Consensus Paper: Cerebellum and Reward.

Addiction Ataxias Catecholamines Cerebellum Emotions Mood Predictions Reward Social interactions

Journal

Cerebellum (London, England)
ISSN: 1473-4230
Titre abrégé: Cerebellum
Pays: United States
ID NLM: 101089443

Informations de publication

Date de publication:
20 May 2024
Historique:
accepted: 06 05 2024
medline: 21 5 2024
pubmed: 21 5 2024
entrez: 20 5 2024
Statut: aheadofprint

Résumé

Cerebellum is a key-structure for the modulation of motor, cognitive, social and affective functions, contributing to automatic behaviours through interactions with the cerebral cortex, basal ganglia and spinal cord. The predictive mechanisms used by the cerebellum cover not only sensorimotor functions but also reward-related tasks. Cerebellar circuits appear to encode temporal difference error and reward prediction error. From a chemical standpoint, cerebellar catecholamines modulate the rate of cerebellar-based cognitive learning, and mediate cerebellar contributions during complex behaviours. Reward processing and its associated emotions are tuned by the cerebellum which operates as a controller of adaptive homeostatic processes based on interoceptive and exteroceptive inputs. Lobules VI-VII/areas of the vermis are candidate regions for the cortico-subcortical signaling pathways associated with loss aversion and reward sensitivity, together with other nodes of the limbic circuitry. There is growing evidence that the cerebellum works as a hub of regional dysconnectivity across all mood states and that mental disorders involve the cerebellar circuitry, including mood and addiction disorders, and impaired eating behaviors where the cerebellum might be involved in longer time scales of prediction as compared to motor operations. Cerebellar patients exhibit aberrant social behaviour, showing aberrant impulsivity/compulsivity. The cerebellum is a master-piece of reward mechanisms, together with the striatum, ventral tegmental area (VTA) and prefrontal cortex (PFC). Critically, studies on reward processing reinforce our view that a fundamental role of the cerebellum is to construct internal models, perform predictions on the impact of future behaviour and compare what is predicted and what actually occurs.

Identifiants

pubmed: 38769243
doi: 10.1007/s12311-024-01702-0
pii: 10.1007/s12311-024-01702-0
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : NIH HHS
ID : R01 NS104423
Pays : United States
Organisme : Baylor College of Medicine
ID : H-51734
Organisme : Nederlandse Organisatie voor Wetenschappelijk Onderzoek
ID : VI.C.181.005
Organisme : VUB
ID : SRP57

