In vivo neuropil density from anatomical MRI and machine learning.
Humans
Machine Learning
Male
Adult
Female
Magnetic Resonance Imaging
/ methods
Neuropil
/ metabolism
Brain
/ diagnostic imaging
White Matter
/ diagnostic imaging
Young Adult
Positron-Emission Tomography
/ methods
Middle Aged
Gray Matter
/ diagnostic imaging
Neural Networks, Computer
Image Processing, Computer-Assisted
/ methods
Aerobic glycolysis
astrocyte
brain energetics
glucose
glutamate
human brain connectome
lactate, spiking rate
Journal
Cerebral cortex (New York, N.Y. : 1991)
ISSN: 1460-2199
Titre abrégé: Cereb Cortex
Pays: United States
ID NLM: 9110718
Informations de publication
Date de publication:
02 May 2024
02 May 2024
Historique:
received:
18
02
2024
revised:
23
04
2024
accepted:
28
04
2024
medline:
21
5
2024
pubmed:
21
5
2024
entrez:
21
5
2024
Statut:
ppublish
Résumé
Brain energy budgets specify metabolic costs emerging from underlying mechanisms of cellular and synaptic activities. While current bottom-up energy budgets use prototypical values of cellular density and synaptic density, predicting metabolism from a person's individualized neuropil density would be ideal. We hypothesize that in vivo neuropil density can be derived from magnetic resonance imaging (MRI) data, consisting of longitudinal relaxation (T1) MRI for gray/white matter distinction and diffusion MRI for tissue cellularity (apparent diffusion coefficient, ADC) and axon directionality (fractional anisotropy, FA). We present a machine learning algorithm that predicts neuropil density from in vivo MRI scans, where ex vivo Merker staining and in vivo synaptic vesicle glycoprotein 2A Positron Emission Tomography (SV2A-PET) images were reference standards for cellular and synaptic density, respectively. We used Gaussian-smoothed T1/ADC/FA data from 10 healthy subjects to train an artificial neural network, subsequently used to predict cellular and synaptic density for 54 test subjects. While excellent histogram overlaps were observed both for synaptic density (0.93) and cellular density (0.85) maps across all subjects, the lower spatial correlations both for synaptic density (0.89) and cellular density (0.58) maps are suggestive of individualized predictions. This proof-of-concept artificial neural network may pave the way for individualized energy atlas prediction, enabling microscopic interpretations of functional neuroimaging data.
Identifiants
pubmed: 38771239
pii: 7676480
doi: 10.1093/cercor/bhae200
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : NIH HHS
ID : R56 AG079086
Pays : United States
Organisme : Alzheimer's Disease Neuroimaging Initiative
Organisme : NIH HHS
ID : U01 AG024904
Pays : United States
Organisme : DOD ADNI
Organisme : Department of Defense
ID : W81XWH-12-2-0012
Organisme : NIA NIH HHS
Pays : United States
Organisme : NIBIB NIH HHS
Pays : United States
Organisme : AbbVie
Organisme : Alzheimer's Association
Pays : United States
Organisme : Alzheimer's Drug Discovery Foundation
Organisme : Araclon Biotech
Organisme : BioClinica, Inc
Organisme : Biogen
Organisme : Bristol-Myers Squibb Company
Organisme : CereSpir, Inc.
Organisme : Cogstate
Organisme : Eisai Inc.
Organisme : Elan Pharmaceuticals, Inc.
Organisme : Eli Lilly and Company
Organisme : EuroImmun
Organisme : F. Hoffmann-La Roche Ltd
Informations de copyright
© The Author(s) 2024. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.