Total osteocalcin levels are independently associated with worse testicular function and a higher degree of hypothalamic-pituitary-gonadal axis activation in Klinefelter syndrome.

Bone Bone-testicular axis Gonadotropins Klinefelter syndrome Osteocalcin Testis Testosterone

Journal

Journal of endocrinological investigation
ISSN: 1720-8386
Titre abrégé: J Endocrinol Invest
Pays: Italy
ID NLM: 7806594

Informations de publication

Date de publication:
21 May 2024
Historique:
received: 23 11 2023
accepted: 02 05 2024
medline: 22 5 2024
pubmed: 22 5 2024
entrez: 21 5 2024
Statut: aheadofprint

Résumé

The role of osteocalcin (OCN) in pubertal development, male hypogonadism, and the effect of testosterone (Te) replacement therapy (TRT) remains unclear. We aimed to investigate the total OCN (tOCN) concentrations in male patients with Klinefelter syndrome (KS), a model of adult hypergonadotropic hypogonadism. This retrospective longitudinal study investigated 254 male patients with KS (47,XXY) between 2007 and 2021 at an academic referral center, categorized as (1) prepubertal, (2) pubertal, and (3) adults. All prepubertal patients were Te-naïve. Adult patients were subcategorized as (1) eugonadal, (2) hypogonadal, and (3) receiving TRT. We also analyzed 18 adult patients with available tOCN levels before and 3 months after TRT commencement. The tOCN levels varied throughout the lifespan according to pubertal status, were highest in eugonadal and significantly lower in TRT subjects, correlated with both LH (p = 0.017) and FSH levels (p = 0.004) in adults, and significantly declined after 3 months of TRT (p = 0.006) in the adult KS cohort. HPG-axis hormones levels demonstrated no correlation in prepubertal boys. Adjustment for age and body mass index confirmed previous results and revealed significant inverse correlations with total Te (p = 0.004), calculated free Te (p = 0.016), the Te/LH (p = 0.010), and calculated free Te/LH ratios (p = 0.031). In KS, a model of male hypergonadotropic hypogonadism, tOCN levels were not associated with gonadal function during normal prepuberty and pubertal development but were associated with worse testicular function and a higher degree of HPG stimulation in adults. TRT acutely reduced tOCN levels in adults.

Identifiants

pubmed: 38773059
doi: 10.1007/s40618-024-02390-7
pii: 10.1007/s40618-024-02390-7
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : European Commission
ID : PNRR - M4C2-I1.3 Project PE_00000019 "HEAL ITALIA"
Organisme : European Commission
ID : CUP I53C22001440006
Organisme : Ministero della Salute
ID : PRecisiOn Medicine to Target Frailty of Endocrine-metabolic Origin (PROMETEO) project (NET-2018-12365454)

Informations de copyright

© 2024. The Author(s).

