Item performance of the scale for the assessment and rating of ataxia in rare and ultra-rare genetic ataxias.


Journal

CPT: pharmacometrics & systems pharmacology
ISSN: 2163-8306
Titre abrégé: CPT Pharmacometrics Syst Pharmacol
Pays: United States
ID NLM: 101580011

Informations de publication

Date de publication:
21 May 2024
Historique:
revised: 28 03 2024
received: 27 11 2023
accepted: 02 05 2024
medline: 21 5 2024
pubmed: 21 5 2024
entrez: 21 5 2024
Statut: aheadofprint

Résumé

The Scale for the Assessment and Rating of Ataxia (SARA) is widely used for assessing the severity and progression of genetic cerebellar ataxias. SARA is now considered a primary end point in several ataxia treatment trials, but its underlying composite item measurement model has not yet been tested. This work aimed to evaluate the composite properties of SARA and its items using item response theory (IRT) and to demonstrate its applicability across even ultra-rare genetic ataxias. Leveraging SARA subscores data from 1932 visits from 990 patients of the Autosomal Recessive Cerebellar Ataxias (ARCA) registry, we assessed the performance of SARA using IRT methodology. The item characteristics were evaluated over the ataxia severity range of the entire ataxia population as well as the assessment validity across 115 genetic ARCA subpopulations. A unidimensional IRT model was able to describe SARA item data, indicating that SARA captures one single latent variable. All items had high discrimination values (1.5-2.9) indicating the effectiveness of the SARA in differentiating between subjects with different disease statuses. Each item contributed between 7% and 28% of the total assessment informativeness. There was no evidence for differences between the 115 genetic ARCA subpopulations in SARA applicability. These results show the good discrimination ability of SARA with all of its items adding informational value. The IRT framework provides a thorough description of SARA on the item level, and facilitates its utilization as a clinical outcome assessment in upcoming longitudinal natural history or treatment trials, across a large number of ataxias, including ultra-rare ones.

Identifiants

pubmed: 38769902
doi: 10.1002/psp4.13162
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024 The Author(s). CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics.

