Lipidomics random forest algorithm of seminal plasma is a promising method for enhancing the diagnosis of necrozoospermia.


Journal

Metabolomics : Official journal of the Metabolomic Society
ISSN: 1573-3890
Titre abrégé: Metabolomics
Pays: United States
ID NLM: 101274889

Informations de publication

Date de publication:
21 May 2024
Historique:
received: 10 01 2024
accepted: 20 04 2024
medline: 22 5 2024
pubmed: 22 5 2024
entrez: 21 5 2024
Statut: epublish

Résumé

Despite the clear clinical diagnostic criteria for necrozoospermia in andrology, the fundamental mechanisms underlying it remain elusive. This study aims to profile the lipid composition in seminal plasma systematically and to ascertain the potential of lipid biomarkers in the accurate diagnosis of necrozoospermia. It also evaluates the efficacy of a lipidomics-based random forest algorithm model in identifying necrozoospermia. Seminal plasma samples were collected from patients diagnosed with necrozoospermia (n = 28) and normozoospermia (n = 28). Liquid chromatography-mass spectrometry (LC-MS) was used to perform lipidomic analysis and identify the underlying biomarkers. A lipid functional enrichment analysis was conducted using the LION lipid ontology database. The top 100 differentially significant lipids were subjected to lipid biomarker examination through random forest machine learning model. Lipidomic analysis identified 46 lipid classes comprising 1267 lipid metabolites in seminal plasma. The top five enriched lipid functions as follows: fatty acid (FA) with ≤ 18 carbons, FA with 16-18 carbons, monounsaturated FA, FA with 18 carbons, and FA with 16 carbons. The top 100 differentially significant lipids were subjected to machine learning analysis and identified 20 feature lipids. The random forest model identified lipids with an area under the curve > 0.8, including LPE(20:4) and TG(4:0_14:1_16:0). LPE(20:4) and TG(4:0_14:1_16:0), were identified as differential lipids for necrozoospermia. Seminal plasma lipidomic analysis could provide valuable biochemical information for the diagnosis of necrozoospermia, and its combination with conventional sperm analysis may improve the accuracy and reliability of the diagnosis.

Sections du résumé

BACKGROUND BACKGROUND
Despite the clear clinical diagnostic criteria for necrozoospermia in andrology, the fundamental mechanisms underlying it remain elusive. This study aims to profile the lipid composition in seminal plasma systematically and to ascertain the potential of lipid biomarkers in the accurate diagnosis of necrozoospermia. It also evaluates the efficacy of a lipidomics-based random forest algorithm model in identifying necrozoospermia.
METHODS METHODS
Seminal plasma samples were collected from patients diagnosed with necrozoospermia (n = 28) and normozoospermia (n = 28). Liquid chromatography-mass spectrometry (LC-MS) was used to perform lipidomic analysis and identify the underlying biomarkers. A lipid functional enrichment analysis was conducted using the LION lipid ontology database. The top 100 differentially significant lipids were subjected to lipid biomarker examination through random forest machine learning model.
RESULTS RESULTS
Lipidomic analysis identified 46 lipid classes comprising 1267 lipid metabolites in seminal plasma. The top five enriched lipid functions as follows: fatty acid (FA) with ≤ 18 carbons, FA with 16-18 carbons, monounsaturated FA, FA with 18 carbons, and FA with 16 carbons. The top 100 differentially significant lipids were subjected to machine learning analysis and identified 20 feature lipids. The random forest model identified lipids with an area under the curve > 0.8, including LPE(20:4) and TG(4:0_14:1_16:0).
CONCLUSIONS CONCLUSIONS
LPE(20:4) and TG(4:0_14:1_16:0), were identified as differential lipids for necrozoospermia. Seminal plasma lipidomic analysis could provide valuable biochemical information for the diagnosis of necrozoospermia, and its combination with conventional sperm analysis may improve the accuracy and reliability of the diagnosis.