Références

Lee NK et al (2007) Endocrine regulation of energy metabolism by the skeleton. Cell 130(3):456–469. https://doi.org/10.1016/j.cell.2007.05.047
doi: 10.1016/j.cell.2007.05.047 pubmed: 17693256 pmcid: 2013746
Dirckx N, Moorer MC, Clemens TL, Riddle RC (2019) The role of osteoblasts in energy homeostasis. Nat Rev Endocrinol 15(11):651–665. https://doi.org/10.1038/s41574-019-0246-y
doi: 10.1038/s41574-019-0246-y pubmed: 31462768 pmcid: 6958555
Oury F et al (2013) Osteocalcin regulates murine and human fertility through a pancreas-bone-testis axis. J Clin Invest 123(6):2421–2433. https://doi.org/10.1172/JCI65952
doi: 10.1172/JCI65952 pubmed: 23728177 pmcid: 3668813
Mera P et al (2017) Osteocalcin signaling in myofibers is necessary and sufficient for optimum adaptation to exercise. Cell Metab 25(1):218. https://doi.org/10.1016/j.cmet.2016.12.003
doi: 10.1016/j.cmet.2016.12.003 pubmed: 28076763
Berger JM et al (2019) Mediation of the acute stress response by the skeleton. Cell Metab. https://doi.org/10.1016/j.cmet.2019.08.012
doi: 10.1016/j.cmet.2019.08.012 pubmed: 31523009 pmcid: 6834912
Yadav VK, Berger JM, Singh P, Nagarajan P, Karsenty G (2022) Embryonic osteocalcin signaling determines lifelong adrenal steroidogenesis and homeostasis in the mouse. J Clin Invest. https://doi.org/10.1172/JCI153752
doi: 10.1172/JCI153752 pubmed: 36047494 pmcid: 9433106
Pi M et al (2016) Evidence for osteocalcin binding and activation of GPRC6A in beta-cells. Endocrinology 157(5):1866–1880. https://doi.org/10.1210/en.2015-2010
doi: 10.1210/en.2015-2010 pubmed: 27007074 pmcid: 4870875
Ueland T et al (2010) Associations between body composition, circulating interleukin-1 receptor antagonist, osteocalcin, and insulin metabolism in active acromegaly. J Clin Endocrinol Metab 95(1):361–368. https://doi.org/10.1210/jc.2009-0422
doi: 10.1210/jc.2009-0422 pubmed: 19880791
Oury F et al (2011) Endocrine regulation of male fertility by the skeleton. Cell 144(5):796–809. https://doi.org/10.1016/j.cell.2011.02.004
doi: 10.1016/j.cell.2011.02.004 pubmed: 21333348 pmcid: 3052787
Oury F et al (2015) Osteocalcin regulates murine and human fertility through a pancreas-bone-testis axis. J Clin Invest 125(5):2180. https://doi.org/10.1172/JCI81812
doi: 10.1172/JCI81812 pubmed: 25932680 pmcid: 4463219
Shan C, Yue J, Liu W (2021) Broadening the role of osteocalcin in the hypothalamic-pituitary-gonadal axis. J Endocrinol 249(2):R43–R51. https://doi.org/10.1530/JOE-20-0203
doi: 10.1530/JOE-20-0203 pubmed: 33760754
Correa Pinto Junior D et al (2024) Osteocalcin of maternal and embryonic origins synergize to establish homeostasis in offspring. EMBO Rep. https://doi.org/10.1038/s44319-023-00031-3
doi: 10.1038/s44319-023-00031-3 pubmed: 38228788 pmcid: 10897216
Khrimian L et al (2017) Gpr158 mediates osteocalcin’s regulation of cognition. J Exp Med 214(10):2859–2873. https://doi.org/10.1084/jem.20171320
doi: 10.1084/jem.20171320 pubmed: 28851741 pmcid: 5626410
Guo XZ et al (2018) Osteocalcin ameliorates motor dysfunction in a 6-hydroxydopamine-induced parkinson’s disease rat model through AKT/GSK3beta signaling. Front Mol Neurosci 11:343. https://doi.org/10.3389/fnmol.2018.00343
doi: 10.3389/fnmol.2018.00343 pubmed: 30319352 pmcid: 6170617
Glatigny M et al (2019) Autophagy is required for memory formation and reverses age-related memory decline. Curr Biol. https://doi.org/10.1016/j.cub.2018.12.021
doi: 10.1016/j.cub.2018.12.021 pubmed: 30661803
Shan C et al (2019) Roles for osteocalcin in brain signalling: implications in cognition- and motor-related disorders. Mol Brain. https://doi.org/10.1186/s13041-019-0444-5
doi: 10.1186/s13041-019-0444-5 pubmed: 30909971 pmcid: 6434857
