In vivo neutralization of coral snake venoms with an oligoclonal nanobody mixture in a murine challenge model.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
21 May 2024
21 May 2024
Historique:
received:
24
10
2023
accepted:
02
05
2024
medline:
22
5
2024
pubmed:
22
5
2024
entrez:
21
5
2024
Statut:
epublish
Résumé
Oligoclonal mixtures of broadly-neutralizing antibodies can neutralize complex compositions of similar and dissimilar antigens, making them versatile tools for the treatment of e.g., infectious diseases and animal envenomations. However, these biotherapeutics are complicated to develop due to their complex nature. In this work, we describe the application of various strategies for the discovery of cross-neutralizing nanobodies against key toxins in coral snake venoms using phage display technology. We prepare two oligoclonal mixtures of nanobodies and demonstrate their ability to neutralize the lethality induced by two North American coral snake venoms in mice, while individual nanobodies fail to do so. We thus show that an oligoclonal mixture of nanobodies can neutralize the lethality of venoms where the clinical syndrome is caused by more than one toxin family in a murine challenge model. The approaches described may find utility for the development of advanced biotherapeutics against snakebite envenomation and other pathologies where multi-epitope targeting is beneficial.
Identifiants
pubmed: 38773068
doi: 10.1038/s41467-024-48539-z
pii: 10.1038/s41467-024-48539-z
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
4310Subventions
Organisme : Villum Fonden (Villum Foundation)
ID : 00025302
Organisme : Wellcome Trust (Wellcome)
ID : 221702/Z/20/Z
Organisme : EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
ID : 850974
Organisme : EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
ID : 899987
Organisme : EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
ID : 713683
Organisme : Novo Nordisk Fonden (Novo Nordisk Foundation)
ID : NNF20SA0066621
Informations de copyright
© 2024. The Author(s).
Références
Laustsen, A. H. How can monoclonal antibodies be harnessed against neglected tropical diseases and other infectious diseases? Expert Opin. Drug Discov. 14, 1103–1112 (2019).
pubmed: 31364421
doi: 10.1080/17460441.2019.1646723
Burton, D. R., Poignard, P., Stanfield, R. L. & Wilson, I. A. Broadly neutralizing antibodies present new prospects to counter highly antigenically diverse viruses. Science 337, 183–186 (2012).
pubmed: 22798606
pmcid: 3600854
doi: 10.1126/science.1225416
Julg, B. et al. Safety and antiviral activity of triple combination broadly neutralizing monoclonal antibody therapy against HIV-1: a phase 1 clinical trial. Nat. Med. 28, 1288–1296 (2022).
pubmed: 35551291
pmcid: 9205771
doi: 10.1038/s41591-022-01815-1
Chippaux, J.-P. Incidence and mortality due to snakebite in the Americas. PLoS Negl. Trop. Dis. 11, e0005662 (2017).
pubmed: 28636631
pmcid: 5495519
doi: 10.1371/journal.pntd.0005662
Lomonte, B. et al. Venoms of Micrurus coral snakes: Evolutionary trends in compositional patterns emerging from proteomic analyses. Toxicon 122, 7–25 (2016).
pubmed: 27641749
doi: 10.1016/j.toxicon.2016.09.008
Vergara, I. et al. Eastern coral snake Micrurus fulvius venom toxicity in mice is mainly determined by neurotoxic phospholipases A2. J. Proteom. 105, 295–306 (2014).
doi: 10.1016/j.jprot.2014.02.027
Bénard-Valle, M. et al. Functional, proteomic and transcriptomic characterization of the venom from Micrurus browni browni: Identification of the first lethal multimeric neurotoxin in coral snake venom. J. Proteom. 225, 103863 (2020).
doi: 10.1016/j.jprot.2020.103863
Bucaretchi, F. et al. Coral snake bites (Micrurus spp.) in Brazil: a review of literature reports. Clin. Toxicol. 54, 222–234 (2016).
doi: 10.3109/15563650.2015.1135337
De Roodt, A. R. et al. Effectiveness of two common antivenoms for North, Central, and South American Micrurus envenomations. J. Toxicol. - Clin. Toxicol. 42, 171–178 (2004).
pubmed: 15214622
doi: 10.1081/CLT-120030943
Gutiérrez, J. M. Snakebite Envenoming: A Public Health Perspective. in Public Health – Methodology, Environmental and Systems Issues (ed. Maddock, P. J.) (InTech). https://doi.org/10.5772/36076 (2012).