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Wolpert DM, Miall RC, Kawato M. Internal models in the cerebellum. Trends Cogn Sci. 1998;2(9):338–47.
pubmed: 21227230 doi: 10.1016/S1364-6613(98)01221-2
Tanaka H, Ishikawa T, Kakei S. Neural evidence of the cerebellum as a state predictor. Cerebellum. 2019;18(3):349–71.
pubmed: 30627965 pmcid: 6517560 doi: 10.1007/s12311-018-0996-4
Buckner RL, Krienen FM, Castellanos A, Diaz JC, Yeo BT. The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106(5):2322–45.
pubmed: 21795627 pmcid: 3214121 doi: 10.1152/jn.00339.2011
Pierce JE, Péron J. The basal ganglia and the cerebellum in human emotion. Soc Cogn Affect Neurosci. 2020;15(5):599–613. https://doi.org/10.1093/scan/nsaa076 .
doi: 10.1093/scan/nsaa076 pubmed: 32507876 pmcid: 7328022
Pierce JE, Péron J. Reward-based learning and emotional habit formation in the cerebellum. In: Adamaszek M, Manto M, Schutter DLJG, editors. The emotional cerebellum. Adv Exp Med Biol 2022;vol 1378: pp 125–140.
Wolpert DM, Ghahramani Z, Jordan MI. An internal model for sensorimotor integration. Science. 1995;269:1880–2.
pubmed: 7569931 doi: 10.1126/science.7569931
Ebner TJ, Pasalar S. Cerebellum predicts the future motor state. Cerebellum. 2008;7:583–8.
pubmed: 18850258 pmcid: 2754147 doi: 10.1007/s12311-008-0059-3
Kostadinov D, Häusser M. Reward signals in the cerebellum: origins, targets, and functional implications. Neuron. 2022;110(8):1290–303.
pubmed: 35325616 doi: 10.1016/j.neuron.2022.02.015
Medina JF. Teaching the cerebellum about reward. Nat Neurosci. 2019;22(6):846–8.
pubmed: 31127257 pmcid: 6854898 doi: 10.1038/s41593-019-0409-0
Miquel M, Toledo R, García LI, Coria-Avila GA, Manzo J. Why should we keep the cerebellum in mind when thinking about addiction? Curr Drug Abuse Rev. 2009;2(1):26–40.
pubmed: 19630735 doi: 10.2174/1874473710902010026
Carta I, Chen CH, Schott AL, Dorizan S, Khodakhah K. Cerebellar modulation of the reward circuitry and social behaviour. Science. 2019;363(6424):eaav0581.
Kruithof ES, Klaus J, Schutter DJLG. The human cerebellum in reward anticipation and outcome processing: an activation likelihood estimation meta-analysis. Neurosci Biobehav Rev. 2023;149:105171.
pubmed: 37060968 doi: 10.1016/j.neubiorev.2023.105171
Ito M. Neurophysiological aspects of the cerebellar motor control system. Int J Neurol. 1970;7:162–76.
Tanaka H, Ishikawa T, Lee J, Kakei S. The cerebro-cerebellum as a locus of forward model: a review. Front Syst Neurosci. 2020;14:19.
pubmed: 32327978 pmcid: 7160920 doi: 10.3389/fnsys.2020.00019
Kakei S, Tanaka H, Ishikawa T, Tomatsu S, Lee J. The input-output organization of the cerebrocerebellum as kalman filter. In: Cerebellum as a CNS Hub. Mizusawa H, Kakei S, editors. Contemporary Clinical Neuroscience. Springer, Switzerland. 2021. p 391–11.
Kakei S, Lee J, Mitoma H, Tanaka H, Manto M, Hampe CS. Contribution of the cerebellum to predictive motor control and its evaluation in ataxic patients. Front Hum Neurosci. 2019;13:216.
pubmed: 31297053 pmcid: 6608258 doi: 10.3389/fnhum.2019.00216
Miall RC, Christensen LO, Cain O, Stanley J. Disruption of state estimation in the human lateral cerebellum. PLoS Biol. 2007;5:e316.
pubmed: 18044990 pmcid: 2229864 doi: 10.1371/journal.pbio.0050316
Cabaraux P, Gandini J, Kakei S, Manto M, Mitoma H, Tanaka H. Dysmetria and errors in predictions: the role of internal forward model. Int J Mol Sci. 2020;21(18):6900.
pubmed: 32962256 pmcid: 7555030 doi: 10.3390/ijms21186900
Kakei S, Manto M, Tanaka H, Mitoma H. Pathophysiology of cerebellar tremor: the forward model-related tremor and the inferior olive oscillation-related tremor. Front Neurol. 2021;12:694653.
pubmed: 34262527 pmcid: 8273235 doi: 10.3389/fneur.2021.694653
Schultz W. Predictive reward signal of dopamine neurons. J Neurophysiol. 1998;80:1–27.
pubmed: 9658025 doi: 10.1152/jn.1998.80.1.1
Marr D. A theory of cerebellar cortex. J Physiol. 1969;202:437–70.
pubmed: 5784296 pmcid: 1351491 doi: 10.1113/jphysiol.1969.sp008820
Albus JS. A theory of cerebellar function. Math Biosci. 1971;10:25–61.
doi: 10.1016/0025-5564(71)90051-4
Schultz W, Dayan P, Montague PR. A neural substrate of prediction and reward. Science. 1997;275:1593–9.
pubmed: 9054347 doi: 10.1126/science.275.5306.1593
Bostan AC, Strick PL. The basal ganglia and the cerebellum: nodes in an integrated network. Nat Rev Neurosci. 2018;19:338–50.
pubmed: 29643480 pmcid: 6503669 doi: 10.1038/s41583-018-0002-7
Bostan AC, Dum RP, Strick PL. The basal ganglia communicate with the cerebellum. Proc Natl Acad Sci U S A. 2010;107:8452–6.
pubmed: 20404184 pmcid: 2889518 doi: 10.1073/pnas.1000496107
Hoshi E, Tremblay L, Feger J, Carras PL, Strick PL. The cerebellum communicates with the basal ganglia. Nat Neurosci. 2005;8:1491–3.
pubmed: 16205719 doi: 10.1038/nn1544
Ohmae S, Medina JF. Climbing fibers encode a temporal-difference prediction error during cerebellar learning in mice. Nat Neurosci. 2015;18:1798–803.
pubmed: 26551541 pmcid: 4754078 doi: 10.1038/nn.4167
Kostadinov D, Beau M, Blanco-Pozo M, Hausser M. Predictive and reactive reward signals conveyed by climbing fiber inputs to cerebellar Purkinje cells. Nat Neurosci. 2019;22:950–62.
pubmed: 31036947 pmcid: 7612392 doi: 10.1038/s41593-019-0381-8
Wagner MJ, Kim TH, Savall J, Schnitzer MJ, Luo L. Cerebellar granule cells encode the expectation of reward. Nature. 2017;544:96–100.
pubmed: 28321129 pmcid: 5532014 doi: 10.1038/nature21726
Kitazawa S, Kimura T, Yin PB. Cerebellar complex spikes encode both destinations and errors in arm movements. Nature. 1998;392:494–7.
pubmed: 9548253 doi: 10.1038/33141
Catz N, Dicke PW, Thier P. Cerebellar complex spike firing is suitable to induce as well as to stabilize motor learning. Curr Biol. 2005;15:2179–89.
pubmed: 16360681 doi: 10.1016/j.cub.2005.11.037
Heffley W, Hull C. Classical conditioning drives learned reward prediction signals in climbing fibers across the lateral cerebellum. Elife. 2019;11(8):e46764.
doi: 10.7554/eLife.46764
Heffley W, Song EY, Xu Z, Taylor BN, Hughes MA, McKinney A, et al. Coordinated cerebellar climbing fiber activity signals learned sensorimotor predictions. Nat Neurosci. 2018;21:1431–41.
pubmed: 30224805 pmcid: 6362851 doi: 10.1038/s41593-018-0228-8
Larry N, Yarkoni M, Lixenberg A, Joshua M. Cerebellar climbing fibers encode expected reward size. Elife. 2019;8:1–16.
doi: 10.7554/eLife.46870
Larry N, Zur G, Joshua M. Organization of reward and movement signals in the basal ganglia and cerebellum. Nat Commun. 2024;15(1):2119.
pubmed: 38459003 pmcid: 10923830 doi: 10.1038/s41467-024-45921-9
Sendhilnathan N, Ipata A, Goldberg ME. Mid-lateral cerebellar complex spikes encode multiple independent reward-related signals during reinforcement learning. Nat Commun. 2021;12:1.
doi: 10.1038/s41467-021-26338-0
Sendhilnathan N, Ipata AE, Goldberg ME, Sendhilnathan N, Ipata AE, Goldberg ME. Neural correlates of reinforcement learning in mid-lateral cerebellum. Neuron. 2020;106:1–11.
doi: 10.1016/j.neuron.2019.12.032
Sendhilnathan N, Goldberg ME, Ipata AE. Mixed selectivity in the cerebellar purkinje-cell response during visuomotor association learning. J Neurosci. 2022;42:3847–55.
pubmed: 35351828 pmcid: 9087720 doi: 10.1523/JNEUROSCI.1771-21.2022
Lixenberg A, Yarkoni M, Botschko Y, Joshua M. Encoding of eye movements explains reward-related activity in cerebellar simple spikes. J Neurophysiol. 2020;123:786–99.
pubmed: 31940216 pmcid: 7052631 doi: 10.1152/jn.00363.2019
Ma M, Futia GL, de Souza FMS, Ozbay BN, Llano I, Gibson EA, et al. Molecular layer interneurons in the cerebellum encode for valence in associative learning. Nat Comm. 2020;11:1–16.
doi: 10.1038/s41467-020-18034-2
Chabrol FP, Blot A, Mrsic-Flogel TD. Cerebellar contribution to preparatory activity in motor neocortex. Neuron. 2019;103(3):506-519.e4.
pubmed: 31201123 pmcid: 6693889 doi: 10.1016/j.neuron.2019.05.022
Joshua M, Lisberger SG. Reward action in the initiation of smooth pursuit eye movements. J Neurosci. 2012;32:2856–67.
pubmed: 22357868 pmcid: 3327477 doi: 10.1523/JNEUROSCI.4676-11.2012