Références

Anheim M, Tranchant C, Koenig M. The autosomal recessive cerebellar ataxias. N Engl J Med. 2012;366(7):636‐646.
Synofzik M, Puccio H, Mochel F, Schöls L. Autosomal recessive cerebellar ataxias: paving the way toward targeted molecular therapies. Neuron. 2019;101(4):560‐583.
Klockgether T, Ashizawa T, Brais B, et al. Paving the way toward meaningful trials in ataxias: an ataxia global initiative perspective. Mov Disord. 2022;37(6):1125‐1130.
Schmitz‐Hübsch T, du Montcel ST, Baliko L, et al. Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology. 2006;66(11):1717‐1720.
Perez‐Lloret S, van de Warrenburg B, Rossi M, et al. Assessment of ataxia rating scales and cerebellar functional tests: critique and recommendations. Mov Disord. 2021;36(2):283‐297.
Feil K, Adrion C, Boesch S, et al. Safety and efficacy of acetyl‐DL‐leucine in certain types of cerebellar ataxia: the ALCAT randomized clinical crossover trial. JAMA Netw Open. 2021;4(12):e2135841.
Lei LF, Yang GP, Wang JL, et al. Safety and efficacy of valproic acid treatment in SCA3/MJD patients. Parkinsonism Relat Disord. 2016;26:55‐61.
França C, de Andrade DC, Silva V, et al. Effects of cerebellar transcranial magnetic stimulation on ataxias: a randomized trial. Parkinsonism Relat Disord. 2020;80:1‐6.
Coarelli G, Heinzmann A, Ewenczyk C, et al. Safety and efficacy of riluzole in spinocerebellar ataxia type 2 in France (ATRIL): a multicentre, randomised, double‐blind, placebo‐controlled trial. Lancet Neurol. 2022;21(3):225‐233.
Benussi A, Dell'Era V, Cantoni V, et al. Cerebello‐spinal tDCS in ataxia: a randomized, double‐blind, sham‐controlled, crossover trial. Neurology. 2018;91(12):e1090‐e1101.
Fields T, Bremova TM, Billington I, et al. N‐acetyl‐L‐leucine for Niemann‐pick type C: a multinational double‐blind randomized placebo‐controlled crossover study. Trials. 2023;24(1):361.
Jacobi H, du Montcel ST, Bauer P, et al. Long‐term disease progression in spinocerebellar ataxia types 1, 2, 3, and 6: a longitudinal cohort study. Lancet Neurol. 2015;14(11):1101‐1108.
Reetz K, Dogan I, Hilgers RD, et al. Progression characteristics of the European Friedreich's ataxia consortium for translational studies (EFACTS): a 4‐year cohort study. Lancet Neurol. 2021;20(5):362‐372.
Traschütz A, Adarmes‐Gomez AD, Anheim M, et al. Autosomal recessive cerebellar ataxias in Europe: frequency, onset, and severity in 677 patients. Mov Disord. 2023;38(6):1109‐1112.
Weyer A, Abele M, Schmitz‐Hübsch T, et al. Reliability and validity of the scale for the assessment and rating of ataxia: a study in 64 ataxia patients. Mov Disord. 2007;22(11):1633‐1637.
Bürk K, Mälzig U, Wolf S, et al. Comparison of three clinical rating scales in Friedreich ataxia (FRDA). Mov Disord. 2009;24(12):1779‐1784.
Maas RPPWM, Teerenstra S, Lima M, et al. Differential temporal dynamics of axial and appendicular ataxia in SCA3. Mov Disord. 2022;37(9):1850‐1860.
Traschütz A, Adarmes‐Gómez AD, Anheim M, et al. Responsiveness of the scale for the assessment and rating of ataxia and natural history in 884 recessive and early onset ataxia patients. Ann Neurol. 2023;94(3):470‐485.
US Food and Drug Administration, U.S. Food and Drug Administration, FDA. Patient‐focused drug development: selecting, developing, or modifying fit‐for‐purpose clinical outcome assessments. [cited 2023 Feb 2]. 2022 Available from: https://www.fda.gov/regulatory‐information/search‐fda‐guidance‐documents/patient‐focused‐drug‐development‐selecting‐developing‐or‐modifying‐fit‐purpose‐clinical‐outcome
Ueckert S. Modeling composite assessment data using item response theory. CPT Pharmacometrics Syst Pharmacol. 2018;7(4):205‐218.
Edelen MO, Reeve BB. Applying item response theory (IRT) modeling to questionnaire development, evaluation, and refinement. Qual Life Res. 2007;16:5‐18.
Buatois S, Retout S, Frey N, Ueckert S. Item response theory as an efficient tool to describe a heterogeneous clinical rating scale in De novo idiopathic Parkinson's disease patients. Pharm Res. 2017;34(10):2109‐2118.
Gottipati G, Karlsson MO, Plan EL. Modeling a composite score in Parkinson's disease using item response theory. AAPS J. 2017;19(3):837‐845.
Arrington L, Ueckert S, Ahamadi M, Macha S, Karlsson MO. Performance of longitudinal item response theory models in shortened or partial assessments. J Pharmacokinet Pharmacodyn. 2020;47(5):461‐471.