Lee AJ, Hodges S, Eastell R (2000) Measurement of osteocalcin. Ann Clin Biochem 37(Pt 4):432–446. https://doi.org/10.1177/000456320003700402
doi: 10.1177/000456320003700402 pubmed: 10902858
Razzaque MS (2011) Osteocalcin: a pivotal mediator or an innocent bystander in energy metabolism? Nephrol Dial Transplant 26(1):42–45. https://doi.org/10.1093/ndt/gfq721
doi: 10.1093/ndt/gfq721 pubmed: 21131432
Li J, Zhang H, Yang C, Li Y, Dai Z (2016) An overview of osteocalcin progress. J Bone Miner Metab 34(4):367–379. https://doi.org/10.1007/s00774-015-0734-7
doi: 10.1007/s00774-015-0734-7 pubmed: 26747614
Foresta C et al (2011) Androgens modulate osteocalcin release by human visceral adipose tissue. Clin Endocrinol (Oxf) 75(1):64–69. https://doi.org/10.1111/j.1365-2265.2011.03997.x
doi: 10.1111/j.1365-2265.2011.03997.x pubmed: 21521268
Liao M et al (2013) Role of metabolic factors in the association between osteocalcin and testosterone in Chinese men. J Clin Endocrinol Metab 98(8):3463–3469. https://doi.org/10.1210/jc.2013-1805
doi: 10.1210/jc.2013-1805 pubmed: 23824426
Kirmani S, Atkinson EJ, Melton LJ 3rd, Riggs BL, Amin S, Khosla S (2011) Relationship of testosterone and osteocalcin levels during growth. J Bone Miner Res 26(9):2212–2216. https://doi.org/10.1002/jbmr.421
doi: 10.1002/jbmr.421 pubmed: 21590731
Hannemann A et al (2013) Osteocalcin is associated with testosterone in the general population and selected patients with bone disorders. Andrology 1(3):469–474. https://doi.org/10.1111/j.2047-2927.2012.00044.x
doi: 10.1111/j.2047-2927.2012.00044.x pubmed: 23315980
Limonard EJ, van Schoor NM, de Jongh RT, Lips P, Fliers E, Bisschop PH (2015) Osteocalcin and the pituitary-gonadal axis in older men: a population-based study. Clin Endocrinol (Oxf) 82(5):753–759. https://doi.org/10.1111/cen.12660
doi: 10.1111/cen.12660 pubmed: 25376262
Yeap BB et al (2015) Higher serum undercarboxylated osteocalcin and other bone turnover markers are associated with reduced diabetes risk and lower estradiol concentrations in older men. J Clin Endocrinol Metab 100(1):63–71. https://doi.org/10.1210/jc.2014-3019
doi: 10.1210/jc.2014-3019 pubmed: 25365314
Yang YY et al (2019) Osteocalcin levels in male idiopathic hypogonadotropic hypogonadism: relationship with the testosterone secretion and metabolic profiles. Front Endocrinol (Lausanne). https://doi.org/10.3389/fendo.2019.00687
doi: 10.3389/fendo.2019.00687 pubmed: 32117042 pmcid: 6639830
Barbonetti A et al (2019) Can the positive association of osteocalcin with testosterone be unmasked when the preeminent hypothalamic-pituitary regulation of testosterone production is impaired? The model of spinal cord injury. J Endocrinol Invest 42(2):167–173. https://doi.org/10.1007/s40618-018-0897-x
doi: 10.1007/s40618-018-0897-x pubmed: 29729005
Samavat J et al (2014) Osteocalcin increase after bariatric surgery predicts androgen recovery in hypogonadal obese males. Int J Obes (Lond) 38(3):357–363. https://doi.org/10.1038/ijo.2013.228
doi: 10.1038/ijo.2013.228 pubmed: 24304595
Overvad S, Bay K, Bojesen A, Gravholt CH (2014) Low INSL3 in Klinefelter syndrome is related to osteocalcin, testosterone treatment and body composition, as well as measures of the hypothalamic-pituitary-gonadal axis. Andrology 2(3):421–427. https://doi.org/10.1111/j.2047-2927.2014.00204.x
doi: 10.1111/j.2047-2927.2014.00204.x pubmed: 24659579
Carlomagno F et al (2023) Altered thyroid feedback loop in Klinefelter syndrome: a cohort study from infancy through the transition into adulthood. J Clin Endocrinol Metab. https://doi.org/10.1210/clinem/dgad281
doi: 10.1210/clinem/dgad281 pubmed: 37216911 pmcid: 10505551
Vermeulen A, Verdonck L, Kaufman JM (1999) A critical evaluation of simple methods for the estimation of free testosterone in serum. J Clin Endocrinol Metab 84(10):3666–3672. https://doi.org/10.1210/jcem.84.10.6079