Shadmehr R, Ahmed AA. Recorded Books, Inc. Vigor : neuroeconomics of movement control. MIT Press, USA, 2020. https://doi.org/10.7551/mitpress/12940.001.0001
Lixenberg A, Joshua M. Encoding of reward and decoding movement from the frontal eye field during smooth pursuit eye movements. J Neurosci. 2018;38:10515–24.
pubmed: 30355635 pmcid: 6596260 doi: 10.1523/JNEUROSCI.1654-18.2018
Badura A, Schonewille M, Voges K, Galliano E, Renier N, Gao Z, et al. Climbing fiber input shapes reciprocity of purkinje cell firing. Neuron. 2013;78:700–13.
pubmed: 23643935 doi: 10.1016/j.neuron.2013.03.018
Herzfeld DJ, Kojima Y, Soetedjo R, Shadmehr R. Encoding of action by the Purkinje cells of the cerebellum. Nature. 2015;526:439–41.
pubmed: 26469054 pmcid: 4859153 doi: 10.1038/nature15693
Suvrathan A, Payne HL, Correspondence JLR, Raymond JL. Timing rules for synaptic plasticity matched to behavioural function. Neuron. 2016;92:959–67.
pubmed: 27839999 pmcid: 5165237 doi: 10.1016/j.neuron.2016.10.022
Medina JF, Lisberger SG. Links from complex spikes to local plasticity and motor learning in the cerebellum of awake-behaving monkeys. Nat Neurosci. 2008;11:1185–92.
pubmed: 18806784 pmcid: 2577564 doi: 10.1038/nn.2197
Stone LS, Lisberger SG. Visual responses of Purkinje cells in the cerebellar flocculus during smooth-pursuit eye movements in monkeys. II. Complex spikes. J Neurophysiol. 1990;63:1262–75.
pubmed: 2358873 doi: 10.1152/jn.1990.63.5.1262
Kojima Y, Soetedjo R. Selective reward affects the rate of saccade adaptation. Neuroscience. 2017;355:113.
pubmed: 28499971 doi: 10.1016/j.neuroscience.2017.04.048
Medina JF, Lisberger SG. Encoding and decoding of learned smooth-pursuit eye movements in the floccular complex of the monkey cerebellum. J Neurophysiol. 2009;102(4):2039–54.
pubmed: 19625543 pmcid: 2775373 doi: 10.1152/jn.00075.2009
Lisberger SG. Internal models of eye movement in the floccular complex of the monkey cerebellum. Neuroscience. 2009;162(3):763–76.
pubmed: 19336251 doi: 10.1016/j.neuroscience.2009.03.059
Pakaprot N, Kim S, Thompson RF. The role of the cerebellar interpositus nucleus in short and long term memory for trace eyeblink conditioning. Behav Neurosci. 2009;123(1):54–61.
pubmed: 19170430 pmcid: 2751661 doi: 10.1037/a0014263
Izawa J, Pekny SE, Marko MK, Haswell CC, Shadmehr R, Mostofsky SH. Motor learning relies on integrated sensory inputs in ADHD, but over-selectively on proprioception in autism spectrum conditions. Autism Res. 2012;5(2):124–36.
pubmed: 22359275 pmcid: 3329587 doi: 10.1002/aur.1222
Izawa J, Shadmehr R. Learning from sensory and reward prediction errors during motor adaptation. PLoS Comput Biol. 2011;7(3):e1002012.
pubmed: 21423711 pmcid: 3053313 doi: 10.1371/journal.pcbi.1002012
Pekny SE, Izawa J, Shadmehr R. Reward-dependent modulation of movement variability. J Neurosci. 2015;35(9):4015–24.
pubmed: 25740529 pmcid: 4348194 doi: 10.1523/JNEUROSCI.3244-14.2015
Sedaghat-Nejad E, Herzfeld DJ, Hage P, Karbasi K, Palin T, Wang X, Shadmehr R. Behavioural training of marmosets and electrophysiological recording from the cerebellum. J Neurophysiol. 2019;122(4):1502–17.
pubmed: 31389752 pmcid: 6843097 doi: 10.1152/jn.00389.2019
Sedaghat-Nejad E, Herzfeld DJ, Shadmehr R. Reward prediction error modulates saccade vigor. J Neurosci. 2019;39(25):5010–7.
pubmed: 31015343 pmcid: 6670245 doi: 10.1523/JNEUROSCI.0432-19.2019
Glimcher PW. Understanding dopamine and reinforcement learning: the dopamine reward prediction error hypothesis. Proc Natl Acad Sci USA. 2011;108 Suppl 3(Suppl 3):15647–54.
Carlson ES, Hunker AC, Sandberg SG, Locke TM, Geller JM, Schindler AG, Thomas SA, Darvas M, Phillips PEM, Zweifel LS. Catecholaminergic innervation of the lateral nucleus of the cerebellum modulates cognitive behaviours. J Neurosci. 2021;41(15):3512–30.
pubmed: 33536201 pmcid: 8051686 doi: 10.1523/JNEUROSCI.2406-20.2021
Locke TM, Hunker A, Johanson SS, Darvas M, Du Lac S, Zweifel LS, Carlson ES. Purkinje cell specific knockout of tyrosine hydroxylase impairs cognitive behaviour. Front Cell Neurosci. 2020;14:228.
pubmed: 32848620 pmcid: 7403473 doi: 10.3389/fncel.2020.00228
Schultz W. Updating dopamine reward signals. Curr Opin Neurobiol. 2013;23(2):229–38.
pubmed: 23267662 pmcid: 3866681 doi: 10.1016/j.conb.2012.11.012
Barili P, Bronzetti E, Ricci A, Zaccheo D, Amenta GF. Microanatomical localization of dopamine receptor protein immunoreactivity in the rat cerebellar cortex. Brain Res. 2000;854(1–2):130–8.
pubmed: 10784114 doi: 10.1016/S0006-8993(99)02306-9
Schwarz LA, Luo L. Organization of the locus coeruleus-norepinephrine system. Curr Biol. 2015;25(21):R1051–6.
pubmed: 26528750 doi: 10.1016/j.cub.2015.09.039
Berridge CW, Waterhouse BD. The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res Brain Res Rev. 2003;42(1):33–84.
pubmed: 12668290 doi: 10.1016/S0165-0173(03)00143-7
Heinz A, Schlagenhauf F. Dopaminergic dysfunction in schizophrenia: salience attribution revisited. Schizophr Bull. 2010;36(3):472–85.
pubmed: 20453041 pmcid: 2879696 doi: 10.1093/schbul/sbq031
Kapur S. Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia. Am J Psychiatry. 2003;160(1):13–23.
pubmed: 12505794 doi: 10.1176/appi.ajp.160.1.13
Thurling M, Hautzel H, Küper M, Stefanescu MR, Maderwald S, Ladd ME, Timmann D. Involvement of the cerebellar cortex and nuclei in verbal and visuospatial working memory: a 7 T fMRI study. Neuroimage. 2012;62(3):1537–50.
pubmed: 22634219 doi: 10.1016/j.neuroimage.2012.05.037
Stoodley CJ, Valera EM, Schmahmann JD. Functional topography of the cerebellum for motor and cognitive tasks: an fMRI study. Neuroimage. 2012;59(2):1560–70.
pubmed: 21907811 doi: 10.1016/j.neuroimage.2011.08.065
Kim SG, Ugurbil K, Strick PL. Activation of a cerebellar output nucleus during cognitive processing. Science. 1994;265(5174):949–51.
pubmed: 8052851 doi: 10.1126/science.8052851
Kuper M, Dimitrova A, Thürling M, Maderwald S, Roths J, Elles HG, Gizewski ER, Ladd ME, Diedrichsen J, Timmann D. Evidence for a motor and a non-motor domain in the human dentate nucleus–an fMRI study. Neuroimage. 2011;54(4):2612–22.
pubmed: 21081171 doi: 10.1016/j.neuroimage.2010.11.028
Clark KL, Noudoost B. The role of prefrontal catecholamines in attention and working memory. Front Neural Circ. 2014;8:33.
Murty VP, Shermohammed M, Smith DV, Carter RM, Huettel SA, Adcock RA. Resting state networks distinguish human ventral tegmental area from substantia nigra. Neuroimage. 2014;100:580–9.
pubmed: 24979343 doi: 10.1016/j.neuroimage.2014.06.047
Locke TM, Soden ME, Miller SM, Hunker A, Knakal C, Licholai JA, Dhillon KS, Keene CD, Zweifel LS, Carlson ES. Dopamine D1. Receptor-positive neurons in the lateral nucleus of the cerebellum contribute to cognitive behaviour. Biol Psychiatry. 2018;84(6):401–12.
Heskje J, Heslin K, De Corte BJ, Walsh KP, Kim Y, Han S, Carlson ES, Parker KL. Cerebellar D1DR-expressing neurons modulate the frontal cortex during timing tasks. Neurobiol Learn Mem. 2020;170:107067.
Banich MT, Floresco S. Reward systems, cognition, and emotion: Introduction to the special issue. Cogn Affect Behav Neurosci. 2019;19(3):409–14.
pubmed: 31124052 doi: 10.3758/s13415-019-00725-z
Burton TJ, Balleine BW. The positive valence system, adaptive behaviour and the origins of reward. Emerg Top Life Sci. 2022;6(5):501–13.
pubmed: 36373858 pmcid: 9788397 doi: 10.1042/ETLS20220007
Sander D, Nummenmaa L. Reward and emotion: an affective neuroscience approach. Curr Opin Behav Sci. 2021;39:161–7.
doi: 10.1016/j.cobeha.2021.03.016
Schutter DJ. The cerebellum in emotions and psychopathology. London: Taylor & Francis; 2020.
doi: 10.4324/9781315145082
Ito M. Cerebellar learning in vestibulo-ocular reflex. Trends Cogn Sci. 1993;2:313–21.
doi: 10.1016/S1364-6613(98)01222-4
Schmahmann JD. The role of the cerebellum in affect and psychosis. J Neurolinguistics. 2000;13(2–3):189–214.
doi: 10.1016/S0911-6044(00)00011-7
Kühn S, Gallinat J. The neural correlates of subjective pleasantness. Neuroimage. 2012;61(1):289–94.
pubmed: 22406357 doi: 10.1016/j.neuroimage.2012.02.065
