Serum levels of stem cell factor for predicting embryo quality.
Assisted reproductive treatment
Controlled ovarian hyperstimulation
Embryo quality
Endometriosis
SCF
Stem cell factor
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
22 May 2024
22 May 2024
Historique:
received:
05
06
2023
accepted:
03
05
2024
medline:
23
5
2024
pubmed:
23
5
2024
entrez:
22
5
2024
Statut:
epublish
Résumé
We evaluated whether serum stem cell factor (s-SCF) levels just prior to ovulation induction could indicate the ability to develop a top-quality (TQ) blastocyst by day 5. We investigated patients with normal ovarian reserve (NOR), polycystic ovary syndrome (PCOS), diminished ovarian reserve (DOR), or mild endometriosis. Our pilot research suggests a correlation between s-SCF levels and the ability to form TQ blastocysts in patients with mild endometriosis. This significant statistical difference (p < 0.05) was noted between mild endometriosis patients for whom a TQ blastocyst was obtained and those for whom it was not possible, as measured on the 8th day of stimulation and the day of oocyte retrieval. The mean SCF levels in the serum of these women on the 8th day were at 28.07 (± 2.67) pg/ml for the TQ subgroup and 53.32 (± 16.02) pg/ml for the non-TQ subgroup (p < 0.05). On oocyte retrieval day it was 33.47 (± 3.93) pg/ml and 52.23 (± 9.72) pg/ml (p < 0.05), respectively.
Identifiants
pubmed: 38778076
doi: 10.1038/s41598-024-61419-2
pii: 10.1038/s41598-024-61419-2
doi:
Substances chimiques
Stem Cell Factor
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
11689Informations de copyright
© 2024. The Author(s).
Références
Gizzo, S. et al. Ovarian reserve test. Reprod. Sci. 21, 632–639 (2014).
doi: 10.1177/1933719113508821
pubmed: 24155065
Azziz, R. et al. Polycystic ovary syndrome. Nat. Rev. Dis. Primers 2, 16057 (2016).
doi: 10.1038/nrdp.2016.57
pubmed: 27510637
Rienzi, L., Balaban, B., Ebner, T. & Mandelbaum, J. The oocyte. Hum. Reprod. 27, i2–i21 (2012).
doi: 10.1093/humrep/des200
pubmed: 22811312
Vermey, B. G. et al. Is there an association between oocyte number and embryo quality? A systematic review and meta-analysis. Reprod. Biomed .Online 39, 751–763 (2019).
doi: 10.1016/j.rbmo.2019.06.013
pubmed: 31540848
Albertini, D., Combelles, C., Benecchi, E. & Carabatsos, M. Cellular basis for paracrine regulation of ovarian follicle development. Reproduction 2001, 647–653. https://doi.org/10.1530/rep.0.1210647 (2001).
doi: 10.1530/rep.0.1210647
Hirshfield, A. N. Development of Follicles in the Mammalian Ovary (Elsevier, 1991). https://doi.org/10.1016/S0074-7696(08)61524-7 .
doi: 10.1016/S0074-7696(08)61524-7
Borum, K. Oogenesis in the mouse. Exp. Cell Res. 24, 495–507 (1961).
doi: 10.1016/0014-4827(61)90449-9
pubmed: 13871511
Beaumont, H. M. & Mandl, A. M. A quantitative and cytological study of oogonia and oocytes in the foetal and neonatal rat. Proc. R. Soc. Lond. B Biol. Sci. 155, 557–579 (1962).
doi: 10.1098/rspb.1962.0019
Hutt, K. J., McLaughlin, E. A. & Holland, M. K. KIT/KIT ligand in mammalian oogenesis and folliculogenesis: Roles in rabbit and murine ovarian follicle activation and oocyte Growth1. Biol. Reprod. 75, 421–433 (2006).
doi: 10.1095/biolreprod.106.051516
pubmed: 16790689
Skinner, M. K. Regulation of primordial follicle assembly and development. Hum. Reprod. Update 11, 461–471 (2005).
doi: 10.1093/humupd/dmi020
pubmed: 16006439
Guo, Z. & Yu, Q. Role of mTOR signaling in female reproduction. Front. Endocrinol. Lausanne 10, 145 (2019).