doi: 10.1210/jcem.84.10.6079 pubmed: 10523012
Pozza C et al (2023) Testicular dysfunction in 47, XXY boys: when it all begins. a semilongitudinal study. J Clin Endocrinol Metab 108(10):2486–2499. https://doi.org/10.1210/clinem/dgad205
doi: 10.1210/clinem/dgad205 pubmed: 37043499 pmcid: 10505551
Haycock GB, Schwartz GJ, Wisotsky DH (1978) Geometric method for measuring body surface area: a height-weight formula validated in infants, children, and adults. J Pediatr 93(1):62–66. https://doi.org/10.1016/s0022-3476(78)80601-5
doi: 10.1016/s0022-3476(78)80601-5 pubmed: 650346
Schuh-Huerta SM, Pera RA (2011) Reproductive biology: bone returns the favour. Nature 472(7341):46–47. https://doi.org/10.1038/472046a
doi: 10.1038/472046a pubmed: 21475191
Diegel CR et al (2020) An osteocalcin-deficient mouse strain without endocrine abnormalities. PLoS Genet 16(5):e1008361. https://doi.org/10.1371/journal.pgen.1008361
doi: 10.1371/journal.pgen.1008361 pubmed: 32463812 pmcid: 7255615
Moriishi T et al (2020) Osteocalcin is necessary for the alignment of apatite crystallites, but not glucose metabolism, testosterone synthesis, or muscle mass. PLoS Genet 16(5):e1008586. https://doi.org/10.1371/journal.pgen.1008586
doi: 10.1371/journal.pgen.1008586 pubmed: 32463816 pmcid: 7255595
Manolagas SC (2020) Osteocalcin promotes bone mineralization but is not a hormone. PLoS Genet 16(6):e1008714. https://doi.org/10.1371/journal.pgen.1008714
doi: 10.1371/journal.pgen.1008714 pubmed: 32484816 pmcid: 7266291
Karsenty G (2020) The facts of the matter: what is a hormone? PLoS Genet 16(6):e1008938. https://doi.org/10.1371/journal.pgen.1008938
doi: 10.1371/journal.pgen.1008938 pubmed: 32589668 pmcid: 7319275
Moriishi T, Komori T (2020) Lack of reproducibility in osteocalcin-deficient mice. PLoS Genet 16(6):e1008939. https://doi.org/10.1371/journal.pgen.1008939
doi: 10.1371/journal.pgen.1008939 pubmed: 32589663 pmcid: 7319276
Swerdlow AJ, Higgins CD, Schoemaker MJ, Wright AF, Jacobs PA, and United Kingdom Clinical Cytogenetics Group (2005) Mortality in patients with Klinefelter syndrome in Britain: a cohort study. J Clin Endocrinol Metab. https://doi.org/10.1210/jc.2005-1077
doi: 10.1210/jc.2005-1077
Bojesen A, Juul S, Birkebaek N, Gravholt CH (2004) Increased mortality in Klinefelter syndrome. J Clin Endocrinol Metab 89(8):3830–3834. https://doi.org/10.1210/jc.2004-0777
doi: 10.1210/jc.2004-0777 pubmed: 15292313
Bojesen A, Juul S, Birkebaek NH, Gravholt CH (2006) Morbidity in Klinefelter syndrome: a Danish register study based on hospital discharge diagnoses. J Clin Endocrinol Metab 91(4):1254–1260. https://doi.org/10.1210/jc.2005-0697
doi: 10.1210/jc.2005-0697 pubmed: 16394093
Shanbhogue VV, Hansen S, Jorgensen NR, Brixen K, Gravholt CH (2014) Bone geometry, volumetric density, microarchitecture, and estimated bone strength assessed by HR-pQCT in Klinefelter syndrome. J Bone Miner Res 29(11):2474–2482. https://doi.org/10.1002/jbmr.2272
doi: 10.1002/jbmr.2272 pubmed: 24806509
Bojesen A et al (2011) Bone mineral density in Klinefelter syndrome is reduced and primarily determined by muscle strength and resorptive markers, but not directly by testosterone. Osteoporos Int 22(5):1441–1450. https://doi.org/10.1007/s00198-010-1354-7
doi: 10.1007/s00198-010-1354-7 pubmed: 20658127
Spaziani M et al (2021) From mini-puberty to pre-puberty: early impairment of the hypothalamus-pituitary-gonadal axis with normal testicular function in children with non-mosaic Klinefelter syndrome. J Endocrinol Invest 44(1):127–138. https://doi.org/10.1007/s40618-020-01281-x
doi: 10.1007/s40618-020-01281-x pubmed: 32378142