Identifiants

pubmed: 38773045
doi: 10.1007/s11306-024-02118-x
pii: 10.1007/s11306-024-02118-x
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

57

Subventions

Organisme : Shenzhen Science and Technology Innovation Committee
ID : KJYY20180703173402020
Organisme : Shenzhen Key Medical Discipline Construction Fund
ID : SZXK031
Organisme : Shenzhen-Hong Kong-Macau Science and Technology Program (Type C)
ID : SGDX2020110309500101

Informations de copyright

© 2024. The Author(s).

Références

Agarwal, A., Sharma, R. K., Gupta, S., Boitrelle, F., Finelli, R., Parekh, N., Durairajanayagam, D., Saleh, R., Arafa, M., Cho, C. L., et al. (2022). Sperm vitality and necrozoospermia: Diagnosis, management, and results of a Global Survey of Clinical Practice. World Journal of Men’s Health, 40, 228–242.
doi: 10.5534/wjmh.210149 pubmed: 34666422
Ahumada-Gutierrez, H., Peñalva, D. A., Enriz, R. D., Antollini, S. S., & Cascales, J. J. L. (2019). Mechanical properties of bilayers containing sperm sphingomyelins and ceramides with very long-chain polyunsaturated fatty acids. Chemistry and Physics of Lipids, 218, 178–186.
doi: 10.1016/j.chemphyslip.2018.12.008 pubmed: 30610838
Boguenet, M., Bocca, C., Bouet, P. E., Serri, O., Chupin, S., Tessier, L., Blanchet, O., & El Hachem, H. (2020). Metabolomic signature of the seminal plasma in men with severe oligoasthenospermia. Andrology, 8, 1859–1866.
doi: 10.1111/andr.12882 pubmed: 32770844
Boursier, A., Dumont, A., Boitrelle, F., Prasivoravong, J., Lefebvre-Khalil, V., Robin, G., & Barbotin, A. L. (2022). Necrozoospermia: The tree that hides the forest. Andrology, 10, 642–659.
doi: 10.1111/andr.13172 pubmed: 35246969
Cheng, X., Xie, H., Xiong, Y., Sun, P., Xue, Y., & Li, K. (2023). Lipidomics profiles of human spermatozoa: Insights into capacitation and acrosome reaction using UPLC-MS-based approach. Frontiers in Endocrinology (lausanne), 14, 1273878.
doi: 10.3389/fendo.2023.1273878
Correnti, S., Preianò, M., Fregola, A., Gamboni, F., Stephenson, D., Savino, R., D’Alessandro, A., & Terracciano, R. (2023). Seminal plasma untargeted metabolomic and lipidomic profiling for the identification of a novel panel of biomarkers and therapeutic targets related to male infertility. Frontiers in Pharmacology, 14, 1275832.
doi: 10.3389/fphar.2023.1275832 pubmed: 37829298 pmcid: 10565040
Dalli, J., Colas, R. A., Walker, M. E., & Serhan, C. N. (2018). Lipid mediator metabolomics via LC-MS/MS profiling and analysis. Methods in Molecular Biology, 1730, 59–72.
doi: 10.1007/978-1-4939-7592-1_4 pubmed: 29363065
Deepinder, F., Chowdary, H. T., & Agarwal, A. (2007). Role of metabolomic analysis of biomarkers in the management of male infertility. Expert Review of Molecular Diagnostics, 7, 351–358.
doi: 10.1586/14737159.7.4.351 pubmed: 17620044
Deng, T., Li, X., & Yao, B. (2023). Metabonomic analysis of seminal plasma in necrozoospermia patients based on liquid chromatography–mass spectrometry. Translational Andrology and Urology, 12, 1101–1114.
doi: 10.21037/tau-23-14 pubmed: 37554525 pmcid: 10406541
Flesch, F. M., & Gadella, B. M. (2000). Dynamics of the mammalian sperm plasma membrane in the process of fertilization. Biochimica Et Biophysica Acta (BBA) - Reviews on Biomembranes, 1469, 197–235.
doi: 10.1016/S0304-4157(00)00018-6 pubmed: 11063883
Gamidov, S. I., Shatylko, T. V., Tambiev, A. K., Tokareva, A. O., Chagovets, V. V., Bitsoev, T. B., Starodubtseva, N. L., Popova, A. Y., & Frankevich, V. E. (2022). Prognostic ability of seminal plasma lipidomic analysis in predicting the success of microTESE in men with azoospermia. Urologiia, 77, 32–37.
doi: 10.18565/urology.2022.4.32-37
Gomathi, C., Balasubramanian, K., Bhanu, N. V., Srikanth, V., & Govindarajulu, P. (1993). Effect of chronic alcoholism on semen–studies on lipid profiles. International Journal of Andrology, 16, 175–181.
doi: 10.1111/j.1365-2605.1993.tb01176.x pubmed: 8359931
Guo, Y., Li, X., Wang, X., Li, H., Luo, G., Si, Y., Wu, X., & Li, Y. (2022). Seminal plasma metabolomics and lipidomics profiling to identify signatures of pituitary stalk interruption syndrome. Orphanet Journal of Rare Diseases, 17, 267.