Colibazzi T, Posner J, Wang Z, Gorman D, Gerber A, Yu S, Zhu H, Kangarlu A, Duan Y, Russell JA, Peterson BS. Neural systems subserving valence and arousal during the experience of induced emotions. Emotion. 2010;10(3):377–89.
pubmed: 20515226 doi: 10.1037/a0018484
Noori HR, Cosa Linan A, Spanagel R. Largely overlapping neuronal substrates of reactivity to drug, gambling, food and sexual cues: a comprehensive meta-analysis. Eur Neuropsychopharmacol. 2016;26(9):1419–30.
pubmed: 27397863 doi: 10.1016/j.euroneuro.2016.06.013
Kubikova L, Wada K, Jarvis ED. Dopamine receptors in a songbird brain. J Comp Neurol. 2010;518(6):741–69.
pubmed: 20058221 pmcid: 2904815 doi: 10.1002/cne.22255
Cutando L, Puighermanal E, Castell L, Tarot P, Belle M, Bertaso F, Arango-Lievano M, Ango F, Rubinstein M, Quintana A, Chédotal A, Mameli M, Valjent E. Cerebellar dopamine D2 receptors regulate social behaviours. Nat Neurosci. 2022;25(7):900–11.
pubmed: 35710984 doi: 10.1038/s41593-022-01092-8
Liu G, Zeng G, Wang F, Rotshtein P, Peng K, Sui J. Praising others differently: neuroanatomical correlates to individual differences in trait gratitude and elevation. Soc Cogn Affect Neurosci. 2018;13(12):1225–34.
pubmed: 30351412 pmcid: 6277740
Schutter DJ, van Honk J, d’Alfonso AA, Peper JS, Panksepp J. High frequency repetitive transcranial magnetic over the medial cerebellum induces a shift in the prefrontal electroencephalography gamma spectrum: a pilot study in humans. Neurosci Lett. 2003;336(2):73–6.
pubmed: 12499043 doi: 10.1016/S0304-3940(02)01077-7
Schutter DJ, Enter D, Hoppenbrouwers SS. High-frequency repetitive transcranial magnetic stimulation to the cerebellum and implicit processing of happy facial expressions. J Psychiatry Neurosci. 2009;34(1):60–5.
pubmed: 19125214 pmcid: 2612080
Baumann O, Borra RJ, Bower JM, Cullen KE, Habas C, Ivry RB, Leggio M, Mattingley JB, Molinari M, Moulton EA, Paulin MG, Pavlova MA, Schmahmann JD, Sokolov AA. Consensus paper: the role of the cerebellum in perceptual processes. Cerebellum. 2015;14(2):197–220.
pubmed: 25479821 doi: 10.1007/s12311-014-0627-7
Adamaszek M, D’Agata F, Ferrucci R, Habas C, Keulen S, Kirkby KC, Leggio M, Mariën P, Molinari M, Moulton E, Orsi L, Van Overwalle F, Papadelis C, Priori A, Sacchetti B, Schutter DJ, Styliadis C, Verhoeven J. Consensus paper: cerebellum and emotion. Cerebellum. 2017;16(2):552–76.
pubmed: 27485952 doi: 10.1007/s12311-016-0815-8
Ito M. Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci. 2008;9(4):304–13.
pubmed: 18319727 doi: 10.1038/nrn2332
Riedel MC, Ray KL, Dick AS, Sutherland MT, Hernandez Z, Fox PM, Eickhoff SB, Fox PT, Laird AR. Meta-analytic connectivity and behavioural parcellation of the human cerebellum. Neuroimage. 2015;117:327–42.
pubmed: 25998956 doi: 10.1016/j.neuroimage.2015.05.008
Adamaszek M, Kirkby KC. The Neurophysiology of the Cerebellum in Emotion. Adv Exp Med Biol. 2022;1378:87–108.
pubmed: 35902467 doi: 10.1007/978-3-030-99550-8_7
Iosif CI, Bashir ZI, Apps R, Pickford J. Cerebellar prediction and feeding behaviour. Cerebellum. 2023;22(5):1002–19.
Zeki S. The neurobiology of love. FEBS Lett. 2007;581(14):2575–9.
pubmed: 17531984 doi: 10.1016/j.febslet.2007.03.094
Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010;46(7):831–44.
pubmed: 20152963 pmcid: 2873095 doi: 10.1016/j.cortex.2009.11.008
Xu X, Aron A, Brown L, Cao G, Feng T, Weng X. Reward and motivation systems: a brain mapping study of early-stage intense romantic love in Chinese participants. Hum Brain Mapp. 2011;32(2):249–57.
pubmed: 21229613 doi: 10.1002/hbm.21017
Habas C. Topography of emotions in cerebellum as appraised by functional imaging. Adv Exp Med Biol. 2022;1378:77–86.
pubmed: 35902466 doi: 10.1007/978-3-030-99550-8_6
Styliadis C, Ioannides AA, Bamidis PD, Papadelis C. Distinct cerebellar lobules process arousal, valence and their interaction in parallel following a temporal hierarchy. Neuroimage. 2015;15(110):149–61.
doi: 10.1016/j.neuroimage.2015.02.006
Adamaszek M, Kirkby KC, D’Agata F, Olbrich S, Langner S, Steele C, Sehm B, Busse S, Kessler C, Hamm A. Neural correlates of impaired emotional face recognition in cerebellar lesions. Brain Res. 2015;1613:1–12.
pubmed: 25912431 doi: 10.1016/j.brainres.2015.01.027
Jamshidi J, Park HRP, Montalto A, Fullerton JM, Gatt JM. Wellbeing and brain structure: a comprehensive phenotypic and genetic study of image-derived phenotypes in the UK Biobank. Hum Brain Mapp. 2022;43(17):5180–93.
pubmed: 35765890 pmcid: 9812238 doi: 10.1002/hbm.25993
Portugal LCL, Rosa MJ, Rao A, Bebko G, Bertocci MA, Hinze AK, et al. Can emotional and behavioural dysregulation in youth be decoded from functional neuroimaging? PLoS One. 2016;11(1):E0117603.
pubmed: 26731403 pmcid: 4701457 doi: 10.1371/journal.pone.0117603
Piccoli T, Maniaci G, Collura G, Gagliardo C, Brancato A, La Tona G, Gangitano M, La Cascia C, Picone F, Marrale M, Cannizzaro C. Increased functional connectivity in gambling disorder correlates with behavioural and emotional dysregulation: evidence of a role for the cerebellum. Behav Brain Res. 2020;390:112668.
pubmed: 32434751 doi: 10.1016/j.bbr.2020.112668
Brady RO Jr, Gonsalvez I, Lee I, Öngür D, Seidman LJ, Schmahmann JD, Eack SM, Keshavan MS, Pascual-Leone A, Halko MA. Cerebellar-prefrontal network connectivity and negative symptoms in schizophrenia. Am J Psychiatry. 2019;176(7):512–20.
pubmed: 30696271 pmcid: 6760327 doi: 10.1176/appi.ajp.2018.18040429
Lauriola M, Cerniglia L, Tambelli R, Cimino S. Deliberative and affective risky decisions in teenagers: Different associations with maladaptive psychological functioning and difficulties in emotion regulation? Children (Basel). 2022;9(12):1915.
Péron J, Frühholz S, Vérin M, Grandjean D. Subthalamic nucleus: a key structure for emotional component synchronization in humans. Neurosci Biobehav Rev. 2013;37(3):358–73.
pubmed: 23318227 doi: 10.1016/j.neubiorev.2013.01.001
Péron J, Grandjean D, Le Jeune F, Sauleau P, Haegelen C, Drapier D, Rouaud T, Drapier S, Vérin M. Recognition of emotional prosody is altered after subthalamic nucleus deep brain stimulation in Parkinson's disease. Neuropsychologia. 2010;48(4):1053–1062.
Thomasson M, Benis D, Voruz P, Saj A, Vérin M, Assal F, Grandjean D, Peron, J. Crossed functional specialization between the basal ganglia and cerebellum during vocal emotion decoding: Insights from stroke and Parkinson's disease. Cogn Affect Behav Neurosci. 2022;22(5):1030–1043.
Pierce JE, Thomasson M, Voruz P, Selosse G, Peron J. Explicit and implicit emotion processing in the cerebellum: a meta-analysis and systematic review. Cerebellum. 2023;22(5):852–64.
pubmed: 35999332 doi: 10.1007/s12311-022-01459-4
Graybiel AM. Habits, rituals, and the evaluative brain. Annu Rev Neurosci. 2008;31(359):387.
Gasbarri A, Pompili A, Packard MG, Tomaz C. Habit learning and memory in mammals: behavioural and neural characteristics. Neurobiol Learn Mem. 2014;114:198–208.
pubmed: 24981854 doi: 10.1016/j.nlm.2014.06.010
Thomasson M, Benis D, Saj A, Voruz P, Ronchi R, Grandjean D, Assal F, Péron J. Sensory contribution to vocal emotion deficit in patients with cerebellar stroke. NeuroImage: Clin. 2021;31:102690.
Thomasson M, Saj A, Benis D, Grandjean D, Assal F, Peron J. Cerebellar contribution to vocal emotion decoding: Insights from stroke and neuroimaging. Neuropsychologia. 2019;132:107141.
pubmed: 31306617 doi: 10.1016/j.neuropsychologia.2019.107141
Popa LS, Ebner TJ. Cerebellum, predictions and errors. Front Cell Neurosci. 2019;12:524–524. https://doi.org/10.3389/fncel.2018.00524 .
doi: 10.3389/fncel.2018.00524 pubmed: 30697149 pmcid: 6340992
Cheron G, Marquez-Ruiz J, Dan B. Oscillations, timing, plasticity, and learning in the cerebellum. Cerebellum 2016;15(2):122 138.
Hull C. Prediction signals in the cerebellum: beyond supervised motor learning. Elife. 2020;30(9):e54073.
doi: 10.7554/eLife.54073
Mendoza J, Pévet P, Felder-Schmittbuhl MP, Bailly Y, Challet E. The cerebellum harbors a circadian oscillator involved in food anticipation. J Neurosci. 2010;30(5):1894–904.
pubmed: 20130198 pmcid: 6634001 doi: 10.1523/JNEUROSCI.5855-09.2010
Boven E, Cerminara NL. Cerebellar contributions across behavioural timescales: a review from the perspective of cerebro-cerebellar interactions. Front Syst Neurosci. 2023;7(17):1211530.
doi: 10.3389/fnsys.2023.1211530
Zhang J, Chen D, Sweeney P, Yang Y. An excitatory ventromedial hypothalamus to paraventricular thalamus circuit that suppresses food intake. Nat Comm. 2020;11(1):6326.
doi: 10.1038/s41467-020-20093-4
Low AYT, Goldstein N, Gaunt JR, Huang KP, Zainolabidin N, Yip AKK, Carty JRE, Choi JY, Miller AM, Ho HST, Lenherr C, Baltar N, Azim E, Sessions OM, Ch’ng TH, Bruce AS, Martin LE, Halko MA, Brady RO Jr, Holsen LM, Alhadeff AL, Chen AI, Betley JN. Reverse-translational identification of a cerebellar satiation network. Nature. 2021;600(7888):269–73.
pubmed: 34789878 doi: 10.1038/s41586-021-04143-5
Fuchs BA, Pearce AL, Rolls BJ, Wilson SJ, Rose EJ, Geier CF, Garavan H, Keller KL. The cerebellar response to visual portion size cues is associated with the portion size effect in children. Nutrients. 2024;16(5):738.
pubmed: 38474866 pmcid: 10933954 doi: 10.3390/nu16050738
Carnell S, Benson L, Pantazatos SP, Hirsch J, Geliebter A. Amodal brain activation and functional connectivity in response to high-energy-density food cues in obesity. Obesity (Silver Spring). 2014;22(11):2370–8.
pubmed: 25098957 doi: 10.1002/oby.20859
Rossi MA, Stuber GD. Overlapping brain circuits for homeostatic and hedonic feeding. Cell Metab. 2018;27(1):42–56.
pubmed: 29107504 doi: 10.1016/j.cmet.2017.09.021
Zhong S, Su T, Gong J, Huang L, Wang Y. Brain functional alterations in patients with anorexia nervosa: a meta-analysis of task-based functional MRI studies. Psychiatry Res. 2023;327:115358.
pubmed: 37544086 doi: 10.1016/j.psychres.2023.115358
Brooks SJ, O’Daly O, Uher R, Friederich HC, Giampietro V, Brammer M, Williams SC, Schiöth HB, Treasure J, Campbell IC. Thinking about eating food activates visual cortex with reduced bilateral cerebellar activation in females with anorexia nervosa: an fMRI study. PLoS One. 2012;7(3):e34000.
pubmed: 22479499 pmcid: 3313953 doi: 10.1371/journal.pone.0034000
Sader M, Waiter GD, Williams JHG. The cerebellum plays more than one role in the dysregulation of appetite: review of structural evidence from typical and eating disorder populations. Brain Behav. 2023;13(12):e3286.
pubmed: 37830247 pmcid: 10726807 doi: 10.1002/brb3.3286
Armon DB, Bick A, Florentin S, Laufer S, Barkai G, Bachar E, Hendler T, Bonne O, Keller S. Brain activation in individuals suffering from bulimia nervosa and control subjects during sweet and sour taste stimuli. Front Psychiatry. 2023;14:1022537.
pubmed: 36937709 pmcid: 10017461 doi: 10.3389/fpsyt.2023.1022537
Mosberger AC, de Clauser L, Kasper H, Schwab ME. Motivational state, reward value, and Pavlovian cues differentially affect skilled forelimb grasping in rats. Learn Mem. 2016;23(6):289–302.
pubmed: 27194796 pmcid: 4880147 doi: 10.1101/lm.039537.115
Volkow ND, Wang GJ, Tomasi D, Baler RD. Unbalanced neuronal circuits in addiction. Curr Opin Neurobiol. 2013;23(4):639–48.
pubmed: 23434063 pmcid: 3717294 doi: 10.1016/j.conb.2013.01.002
Skillicorn SA. Presenile cerebellar ataxia in chronic alcoholics. Neurology. 1955;5(8):527–34.
pubmed: 13244766 doi: 10.1212/WNL.5.8.527
Liljequist S, Tabakoff B. Binding characteristics of 3H-flunitrazepam and CL-218,872 in cerebellum and cortex of C57B1 mice made tolerant to and dependent on phenobarbital or ethanol. Alcohol. 1985;2(2):215–20.
pubmed: 2990504 doi: 10.1016/0741-8329(85)90048-5
Shipman ML, Green JT. Cerebellum and cognition: does the rodent cerebellum participate in cognitive functions? Neurobiol Learn Mem. 2019:106996.
Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121(Pt 4):561–79.
pubmed: 9577385 doi: 10.1093/brain/121.4.561
Gil-Miravet I, Melchor-Eixea I, Arias-Sandoval E, Vasquez-Celaya L, Guarque-Chabrera J, Olucha-Bordonau F, Miquel M. From back to front: a functional model for the cerebellar modulation in the establishment of conditioned preferences for cocaine-related cues. Addict Biol. 2021;26(1):e12834.
pubmed: 31808992 doi: 10.1111/adb.12834
Pisano TJ, Dhanerawala ZM, Kislin M, Bakshinskaya D, Engel EA, Hansen EJ, Hoag AT, Lee J, de Oude NL, Venkataraju KU, Verpeut JL, Hoebeek FE, Richardson BD, Boele HJ, Wang SS. Homologous organization of cerebellar pathways to sensory, motor, and associative forebrain. Cell Rep. 2021;36(12):109721.
pubmed: 34551311 pmcid: 8506234 doi: 10.1016/j.celrep.2021.109721
Washburn S, Oñate M, Yoshida J, Vera J, Ramakrishnan KB, Khatami L, Nadim F, Khodakhah K. Cerebellum directly modulates the substantia nigra dopaminergic activity. Nat Neurosci. 2024;27:497–513.
pubmed: 38272967 doi: 10.1038/s41593-023-01560-9
Moulton EA, Elman I, Becerra LR, Goldstein RZ, Borsook D. The cerebellum and addiction: insights gained from neuroimaging research. Addict Biol. 2014;19(3):317–31.
pubmed: 24851284 doi: 10.1111/adb.12101
Carbo-Gas M, Vazquez-Sanroman D, Aguirre-Manzo L, Coria-Avila GA, Manzo J, Sanchis-Segura C, Miquel M. Involving the cerebellum in cocaine-induced memory: pattern of cFos expression in mice trained to acquire conditioned preference for cocaine. Addict Biol. 2014;19(1):61–76.
pubmed: 23445190 doi: 10.1111/adb.12042
Carbo-Gas M, Moreno-Rius J, Guarque-Chabrera J, Vazquez-Sanroman D, Gil-Miravet I, Carulli D, Hoebeek F, De Zeeuw C, Sanchis-Segura C, Miquel M. Cerebellar perineuronal nets in cocaine-induced pavlovian memory: site matters. Neuropharmacology. 2017;125:166–80.
pubmed: 28712684 doi: 10.1016/j.neuropharm.2017.07.009
Guarque-Chabrera J, Sanchez-Hernandez A, Ibáñez-Marín P, Melchor-Eixea I, Miquel M. Role of Perineuronal nets in the cerebellar cortex in cocaine-induced conditioned preference, extinction, and reinstatement. Neuropharmacology. 2022;1(218):109210.
doi: 10.1016/j.neuropharm.2022.109210
Miquel M, Nicola SM, Gil-Miravet I, Guarque-Chabrera J, Sanchez-Hernandez A. A working hypothesis for the role of the cerebellum in impulsivity and compulsivity. Front Behav Neurosci. 2019;13:99.
pubmed: 31133834 pmcid: 6513968 doi: 10.3389/fnbeh.2019.00099
Darch HT, Cerminara NL, Gilchrist ID, Apps R. Non-invasive stimulation of the cerebellum in health and disease. Transcranial magnetic stimulation in neuropsychiatry. Intech. 2018. https://doi.org/10.5772/intechopen.73218 .
doi: 10.5772/intechopen.73218
Gil-Miravet I, Guarque-Chabrera J, Carbo-Gas M, Olucha-Bordonau F, Miquel M. The role of the cerebellum in drug-cue associative memory: functional interactions with the medial prefrontal cortex. Eur J Neurosci. 2019;50(3):2613–22.
pubmed: 30280439 doi: 10.1111/ejn.14187
Melchor-Eixea I, Guarque-Chabrera J, Sanchez-Hernandez A, Ibáñez-Marín P, Pastor R, Miquel M. Putting forward a model for the role of the cerebellum in cocaine-induced pavlovian memory. Front Syst Neurosci. 2023;17:1154014.
pubmed: 37388941 pmcid: 10303950 doi: 10.3389/fnsys.2023.1154014
Slaker M, Churchill L, Todd RP, Blacktop JM, Zuloaga DG, Raber J, Darling RA, Brown TE, Sorg BA. Removal of perineuronal nets in the medial prefrontal cortex impairs the acquisition and reconsolidation of a cocaine-induced conditioned place preference memory. J Neurosci. 2015;35(10):4190–202. https://doi.org/10.1523/JNEUROSCI.3592-14.2015 . Erratum in: J Neurosci. 2015 May 27;35(21):8376.
Hester R, Garavan H. Executive dysfunction in cocaine addiction: evidence for discordant frontal, cingulate, and cerebellar activity. J Neurosci. 2004;24(49):11017–22.
pubmed: 15590917 pmcid: 6730277 doi: 10.1523/JNEUROSCI.3321-04.2004
Schutter DJLG. The cerebellum and disorders of emotion. Adv Exp Med Biol. 2022;1378:273–83.
pubmed: 35902477 doi: 10.1007/978-3-030-99550-8_17
Ahmadian N, van Baarsen K, van Zandvoort M, Robe PA. The cerebellar cognitive affective syndrome-a meta-analysis. Cerebellum. 2019;18(5):941–50.
pubmed: 31392563 pmcid: 6761084 doi: 10.1007/s12311-019-01060-2
Berlijn AM, Huvermann DM, Schneider S, Bellebaum C, Timmann D, Minnerop M, Peterburs J. The role of the human cerebellum for learning from and processing of external feedback in non-motor learning: a systematic review. Cerebellum. 2024. https://doi.org/10.1007/s12311-024-01669-y .
Ross AJ, Roule AL, Deveney CM, Towbin KE, Brotman MA, Leibenluft E, Tseng WL. A preliminary study on functional activation and connectivity during frustration in youths with bipolar disorder. Bipolar Disord. 2021;23(3):263–73.
pubmed: 32790927 doi: 10.1111/bdi.12985
Nimarko AF, Gorelik AJ, Carta KE, Gorelik MG, Singh MK. Neural correlates of reward processing distinguish healthy youth at familial risk for bipolar disorder from youth at familial risk for major depressive disorder. Transl Psychiatry. 2022;12(1):31.
pubmed: 35075136 pmcid: 8786954 doi: 10.1038/s41398-022-01800-9
Saleem A, Harmata G, Jain S, Voss MW, Fiedorowicz JG, Williams AJ, Shaffer JJ, Richards JG, Barsotti EJ, Sathyaputri L, Schmitz SL, Christensen GE, Long JD, Xu J, Wemmie JA, Magnotta VA. Functional connectivity of the cerebellar vermis in bipolar disorder and associations with mood. Front Psychiatry. 2023;14:1147540.
pubmed: 37215681 pmcid: 10196126 doi: 10.3389/fpsyt.2023.1147540
Taskiran-Sag A, Uzuncakmak Uyanik H, Uyanik SA, Oztekin N. Prospective investigation of cerebellar cognitive affective syndrome in a previously non-demented population of acute cerebellar stroke. J Stroke Cerebrovasc Dis. 2020;29(8):104923.
pubmed: 32689613 doi: 10.1016/j.jstrokecerebrovasdis.2020.104923
Wang L, Zhao P, Zhang J, Zhang R, Liu J, Duan J, Zhang X, Zhu R, Wang F. Functional connectivity between the cerebellar vermis and cerebrum distinguishes early treatment response for major depressive episodes in adolescents. J Affect Disord. 2023;339:256–63.
pubmed: 37437740 doi: 10.1016/j.jad.2023.07.054
Frazier MR, Hoffman LJ, Popal H, Sullivan-Toole H, Olino TM, Olson IR. A missing link in affect regulation: the cerebellum. Soc Cogn Affect Neurosci. 2022;17:1068–81.
pubmed: 35733348 pmcid: 9714429 doi: 10.1093/scan/nsac042
Argyropoulos GPD, van Dun K, Adamaszek M, Leggio M, Manto M, Masciullo M, et al. The cerebellar cognitive affective/Schmahmann Syndrome: a Task Force paper. Cerebellum. 2020;19:102–25.
pubmed: 31522332 doi: 10.1007/s12311-019-01068-8
Luna LP, Radua J, Fortea L, Sugranyes G, Fortea A, Fusar-Poli P, et al. A systematic review and meta-analysis of structural and functional brain alterations in individuals with genetic and clinical high-risk for psychosis and bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2022;117:110540.
pubmed: 35240226 doi: 10.1016/j.pnpbp.2022.110540
Goldman DA, Sankar A, Colic L, Villa L, Kim JA, Pittman B, et al. A graph theory-based whole brain approach to assess mood state differences in adolescents and young adults with bipolar disorder. Bipolar Disord. 2022;24:412–23.
pubmed: 34665907 doi: 10.1111/bdi.13144
Minichino A, Bersani FS, Trabucchi G, Albano G, Primavera M, Delle Chiaie R, et al. The role of cerebellum in unipolar and bipolar depression: a review of the main neurobiological findings. Riv Psichiatr. 2014;49:124–31.
pubmed: 25000888
Magnotta VA, Xu J, Fiedorowicz JG, Williams A, Shaffer J, Christensen G, et al. Metabolic abnormalities in the basal ganglia and cerebellum in bipolar disorder: a multi-modal MR study. J Affect Disord. 2022;301:390–9.
pubmed: 35031333 pmcid: 8828710 doi: 10.1016/j.jad.2022.01.052
Singh MK, Spielman D, Libby A, Adams E, Acquaye T, Howe M, et al. Neurochemical deficits in the cerebellar vermis in child offspring of parents with bipolar disorder. Bipolar Disord. 2011;13:189–97.
pubmed: 21443573 pmcid: 3066452 doi: 10.1111/j.1399-5618.2011.00902.x
Hou L, Lam BY-H, Wong NML, Lu W, Zhang R, Ning Y, et al. Integrity of cerebellar tracts associated with the risk of bipolar disorder. Transl Psychiatry. 2022;12:335.
Schutter DJLG. A cerebellar framework for predictive coding and homeostatic regulation in depressive disorder. Cerebellum. 2016;15:30–3.
pubmed: 26249226 doi: 10.1007/s12311-015-0708-2
Clausi S, Lupo M, Olivito G, Siciliano L, Contento MP, Aloise F, et al. Depression disorder in patients with cerebellar damage: awareness of the mood state. J Affect Disord. 2019;245:386–93.
pubmed: 30423466 doi: 10.1016/j.jad.2018.11.029
Rapkin AJ, Berman SM, London ED. The cerebellum and premenstrual dysphoric disorder. AIMS Neurosci. 2014;1:120–41.
pubmed: 28275721 doi: 10.3934/Neuroscience2014.2.120
Bottemanne H, Tang J, Claret A. Rapid-cycling bipolar disorder and cerebellar cognitive affective syndrome associated with cerebellum and frontal neurosurgical lesions. Prim Care Companion CNS Disord. 2021;23:20cr02901.
Zádori D, Veres G, Szalárdy L, Klivényi P, Vécsei L. Drug-induced movement disorders. Expert Opin Drug Saf. 2015;14:877–90.
pubmed: 25981904 doi: 10.1517/14740338.2015.1032244
van Dun K, Manto M, Meesen R. Cerebellum and neurorehabilitation in emotion with a focus on neuromodulation. Adv Exp Med Biol. 2022;1378:285–99.
pubmed: 35902478 doi: 10.1007/978-3-030-99550-8_18
Leggio M, Molinari M. Cerebellar sequencing: a trick for predicting the future. Cerebellum. 2015;14(1):35–8. https://doi.org/10.1007/s12311-014-0616-x .
doi: 10.1007/s12311-014-0616-x pubmed: 25331541
Van Overwalle F, Van de Steen F, Mariën P. Dynamic causal modeling of the effective connectivity between the cerebrum and cerebellum in social mentalizing across five studies. Cogn Affect Behav Neurosci. 2019;19(1):211–23. https://doi.org/10.3758/s13415-018-00659-y .
doi: 10.3758/s13415-018-00659-y pubmed: 30361864
Van Overwalle F, Baetens K, Mariën P, Vandekerckhove M. Social cognition and the cerebellum: a meta-analysis of over 350 fMRI studies. Neuroimage. 2014;86:554–72. https://doi.org/10.1016/j.neuroimage.2013.09.033 .
doi: 10.1016/j.neuroimage.2013.09.033 pubmed: 24076206
Van Overwalle F, Ma Q, Heleven E. The posterior crus II cerebellum is specialized for social mentalizing and emotional self-experiences: a meta-analysis. Social Cogn Affect Neurosci. 2020;15(9):905–28. https://doi.org/10.1093/scan/nsaa124 .
doi: 10.1093/scan/nsaa124
Van Overwalle F, Pu M, Ma Q, Li M, Haihambo N, Baetens K, Deroost N, Baeken C, Heleven E. The involvement of the posterior cerebellum in reconstructing and predicting social action sequences. Cerebellum. 2022;21(5):733–41.
pubmed: 34694590 doi: 10.1007/s12311-021-01333-9
Gu R, Huang W, Camilleri J, Xu P, Wei P, Eickhoff SB, Feng C. Love is analogous to money in human brain: coordinate-based and functional connectivity meta-analyses of social and monetary reward anticipation. Neurosci Biobehav Rev. 2019;100:108–28. https://doi.org/10.1016/j.neubiorev.2019.02.017 .
doi: 10.1016/j.neubiorev.2019.02.017 pubmed: 30807783 pmcid: 7250476
Dugré JR, Dumais A, Bitar N, Potvin S. Loss anticipation and outcome during the Monetary Incentive Delay Task: a neuroimaging systematic review and meta-analysis. PeerJ. 2018(MAY):1–23. https://doi.org/10.7717/peerj.4749
Martins D, Rademacher L, Gabay AS, Taylor R, Richey JA, Smith DV, Goerlich KS, Nawijn L, Cremers HR, Wilson R, Bhattacharyya S, Paloyelis Y. Mapping social reward and punishment processing in the human brain: A voxel-based meta-analysis of neuroimaging findings using the social incentive delay task. Neurosci Biobehav Rev. 2020;2021(122):1–17. https://doi.org/10.1016/j.neubiorev.2020.12.034 .
doi: 10.1016/j.neubiorev.2020.12.034
Oldham S, Murawski C, Fornito A, Youssef G, Yücel M, Lorenzetti V. The anticipation and outcome phases of reward and loss processing: A neuroimaging meta-analysis of the monetary incentive delay task. Hum Brain Mapp. 2018;39(8):3398–418. https://doi.org/10.1002/hbm.24184 .
doi: 10.1002/hbm.24184 pubmed: 29696725 pmcid: 6055646
Wilson RP, Colizzi M, Bossong MG, Allen P, Kempton M, MTAC, Bhattacharyya S. The neural substrate of reward anticipation in health: a meta-analysis of fMRI findings in the monetary incentive delay task. Neuropsychology Rev 2018;28(4), 496–506. https://doi.org/10.1007/s11065-018-9385-5