Sanchez, E. E., Lopez-Johnston, J. C., Rodrıguez-Acosta, A. & Perez, J. C. Neutralization of two North American coral snake venoms with United States and Mexican antivenoms. Toxicon 51, 297–303 (2008).
pubmed: 18054059
doi: 10.1016/j.toxicon.2007.10.004
Laustsen, A. H. et al. Pros and cons of different therapeutic antibody formats for recombinant antivenom development. Toxicon 146, 151–175 (2018).
pubmed: 29534892
doi: 10.1016/j.toxicon.2018.03.004
Kini, R. M., Sidhu, S. S. & Laustsen, A. H. Biosynthetic oligoclonal antivenom (BOA) for snakebite and next-generation treatments for snakebite victims. Toxins 10, 534 (2018).
pubmed: 30551565
pmcid: 6315346
doi: 10.3390/toxins10120534
Archundia, I. G. et al. Assessment of neutralization of Micrurus venoms with a blend of anti-Micrurus tener and anti-ScNtx antibodies. Vaccine 39, 1000–1006 (2021).
pubmed: 33423840
doi: 10.1016/j.vaccine.2020.12.052
Laustsen, A. H. et al. Exploration of immunoglobulin transcriptomes from mice immunized with three-finger toxins and phospholipases A
Laustsen, A. H., Greiff, V., Karatt-Vellatt, A., Muyldermans, S. & Jenkins, T. P. Animal immunization, in vitro display technologies, and machine learning for antibody discovery. Trends Biotechnol. 39, 1263–1273 (2021).
pubmed: 33775449
doi: 10.1016/j.tibtech.2021.03.003
Ahmadi, S. et al. An in vitro methodology for discovering broadly-neutralizing monoclonal antibodies. Nat. Sci. Rep. 10, 10765 (2020).
Laustsen, A. H. et al. In vivo neutralization of dendrotoxin-mediated neurotoxicity of black mamba venom by oligoclonal human IgG antibodies. Nat. Commun. 9, 1–9 (2018).
Ledsgaard, L. et al. Discovery and optimization of a broadly-neutralizing human monoclonal antibody against long-chain α-neurotoxins from snakes. Nat. Commun. 14, 682 (2023).
pubmed: 36755049
pmcid: 9908967
doi: 10.1038/s41467-023-36393-4
Laustsen, A. H., Lohse, B., Lomonte, B., Engmark, M. & Gutiérrez, J. M. Selecting key toxins for focused development of elapid snake antivenoms and inhibitors guided by a Toxicity Score. Toxicon 104, 43–45 (2015).
pubmed: 26238171
doi: 10.1016/j.toxicon.2015.07.334
Sørensen, C. V. et al. Cross-reactivity trends when selecting scFv antibodies against snake toxins using a phage display-based cross-panning strategy. Sci. Rep. 13, 1–10 (2023).
doi: 10.1038/s41598-023-37056-6
Rivera‐de‐Torre, E. et al. Discovery of broadly‐neutralizing antibodies against brown recluse spider and Gadim scorpion sphingomyelinases using consensus toxins as antigens. Protein Sci. 33, 1–15 (2024).
doi: 10.1002/pro.4901
Laustsen, A. H. Antivenom in the Age of Recombinant DNA Technology. in Handbook of Venoms and Toxins of Reptiles (ed. Mackessy, S. P.) 499–510 (CRC Press. Taylor & Francis Group). https://doi.org/10.1201/9780429054204-38 (2021).
Pucca, M. B. et al. History of envenoming therapy and current perspectives. Front. Immunol. 10, 1–13 (2019).
doi: 10.3389/fimmu.2019.01598
Jenkins, T. P. & Laustsen, A. H. Cost of manufacturing for recombinant snakebite antivenoms. Front. Bioeng. Biotechnol. 8, 1–13 (2020).
doi: 10.3389/fbioe.2020.00703
Jenkins, T. P. et al. Toxin neutralization using alternative binding proteins. Toxins 11, 1–28 (2019).
doi: 10.3390/toxins11010053
Dumoulin, M. et al. Single-domain antibody fragments with high conformational stability. Protein Sci. 11, 500–515 (2002).
pubmed: 11847273
pmcid: 2373476
doi: 10.1110/ps.34602
Hmila, I. et al. V
pubmed: 18614235
doi: 10.1016/j.molimm.2008.04.011
Wade, J. et al. Generation of multivalent nanobody-based proteins with improved neutralization of long α-neurotoxins from elapid snakes. Bioconjug. Chem. 33, 1494–1504 (2022).
pubmed: 35875886
pmcid: 9389527
doi: 10.1021/acs.bioconjchem.2c00220
Bénard-Valle, M. et al. Protein composition and biochemical characterization of venom from Sonoran Coral Snakes (Micruroides euryxanthus). Biochimie 182, 206–216 (2021).