doi: 10.1186/s13023-022-02408-4 pubmed: 35841106 pmcid: 9287950
Kawano, N., Yoshida, K., Miyado, K., & Yoshida, M. (2011). Lipid rafts: Keys to sperm maturation, fertilization, and early embryogenesis. Journal of Lipid Research, 2011, 264706.
Kim, N., Nakamura, H., Masaki, H., Kumasawa, K., Hirano, K. I., & Kimura, T. (2017). Effect of lipid metabolism on male fertility. Biochemical and Biophysical Research Communications, 485, 686–692.
doi: 10.1016/j.bbrc.2017.02.103 pubmed: 28235483
Li, X., Luo, T., Li, H., & Yan, N. (2020). Sphingomyelin synthase 2 participate in the regulation of sperm motility and apoptosis. Molecules, 25, 4231.
doi: 10.3390/molecules25184231 pubmed: 32942681 pmcid: 7570487
Li, X., Wang, X., Li, H., Li, Y., & Guo, Y. (2021). Seminal plasma lipidomics profiling to identify signatures of Kallmann syndrome. Frontiers in Endocrinology (lausanne), 12, 692690.
doi: 10.3389/fendo.2021.692690
Lopalco, P., Vitale, R., Cho, Y. S., Totaro, P., Corcelli, A., & Lobasso, S. (2019). Alteration of cholesterol sulfate/seminolipid ratio in semen lipid profile of men with oligoasthenozoospermia. Frontiers in Physiology, 10, 1344.
doi: 10.3389/fphys.2019.01344 pubmed: 31736776 pmcid: 6828844
Masaki, H., Kim, N., Nakamura, H., Kumasawa, K., Kamata, E., Hirano, K. I., & Kimura, T. (2017). Long-chain fatty acid triglyceride (TG) metabolism disorder impairs male fertility: A study using adipose triglyceride lipase deficient mice. Molecular Human Reproduction, 23, 452–460.
doi: 10.1093/molehr/gax031 pubmed: 28510703
Máté, G., Balló, A., Márk, L., Czétány, P., Szántó, Á., & Török, A. (2022). Magnetic-activated cell sorting as a method to improve necrozoospermia-related asthenozoospermic samples. Journal of Clinical Medicine, 11(10), 2914.
doi: 10.3390/jcm11102914 pubmed: 35629040 pmcid: 9146750
Molenaar, M. R., Jeucken, A., Wassenaar, T. A., van de Lest, C. H. A., Brouwers, J. F., & Helms, J. B. (2019). LION/web: A web-based ontology enrichment tool for lipidomic data analysis. Gigascience. https://doi.org/10.1093/gigascience/giz061
doi: 10.1093/gigascience/giz061 pubmed: 31141612 pmcid: 6541037
Pillet, E., Labbe, C., Batellier, F., Duchamp, G., Beaumal, V., Anton, M., Desherces, S., Schmitt, E., & Magistrini, M. (2012). Liposomes as an alternative to egg yolk in stallion freezing extender. Theriogenology, 77, 268–279.
doi: 10.1016/j.theriogenology.2011.08.001 pubmed: 21924469
Qi, C., Baojun, J., Jie, C., Jingjing, W., Shuqiang, C., & Xiaohong, W. (2018). Identification of human seminal plasma lipid components by high performance liquid chromatography–tandem mass spectrometry multiple reaction monitoring. Journal of Lanzhou University: Medical Edition, 44, 8.
Samuel, V. T., & Shulman, G. I. (2018). Nonalcoholic fatty liver disease as a nexus of metabolic and hepatic diseases. Cell Metabolism, 27, 22–41.
doi: 10.1016/j.cmet.2017.08.002 pubmed: 28867301
Somashekar, L., Selvaraju, S., Parthipan, S., Patil, S. K., Binsila, B. K., Venkataswamy, M. M., Karthik Bhat, S., & Ravindra, J. P. (2017). Comparative sperm protein profiling in bulls differing in fertility and identification of phosphatidylethanolamine-binding protein 4, a potential fertility marker. Andrology, 5, 1032–1051.
doi: 10.1111/andr.12404 pubmed: 28859251
Torres-Puig, S., García, V., Stærk, K., Andersen, T. E., Møller-Jensen, J., Olsen, J. E., & Herrero-Fresno, A. (2022). “Omics” technologies—What have they told us about uropathogenic Escherichia coli fitness and virulence during urinary tract infection? Frontiers in Cellular and Infection Microbiology, 12, 824039.
doi: 10.3389/fcimb.2022.824039 pubmed: 35237532 pmcid: 8882828
World Health Organization. (2021). WHO laboratory manual for the examination and processing of human semen (6th ed.). Geneva: World Health Organization.
Yoon, J. H., Seo, Y., Jo, Y. S., Lee, S., Cho, E., Cazenave-Gassiot, A., Shin, Y. S., Moon, M. H., An, H. J., Wenk, M. R., & Suh, P. G. (2022). Brain lipidomics: From functional landscape to clinical significance. Science Advances, 8, 9317.
doi: 10.1126/sciadv.adc9317