Bellucci G, Feng C, Camilleri J, Eickhoff SB, Krueger F. The role of the anterior insula in social norm compliance and enforcement: evidence from coordinate-based and functional connectivity meta-analyses. Neurosci Biobehav Rev. 2017;2018(92):378–89. https://doi.org/10.1016/j.neubiorev.2018.06.024 .
doi: 10.1016/j.neubiorev.2018.06.024
Feng C, Luo YJ, Krueger F. Neural signatures of fairness-related normative decision making in the ultimatum game: a coordinate-based meta-analysis. Hum Brain Mapp. 2015;36(2):591–602. https://doi.org/10.1002/hbm.22649 .
doi: 10.1002/hbm.22649 pubmed: 25327760
Gabay AS, Radua J, Kempton MJ, Mehta MA. The ultimatum game and the brain: a meta-analysis of neuroimaging studies. Neurosci Biobehav Rev. 2014;47:549–58. https://doi.org/10.1016/j.neubiorev.2014.10.014 .
doi: 10.1016/j.neubiorev.2014.10.014 pubmed: 25454357
Haesevoets T, De Cremer D, Van Hiel A, Van Overwalle F. Understanding the positive effect of financial compensation on trust after norm violations: evidence from fMRI in favor of forgiveness. J Appl Psychol. 2018;103(5):578–90. https://doi.org/10.1037/apl0000271 .
doi: 10.1037/apl0000271 pubmed: 29251949
Haesevoets T, Van Hiel A, De Cremer D, Delplanque J, De Coninck S, Van Overwalle F. The myth of the extra mile: psychological processes and neural mechanisms underlying overcompensation effects. J Exp Soc Psychol. 2022;100(January):104282.
doi: 10.1016/j.jesp.2022.104282
Zinchenko O, Arsalidou M. Brain responses to social norms: meta-analyses of fMRI studies. Hum Brain Mapp. 2018;39(2):955–70.
pubmed: 29160930 doi: 10.1002/hbm.23895
Scott-Van Zeeland AA, Dapretto M, Ghahremani DG, Poldrack RA, Bookheimer SY. Reward processing in autism. Autism Res. 2010;3(2):53–67.
pubmed: 20437601 pmcid: 3076289 doi: 10.1002/aur.122
Delmonte S, Balsters JH, McGrath J, Fitzgerald J, Brennan S, Fagan AJ, Gallagher L. Social and monetary reward processing in autism spectrum disorders. Mol Autism. 2012;3(1):7.
pubmed: 23014171 pmcid: 3499449 doi: 10.1186/2040-2392-3-7
Bauman ML, Kemper TL. Neuroanatomic observations of the brain in autism: a review and future directions. Int J Dev Neurosci. 2005;23(2–3):183–7.
pubmed: 15749244 doi: 10.1016/j.ijdevneu.2004.09.006
Stoodley CJ, Tsai PT. Adaptive prediction for social contexts: the cerebellar contribution to typical and atypical social behaviours. Annu Rev Neurosci. 2021;44:475–93.
pubmed: 34236892 pmcid: 9037460 doi: 10.1146/annurev-neuro-100120-092143
Stoodley CJ, D’Mello AM, Ellegood J, Jakkamsetti V, Liu P, Nebel MB, Gibson JM, Kelly E, Meng F, Cano CA, Pascual JM, Mostofsky SH, Lerch JP, Tsai PT. Altered cerebellar connectivity in autism and cerebellar-mediated rescue of autism-related behaviours in mice. Nat Neurosci. 2017;20(12):1744–51.
pubmed: 29184200 pmcid: 5867894 doi: 10.1038/s41593-017-0004-1
Flace P, Livrea P, Basile GA, Galletta D, Bizzoca A, Gennarini G, Bertino S, Branca JJV, Gulisano M, Bianconi S, Bramanti A, Anastasi G. The cerebellar dopaminergic system. Frontiers Syst Neurosci 2021;15:650614.
Li C, Saliba NB, Martin H, Losurdo NA, Kolahdouzan K, Siddiqui R, Medeiros D, Li W. Purkinje cell dopaminergic inputs to astrocytes regulate cerebellar-dependent behaviour. Nature Comm. 2023;14(1):1613.
doi: 10.1038/s41467-023-37319-w
Chen CH, Newman LN, Stark AP, Bond KE, Zhang D, Nardone S, Vanderburg CR, Nadaf NM, Yao Z, Mutume K, Flaquer I, Lowell BB, Macosko EZ, Regehr WG. A Purkinje cell to parabrachial nucleus pathway enables broad cerebellar influence over the forebrain. Nat Neurosci. 2023;26(11):1929–41.
pubmed: 37919612 doi: 10.1038/s41593-023-01462-w
Peterson TC, Villatoro L, Arneson T, Ahuja B, Voss S, Swain RA. Behaviour modification after inactivation of cerebellar dentate nuclei. Behav Neurosci. 2012;126(4):551–62.
pubmed: 22845704 doi: 10.1037/a0028701
Fineberg NA, Potenza MN, Chamberlain SR, et al. Probing compulsive and impulsive behaviours, from animal models to endophenotypes: a narrative review. Neuropsychopharmacol. 2010;35(3):591–604.
doi: 10.1038/npp.2009.185
Amokrane N, Lin CR, Desai NA, Kuo SH. The impact of compulsivity and impulsivity in cerebellar ataxia: a case series. Tremor Other Hyperkinet Mov (N Y). 2020;10:43.
pubmed: 33133767 doi: 10.5334/tohm.550
Amokrane N, Viswanathan A, Freedman S, et al. Impulsivity in cerebellar ataxias: testing the cerebellar reward hypothesis in humans. Mov Disord. 2020;35(8):1491–3.
pubmed: 32497310 pmcid: 7423596 doi: 10.1002/mds.28121
Chen TX, Lin CR, Aumann MA, et al. Impulsivity trait profiles in patients with cerebellar ataxia and parkinson disease. Neurology. 2022;99(2):e176–86.
pubmed: 35428731 pmcid: 9280994 doi: 10.1212/WNL.0000000000200349
Weintraub D, Mamikonyan E, Papay K, Shea JA, Xie SX, Siderowf A. Questionnaire for impulsive-compulsive disorders in Parkinson’s disease-rating scale. Mov Disord. 2012;27(2):242–7.
pubmed: 22134954 doi: 10.1002/mds.24023
Lin CR, Amokrane N, Chen S, et al. Cerebellar impulsivity-compulsivity assessment scale. Ann Clin Transl Neurol. 2022;10(1):48–57.
pubmed: 36401598 pmcid: 9852385 doi: 10.1002/acn3.51698
Driver-Dunckley E, Samanta J, Stacy M. Pathological gambling associated with dopamine agonist therapy in Parkinson’s disease. Neurology. 2003;61(3):422–3.
pubmed: 12913220 doi: 10.1212/01.WNL.0000076478.45005.EC
Lai RY, Desai NA, Amlang CJ, et al. Gambling associated risk-taking decision in cerebellar ataxia. Parkinsonism Relat Disord. 2022;107:105252.
pubmed: 36577359 pmcid: 9905314 doi: 10.1016/j.parkreldis.2022.105252
Petrosini L, Cutuli D, Picerni E, Laricchiuta D. Cerebellum and personality traits. Cerebellum. 2015;14(1):43–6.
pubmed: 25504000 doi: 10.1007/s12311-014-0631-y
Picerni E, Petrosini L, Piras F, Laricchiuta D, Cutuli D, Chiapponi C, Fagioli S, Girardi P, Caltagirone C, Spalletta G. New evidence for the cerebellar involvement in personality traits. Front Behav Neurosci. 2013;2(7):133.
Lupo M, Siciliano L, Leggio M. From cerebellar alterations to mood disorders: a systematic review. Neurosci Biobehav Rev. 2019;103:21–8.
pubmed: 31195001 doi: 10.1016/j.neubiorev.2019.06.008
Siciliano L, Olivito G, Lupo M, Urbini N, Gragnani A, Saettoni M, Delle Chiaie R, Leggio M. The role of the cerebellum in sequencing and predicting social and non-social events in patients with bipolar disorder. Front Cell Neurosci. 2023;15(17):1095157.
doi: 10.3389/fncel.2023.1095157
Olivito G, Siciliano L, Clausi S, Lupo M, Baiocco R, Gragnani A, Saettoni M, Delle Chiaie R, Laghi F, Leggio M. The cerebellum gets social: evidence from an exploratory study of cerebellar, neurodevelopmental, and psychiatric disorders. Biomedicines. 2023;11(2):309.
pubmed: 36830846 pmcid: 9953169 doi: 10.3390/biomedicines11020309
Schmitz-Hübsch T, Coudert M, Tezenas du Montcel S, et al. Depression comorbidity in spinocerebellar ataxia. Mov Disord. 2011;26:870–6.
Lo RY, Figueroa KP, Pulst SM, et al. Depression and clinical progression in spinocerebellar ataxias. Parkinsonism Relat Disord. 2016;22:87–92.
pubmed: 26644294 doi: 10.1016/j.parkreldis.2015.11.021
Lin MT, Yang JS, Chen PP, et al. Bidirectional connections between depression and ataxia severity in spinocerebellar ataxia type 3 patients. Eur Neurol. 2018;79(5–6):266–71.
pubmed: 29763923 doi: 10.1159/000489398
Hengel H, Martus P, Faber J, et al. The frequency of non-motor symptoms in SCA3 and their association with disease severity and lifestyle factors. J Neurol. 2023;270:944–52.
pubmed: 36324033 doi: 10.1007/s00415-022-11441-z
Ikezoe K, Hidaka N, Manita S, Murakami M, Tsutsumi S, Isomura Y, Kano M, Kitamura K. Cerebellar climbing fibers multiplex movement and reward signals during a voluntary movement task in mice. Commun Biol. 2023;6(1):924.
pubmed: 37689776 pmcid: 10492837 doi: 10.1038/s42003-023-05309-9
Mitoma H, Kakei S, Tanaka H, Manto M. Morphological and functional principles governing the plasticity reserve in the cerebellum: the cortico-deep cerebellar nuclei loop model. Biology (Basel). 2023;12(11):1435.
pubmed: 37998034
Manto M, Jacquy J, Hildebrand J, Godaux E. Recovery of hypermetria after a cerebellar stroke occurs as a multistage process. Ann Neurol. 1995;38(3):437–45.
pubmed: 7668830 doi: 10.1002/ana.410380314