Ueckert S, Plan EL, Ito K, et al. Improved utilization of ADAS‐cog assessment data through item response theory based Pharmacometric modeling. Pharm Res. 2014;31(8):2152‐2165.
Balsis S, Unger AA, Benge JF, Geraci L, Doody RS. Gaining precision on the Alzheimer's disease assessment scale‐cognitive: a comparison of item response theory‐based scores and total scores. Alzheimers Dement. 2012;8(4):288‐294.
Novakovic AM, Krekels EHJ, Munafo A, Ueckert S, Karlsson MO. Application of item response theory to modeling of expanded disability status scale in multiple sclerosis. AAPS J. 2017;19(1):172‐179.
Bacci ED, Staniewska D, Coyne KS, et al. Item response theory analysis of the amyotrophic lateral sclerosis functional rating scale‐revised in the pooled resource open‐access ALS clinical trials database. Amyotroph Lateral Scler Frontotemporal Degener. 2016;17(3–4):157‐167.
Synofzik M, van Roon‐Mom WMC, Marckmann G, et al. Preparing n‐of‐1 antisense oligonucleotide treatments for rare neurological diseases in Europe: genetic, regulatory, and ethical perspectives. Nucleic Acid Ther. 2022;32(2):83‐94.
Traschütz A, Schirinzi T, Laugwitz L, et al. Clinico‐genetic, imaging and molecular delineation of COQ8A‐ataxia: a multicenter study of 59 patients. Ann Neurol. 2020;88(2):251‐263.
Traschütz A, Reich S, Adarmes AD, et al. The ARCA registry: a collaborative global platform for advancing trial readiness in autosomal recessive cerebellar ataxias. Front Neurol. 2021;12:677551.
Coutelier M, Hammer MB, Stevanin G, et al. Efficacy of exome‐targeted capture sequencing to detect mutations in known cerebellar ataxia genes. JAMA Neurol. 2018;75(5):591‐599.
Gama MTD, Braga‐Neto P, Rangel DM, et al. Autosomal recessive cerebellar ataxias in South America: a multicenter study of 1338 patients. Mov Disord. 2022;37(8):1773‐1774.
Beal SL, Sheiner LB, Boeckmann A, Bauer RJ. NONMEM user's Guides (1989–2009). Icon Development Solutions; 2009.
Nordgren R, Ueckert S. Uppsala University, Pharmacometrics Research Group. 2022 [cited 2023 Jan 3]. Available from: https://github.com/UUPharmacometrics/piraid
Bergstrand M, Hooker AC, Wallin JE, Karlsson MO. Prediction‐corrected visual predictive checks for diagnosing nonlinear mixed‐effects models. AAPS J. 2011;13(2):143‐151.
Hayes LJ, Berry G. Comparing the part with the whole: should overlap be ignored in public health measures? J Public Health. 2006;28(3):278‐282.
Lyauk YK, Jonker DM, Lund TM, Hooker AC, Karlsson MO. Item response theory modeling of the international prostate symptom score in patients with lower urinary tract symptoms associated with benign prostatic hyperplasia. AAPS J. 2020;22(5):115.
Wellhagen GJ, Ueckert S, Kjellsson MC, Karlsson MO. An item response theory‐informed strategy to model Total score data from composite scales. AAPS J. 2021;23(3):45.
Ilg W, Müller B, Faber J, et al. Digital gait biomarkers allow to capture 1‐year longitudinal change in spinocerebellar ataxia type 3. Mov Disord. 2022;37(11):2295‐2301.
Haem E, Doostfatemeh M, Firouzabadi N, Ghazanfari N, Karlsson MO. A longitudinal item response model for aberrant behavior checklist (ABC) data from children with autism. J Pharmacokinet Pharmacodyn. 2020;47(3):241‐253.

Auteurs

Alzahra Hamdan (A)

Pharmacometrics Research Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden.

Andrew C Hooker (AC)

Pharmacometrics Research Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden.

Xiaomei Chen (X)

Pharmacometrics Research Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden.

Andreas Traschütz (A)

Department of Neurodegenerative Diseases, Center for Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
German Center for Neurodegenerative Diseases (DZNE) Tübingen, Tübingen, Germany.

Rebecca Schüle (R)

Department of Neurodegenerative Diseases, Center for Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
Division of Neurodegenerative Diseases, Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany.

Matthis Synofzik (M)

Department of Neurodegenerative Diseases, Center for Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
German Center for Neurodegenerative Diseases (DZNE) Tübingen, Tübingen, Germany.

Mats O Karlsson (MO)

Pharmacometrics Research Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden.

Classifications MeSH