Makker, A., Goel, M. M. & Mahdi, A. A. PI3K/PTEN/Akt and TSC/mTOR signaling pathways, ovarian dysfunction, and infertility: An update. J. Mol. Endocrinol. 53, R103–R118 (2014).
doi: 10.1530/JME-14-0220
pubmed: 25312969
Adhikari, D. et al. Tsc/mTORC1 signaling in oocytes governs the quiescence and activation of primordial follicles. Hum. Mol. Genet. 19, 397–410 (2010).
doi: 10.1093/hmg/ddp483
pubmed: 19843540
Vanhaesebroeck, B., Guillermet-Guibert, J., Graupera, M. & Bilanges, B. The emerging mechanisms of isoform-specific PI3K signalling. Nat. Rev. Mol. Cell Biol. 11, 329–341 (2010).
doi: 10.1038/nrm2882
pubmed: 20379207
Salmassi, A. et al. Circulating concentration of stem cell factor in serum of stimulated IVF patients. Reprod. Biomed. Online 22, 140–147 (2011).
doi: 10.1016/j.rbmo.2010.10.008
pubmed: 21195027
Høyer, P. E., Byskov, A. G. & Møllgård, K. Stem cell factor and c-Kit in human primordial germ cells and fetal ovaries. Mol. Cell Endocrinol. 234, 1–10 (2005).
doi: 10.1016/j.mce.2004.09.012
pubmed: 15836947
Reddy, P. et al. Activation of Akt (PKB) and suppression of FKHRL1 in mouse and rat oocytes by stem cell factor during follicular activation and development. Dev. Biol. 281, 160–170 (2005).
doi: 10.1016/j.ydbio.2005.02.013
pubmed: 15893970
Figueira, M. I., Cardoso, H. J., Correia, S., Maia, C. J. & Socorro, S. Hormonal regulation of c-KIT receptor and its ligand: Implications for human infertility?. Prog. Histochem. Cytochem. 49, 1–19 (2014).
doi: 10.1016/j.proghi.2014.09.001
pubmed: 25451758
Gizzo, S. et al. Serum stem cell factor assay in elderly poor responder patients undergoing IVF: A new biomarker to customize follicle aspiration cycle by cycle. Reprod. Sci. 23, 61–68 (2016).
doi: 10.1177/1933719115594020
pubmed: 26156851
Josso, N. Women in reproductive science: Anti-Müllerian hormone: A look back and ahead. Reproduction 158, F81–F89 (2019).
doi: 10.1530/REP-18-0602
pubmed: 30844753
Liu, X.-H., Wu, X.-H. & Yang, S. Changes and correlations of anti-Müllerian hormone and stem-cell factors in different ovarian reserve patients during GnRH-antagonist protocol and the effects on controlled ovarian hyperstimulation outcomes. Arch. Gynecol. Obstet. 300, 1773–1783 (2019).
doi: 10.1007/s00404-019-05332-4
pubmed: 31631249
Tan, J. et al. Increased SCF in follicular fluid and granulosa cells positively correlates with oocyte maturation, fertilization, and embryo quality in humans. Reprod. Sci. 24, 1544–1550 (2017).
doi: 10.1177/1933719117697125
pubmed: 28285567
Zhang, J.-F., Yu, C.-M., Yan, L.-L. & Ma, J.-L. Effect of anti-mullerian hormone on stem cell factor in serum, follicular fluid and ovarian granular cells of polycystic ovarian syndrome patients. Eur. Rev. Med. Pharmacol. Sci. 22, 7877–7882 (2018).