Auteurs

Mario Manto (M)

Service de Neurologie, Médiathèque Jean Jacquy, CHU-Charleroi, 6000, Charleroi, Belgium. mario.manto@ulb.be.
Service Des Neurosciences, Université de Mons, 7000, Mons, Belgium. mario.manto@ulb.be.
Unité Des Ataxies Cérébelleuses, CHU-Charleroi, Service Des Neurosciences, University of Mons, 7000, Mons, Belgium. mario.manto@ulb.be.

Michael Adamaszek (M)

Department of Clinical and Cognitive Neurorehabilitation, Klinik Bavaria Kreischa, 01731, Kreischa, Germany.

Richard Apps (R)

School of Physiology, Pharmacology & Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, BS8 1TD, UK.

Erik Carlson (E)

Department of Psychiatry and Behavioural Sciences, University of Washington, Seattle, WA, 98108, USA.
Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, 98108, USA.

Julian Guarque-Chabrera (J)

Área de Psicobiología, Facultat de Ciències de La Salut, Universitat Jaume I, 12071, Castellón de La Plana, Spain.
Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, 10461, USA.

Elien Heleven (E)

Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, 1050, Brussels, Belgium.

Shinji Kakei (S)

Department of Anatomy and Physiology, Jissen Women's University, Tokyo, 191-8510, Japan.

Kamran Khodakhah (K)

Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, 10461, USA.

Sheng-Han Kuo (SH)

Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA.
Initiative of Columbia Ataxia and Tremor, Columbia University Medical Center, New York, NY, 10032, USA.

Chi-Ying R Lin (CR)

Alzheimer's Disease and Memory Disorders Center, Department of Neurology, Baylor College of Medicine, Houston, 77030 TX, USA.
Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, 77030 TX, USA.

Mati Joshua (M)

Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel.

Marta Miquel (M)

Área de Psicobiología, Facultat de Ciències de La Salut, Universitat Jaume I, 12071, Castellón de La Plana, Spain.
Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, 10461, USA.

Hiroshi Mitoma (H)

Department of Medical Education, Tokyo Medical University, Tokyo, 160-8402, Japan.

Noga Larry (N)

Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel.

Julie Anne Péron (JA)

Clinical and Experimental Neuropsychology Laboratory, Department of Psychology and Educational Sciences, University of Geneva, 1205, Geneva, Switzerland.

Jasmine Pickford (J)

School of Physiology, Pharmacology & Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, BS8 1TD, UK.

Dennis J L G Schutter (DJLG)

Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, 3584 CS, Utrecht, The Netherlands.

Manpreet K Singh (MK)

Psychiatry and Behavioral Sciences, University of California Davis, 2230 Stockton Blvd, Sacramento, CA, 95817, USA.

Tommy Tan (T)

Department of Neurology, UT Southwestern Medical Center, Dallas, TX, 75235, USA.

Hirokazu Tanaka (H)

Faculty of Information Technology, Tokyo City University, Tokyo, 158-8557, Japan.

Peter Tsai (P)

Department of Neurology, UT Southwestern Medical Center, Dallas, TX, 75235, USA.
Departments of Neuroscience, Pediatrics, Psychiatry, UT Southwestern Medical Center, Dallas, TX, 75235, USA.

Frank Van Overwalle (F)

Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, 1050, Brussels, Belgium.

Kunihiko Yamashiro (K)

Department of Neurology, UT Southwestern Medical Center, Dallas, TX, 75235, USA.

Classifications MeSH