Auteurs

Tianqin Deng (T)

Reproductive Medicine Centre, Shenzhen Maternity & Child Healthcare Hospital, Fuqiang Road No.3012, Shenzhen, 51807, China.

Wanxue Wang (W)

Reproductive Medicine Centre, Shenzhen Maternity & Child Healthcare Hospital, Fuqiang Road No.3012, Shenzhen, 51807, China.

Zhihong Fu (Z)

Reproductive Medicine Centre, Shenzhen Maternity & Child Healthcare Hospital, Fuqiang Road No.3012, Shenzhen, 51807, China.

Yuli Xie (Y)

Newborn Screening Centre, Shenzhen Maternity & Child Healthcare Hospital, Shenzhen, China.

Yonghong Zhou (Y)

Reproductive Medicine Centre, Shenzhen Maternity & Child Healthcare Hospital, Fuqiang Road No.3012, Shenzhen, 51807, China.

Jiangbo Pu (J)

Reproductive Medicine Centre, Shenzhen Maternity & Child Healthcare Hospital, Fuqiang Road No.3012, Shenzhen, 51807, China.

Kexin Chen (K)

Reproductive Medicine Centre, Shenzhen Maternity & Child Healthcare Hospital, Fuqiang Road No.3012, Shenzhen, 51807, China.

Bing Yao (B)

Reproductive Medicine Centre, Nanjing Jinling Hospital, The First School of Clinical Medicine, Southern Medical University (General Hospital of Eastern Military Region), Nanjing, China.

Xuemei Li (X)

Reproductive Medicine Centre, Shenzhen Maternity & Child Healthcare Hospital, Fuqiang Road No.3012, Shenzhen, 51807, China. lxmyzf@126.com.

Jilong Yao (J)

Reproductive Medicine Centre, Shenzhen Maternity & Child Healthcare Hospital, Fuqiang Road No.3012, Shenzhen, 51807, China. yaojilong369@163.com.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH