków 18, Katowice, 40-752, Poland.

Emanuel Kolanko (E)

Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Medyków 18, Katowice, 40-752, Poland.

Patrycja Wieczorek (P)

Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Medyków 18, Katowice, 40-752, Poland.

Edyta Bogunia (E)

Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Medyków 18, Katowice, 40-752, Poland.

Mateusz Hermyt (M)

Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Medyków 18, Katowice, 40-752, Poland.

Aniela Grajoszek (A)

Department of Experimental Medicine, Medical University of Silesia in Katowice, Medyków 4, Katowice, 40-752, Poland.

Agnieszka Prusek (A)

Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Medyków 18, Katowice, 40-752, Poland.

Classifications MeSH