Oury F et al (2013) Maternal and offspring pools of osteocalcin influence brain development and functions. Cell 155(1):228–241. https://doi.org/10.1016/j.cell.2013.08.042
doi: 10.1016/j.cell.2013.08.042 pubmed: 24074871
Pi M, Quarles LD (2012) Multiligand specificity and wide tissue expression of GPRC6A reveals new endocrine networks. Endocrinology 153(5):2062–2069. https://doi.org/10.1210/en.2011-2117
doi: 10.1210/en.2011-2117 pubmed: 22374969 pmcid: 3339644
Ferron M et al (2010) Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell 142(2):296–308. https://doi.org/10.1016/j.cell.2010.06.003
doi: 10.1016/j.cell.2010.06.003 pubmed: 20655470 pmcid: 2910411
Pi M, Wu Y, Quarles LD (2011) GPRC6A mediates responses to osteocalcin in beta-cells in vitro and pancreas in vivo. J Bone Miner Res 26(7):1680–1683. https://doi.org/10.1002/jbmr.390
doi: 10.1002/jbmr.390 pubmed: 21425331
Pi M et al (2015) Structural and functional evidence for testosterone activation of GPRC6A in peripheral tissues. Mol Endocrinol 29(12):1759–1773. https://doi.org/10.1210/me.2015-1161
doi: 10.1210/me.2015-1161 pubmed: 26440882 pmcid: 4664231
Colleluori G, Aguirre L, Napoli N, Qualls C, Villareal DT, Armamento-Villareal R (2021) Testosterone therapy effects on bone mass and turnover in hypogonadal men with type 2 diabetes. J Clin Endocrinol Metab 106(8):e3058–e3068. https://doi.org/10.1210/clinem/dgab181
doi: 10.1210/clinem/dgab181 pubmed: 33735389 pmcid: 8599870
Deepika F et al (2022) Baseline testosterone predicts body composition and metabolic response to testosterone therapy. Front Endocrinol (Lausanne). https://doi.org/10.3389/fendo.2022.915309
doi: 10.3389/fendo.2022.915309 pubmed: 36171900
Ghanim H et al (2019) Increase in osteocalcin following testosterone therapy in men with type 2 diabetes and subnormal free testosterone. J Endocr Soc 3(8):1617–1630. https://doi.org/10.1210/js.2018-00426
doi: 10.1210/js.2018-00426 pubmed: 31403089 pmcid: 6682410
Ivell R, Wade JD, Anand-Ivell R (2013) INSL3 as a biomarker of leydig cell functionality. Biol Reprod 88(6):147. https://doi.org/10.1095/biolreprod.113.108969
doi: 10.1095/biolreprod.113.108969 pubmed: 23595905
Coskun G, Sencar L, Tuli A, Saker D, Alparslan MM, Polat S (2019) Effects of osteocalcin on synthesis of testosterone and INSL3 during adult leydig cell differentiation. Int J Endocrinol 2019:1041760. https://doi.org/10.1155/2019/1041760
doi: 10.1155/2019/1041760 pubmed: 31558901 pmcid: 6735183
Bay K et al (2005) Insulin-like factor 3 serum levels in 135 normal men and 85 men with testicular disorders: relationship to the luteinizing hormone-testosterone axis. J Clin Endocrinol Metab 90(6):3410–3418. https://doi.org/10.1210/jc.2004-2257
doi: 10.1210/jc.2004-2257 pubmed: 15755855

Auteurs

F Carlomagno (F)

Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, 00161, Rome, Italy.

V Hasenmajer (V)

Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, 00161, Rome, Italy.

M Spaziani (M)

Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, 00161, Rome, Italy.

M Tenuta (M)

Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, 00161, Rome, Italy.

F Sesti (F)

Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, 00161, Rome, Italy.

C Tarantino (C)

Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, 00161, Rome, Italy.

C Pozza (C)

Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, 00161, Rome, Italy.

A M Isidori (AM)

Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, 00161, Rome, Italy.
Endocrine and Andrological Regional Rare Disease Center (Endo-ERN Accredited), Policlinico Umberto I, 00161, Rome, Italy.

D Gianfrilli (D)

Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, 00161, Rome, Italy. daniele.gianfrilli@uniroma1.it.

Classifications MeSH