pubmed: 33485932
doi: 10.1016/j.biochi.2021.01.003
Guerrero-Garzón, J. F. et al. Cloning and sequencing of three-finger toxins from the venom glands of four Micrurus species from Mexico and heterologous expression of an alpha-neurotoxin from Micrurus diastema. Biochimie 147, 114–121 (2018).
pubmed: 29391193
doi: 10.1016/j.biochi.2018.01.006
De La Rosa, G., Corrales-García, L. L., Rodriguez-Ruiz, X. Estuardo López-Vera. & Corzo, G. Short-chain consensus alpha-neurotoxin: a synthetic 60-mer peptide with generic traits and enhanced immunogenic properties. Amino Acids 50, 885–895 (2018).
pubmed: 29626299
doi: 10.1007/s00726-018-2556-0
Wouters, Y., Jaspers, T., De Strooper, B. & Dewilde, M. Identification and in vivo characterization of a brain-penetrating nanobody. Fluids Barriers CNS 17, 4–13 (2020).
doi: 10.1186/s12987-020-00226-z
Montagut, C. et al. Efficacy of Sym004 in patients with metastatic colorectal cancer with acquired resistance to anti-EGFR therapy and molecularly selected by circulating tumor DNA analyses a phase 2 randomized clinical trial. JAMA Oncol. 4, 1–9 (2018).
doi: 10.1001/jamaoncol.2017.5245
PREVAIL II Writing Group A Randomized, Controlled Trial of ZMapp for Ebola Virus Infection. N. Engl. J. Med. 375, 1448–1456 (2016).
doi: 10.1056/NEJMoa1604330
O’Brien, M. P. et al. Effect of subcutaneous Casirivimab and Imdevimab antibody combination vs placebo on development of symptomatic COVID-19 in early asymptomatic SARS-CoV-2 infection: A randomized clinical trial. Jama 327, 432–441 (2022).
pubmed: 35029629
doi: 10.1001/jama.2021.24939
Casewell, N. R., Jackson, T. N. W., Laustsen, A. H. & Sunagar, K. Causes and consequences of snake venom variation. Trends Pharmacol. Sci. 41, 570–581 (2020).
pubmed: 32564899
pmcid: 7116101
doi: 10.1016/j.tips.2020.05.006
Rey-Suárez, P., Núñez, V., Fernández, J. & Lomonte, B. Integrative characterization of the venom of the coral snake Micrurus dumerilii (Elapidae) from Colombia: Proteome, toxicity, and cross-neutralization by antivenom. J. Proteom. 136, 262–273 (2016).
doi: 10.1016/j.jprot.2016.02.006
Ledsgaard, L. et al. In vitro discovery of a human monoclonal antibody that neutralizes lethality of cobra snake venom. MAbs 14, 1–11 (2022).
doi: 10.1080/19420862.2022.2085536
Miersch, S. et al. Synthetic antibodies block receptor binding and current-inhibiting effects of α-cobratoxin from Naja kaouthia. Protein Sci. 31, e4296 (2022).
pubmed: 35481650
pmcid: 8994502
doi: 10.1002/pro.4296
Laustsen, A. H. Recombinant snake antivenoms get closer to the clinic. Trends Immunol. 45, 225–227 (2024).
pubmed: 38538486
pmcid: 11021923
doi: 10.1016/j.it.2024.03.001
Bénard-Valle, M., Carbajal-Saucedo, A., De Roodt, A., López-Vera, E. & Alagón, A. Biochemical characterization of the venom of the coral snake Micrurus tener and comparative biological activities in the mouse and a reptile model. Toxicon 77, 6–15 (2014).
pubmed: 24161616
doi: 10.1016/j.toxicon.2013.10.005
Rey-Suárez, P. et al. Mipartoxin-I, a novel three-finger toxin, is the major neurotoxic component in the venom of the redtail coral snake Micrurus mipartitus (Elapidae). Toxicon 60, 851–863 (2012).
pubmed: 22677806
doi: 10.1016/j.toxicon.2012.05.023
Aird, S. D. et al. Coralsnake venomics: Analyses of venom gland transcriptomes and proteomes of six Brazilian taxa. Toxins 9, 187 (2017).
pubmed: 28594382
pmcid: 5488037
doi: 10.3390/toxins9060187
Gutiérrez, J. M. et al. Preclinical evaluation of the efficacy of antivenoms for snakebite envenoming: State-of-the-art and challenges ahead. Toxins 9, 1–22 (2017).
doi: 10.3390/toxins9050163
Neri-castro, E. et al. Neotropical rattlesnake (Crotalus simus) pharmacokinetics in lymph and blood using an ovine model. Toxins 12, 1–24 (2020).
doi: 10.3390/toxins12070455
Yap, M. K. K., Tan, N. H., Sim, S. M. & Fung, S. Y. Toxicokinetics of Naja sputatrix (Javan spitting cobra) venom following intramuscular and intravenous administrations of the venom into rabbits. Toxicon 68, 18–23 (2013).
pubmed: 23537711
doi: 10.1016/j.toxicon.2013.02.017
Paniagua, D. et al. Lymphatic route of transport and pharmacokinetics of Micrurus fulvius (Coral snake) venom in sheep. Lymphology 45, 144–153 (2012).
pubmed: 23700761
Fernández, J. et al. Snake venomics of Micrurus alleni and Micrurus mosquitensis from the Caribbean region of Costa Rica reveals two divergent compositional patterns in New World elapids. Toxicon 107, 217–233 (2015).
pubmed: 26325292
doi: 10.1016/j.toxicon.2015.08.016
Fernández, J. et al. Venomic and antivenomic analyses of the Central American coral snake, Micrurus nigrocinctus (Elapidae). J. Proteome Res. 10, 1816–1827 (2011).
pubmed: 21280576
doi: 10.1021/pr101091a
Yin, M. et al. Evolution of nanobodies specific for BCL11A. Proc. Natl Acad. Sci. 120, e2218959120(2023).
Khan, A. et al. Toward real-world automated antibody design with combinatorial Bayesian optimization. Cell Rep. Methods 3, 100374 (2023).
pubmed: 36814835
pmcid: 9939385
doi: 10.1016/j.crmeth.2022.100374
Gutierrez, J. M., León, G. & Lomonte, B. Pharmacokinetic-Pharmacodynamic relationships of immunoglobulin therapy for envenomation. Clin. Pharmacokinet. 42, 721–741 (2003).
pubmed: 12846594
doi: 10.2165/00003088-200342080-00002
European Parliament Directive 2010/63/EU - On the protection of animals used for scientific purposes. J. Eur. Union 276, 33–79 (2010).
Nguyen, G. T. T. et al. High-throughput proteomics and in vitro functional characterization of the 26 medically most important elapids and vipers from sub-Saharan Africa. GigaScience 11, 1–15 (2022).
doi: 10.1093/gigascience/giac121
Pardon, E. et al. A general protocol for the generation of nanobodies for structural biology. Nat. Protoc. 9, 674–693 (2014).
pubmed: 24577359
pmcid: 4297639
doi: 10.1038/nprot.2014.039
Lomonte, B., Sasa, M., Rey-Suárez, P., Bryan, W. & Gutiérrez, J. M. Venom of the coral snake Micrurus clarki: Proteomic profile, toxicity, immunological cross-neutralization, and characterization of a three-finger toxin. Toxins 8, 138 (2016).
pubmed: 27164141
pmcid: 4885053
doi: 10.3390/toxins8050138
Margres, M. J., Aronow, K., Loyacano, J. & Rokyta, D. R. The venom-gland transcriptome of the eastern coral snake (Micrurus fulvius) reveals high venom complexity in the intragenomic evolution of venoms. BMC Genomics 14, 531 (2013).
pubmed: 23915248
pmcid: 3750283
doi: 10.1186/1471-2164-14-531
Studier, F. W. Protein production by auto-induction in high density shaking cultures. Protein Expr. Purif. 41, 207–234 (2005).
pubmed: 15915565
doi: 10.1016/j.pep.2005.01.016
Dall’Acqua, W. F. et al. Increasing the affinity of a human IgG1 for the neonatal Fc receptor: Biological consequences. J. Immunol. 169, 5171–5180 (2002).
pubmed: 12391234
doi: 10.4049/jimmunol.169.9.5171
Xu, D. et al. In vitro characterization of five humanized OKT3 effector function variant antibodies. Cell. Immunol. 200, 16–26 (2000).
pubmed: 10716879
doi: 10.1006/cimm.2000.1617
Casasola, A. et al. Paraspecific neutralization of the venom of African species of cobra by an equine antiserum against Naja melanoleuca: A comparative study. Toxicon 53, 602–608 (2009).
pubmed: 19673073
doi: 10.1016/j.toxicon.2009.01.011
Secretaria de Salud. Métodos de productos biológicos. in Farmacopea de los Estados Unidos Mexicanos. Vol II 2181 (Comisión Permanente de la Farmacopea de los Estados Unidos Mexicanos (FEUM), 2008).
Bewick, V., Cheek, L. & Ball, J. Statistics review 12: Survival analysis. Crit. Care 8, 389–394 (2004).
pubmed: 15469602
pmcid: 1065034
doi: 10.1186/cc2955