pubmed: 30536333
Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum. Reprod. 19, 41–47. https://doi.org/10.1093/humrep/deh098 (2004).
doi: 10.1093/humrep/deh098
Ferraretti, A. P. et al. ESHRE consensus on the definition of ‘poor response’ to ovarian stimulation for in vitro fertilization: the Bologna criteria. Hum. Reprod. 26, 1616–1624. https://doi.org/10.1093/humrep/der092 (2011).
doi: 10.1093/humrep/der092
pubmed: 21505041
Johnson, N. P. et al. World Endometriosis Society consensus on the classification of endometriosis. Hum. Reprod. 32, 315–324 (2017).
doi: 10.1093/humrep/dew293
pubmed: 27920089
Besmer, P. The kit ligand encoded at the murine Steel locus: A pleiotropic growth and differentiation factor. Curr. Opin. Cell Biol. 3, 939–946 (1991).
doi: 10.1016/0955-0674(91)90111-B
pubmed: 1726043
Manova, K. et al. The expression pattern of the c-kit ligand in Gonads of mice supports a role for the c-kit receptor in oocyte growth and in proliferation of spermatogonia. Dev. Biol. 157, 85–99 (1993).
doi: 10.1006/dbio.1993.1114
pubmed: 7683286
Motro, B. & Bernstein, A. Dynamic changes in ovarian c-kit and Steel expression during the estrous reproductive cycle. Dev. Dyn. 197, 69–79 (1993).
doi: 10.1002/aja.1001970107
pubmed: 7691275
Franco-Murillo, Y. et al. Unremitting cell proliferation in the secretory phase of eutopic endometriosis: involvement of pAkt and pGSK3β. Reprod. Sci. 22, 502–510 (2015).
doi: 10.1177/1933719114549843
pubmed: 25194152
Dewailly, D. et al. Interactions between androgens, FSH, anti-Müllerian hormone and estradiol during folliculogenesis in the human normal and polycystic ovary. Hum. Reprod. Update 22, 709–724 (2016).
doi: 10.1093/humupd/dmw027
pubmed: 27566840
Fu, Y.-X. et al. Anti-Müllerian hormone regulates stem cell factor via cAMP/PKA signaling pathway in human granulosa cells by inhibiting the phosphorylation of CREB. Reprod. Sci. 27, 325–333 (2020).
doi: 10.1007/s43032-019-00033-4
pubmed: 32046389
Osuga, Y. et al. Stem Cell Factor (SCF) concentrations in peritoneal fluid of women with or without endometriosis. Am. J. Reprod. Immunol. 44, 231–235 (2000).
doi: 10.1111/j.8755-8920.2000.440407.x
pubmed: 11076095
Osuga, Y. Current concepts of the pathogenesis of endometriosis. Reprod. Med. Biol. 9, 1–7 (2010).
doi: 10.1007/s12522-009-0031-z
pubmed: 29699325
Osuga, Y., Hirota, Y. & Taketani, Y. Basic and translational research on proteinase-activated receptors: Proteinase-activated receptors in female reproductive tissues and endometriosis. J. Pharmacol. Sci. 108, 422–425 (2008).
doi: 10.1254/jphs.08R13FM
pubmed: 19098388
Hwang, J.-H. et al. Identification of biomarkers for endometriosis in eutopic endometrial cells from patients with endometriosis using a proteomics approach. Mol. Med. Rep. 8, 183–188 (2013).
doi: 10.3892/mmr.2013.1469
pubmed: 23670619
Lukaszuk, K. et al. Anti-Müllerian hormone (AMH) is a strong predictor of live birth in women undergoing assisted reproductive technology. Reprod. Biol. 14, 176–181 (2014).
doi: 10.1016/j.repbio.2014.03.004
pubmed: 25152514
Liss, J. et al. Effect of next-generation sequencing in preimplantation genetic testing on live birth ratio. Reprod. Fertil. Dev. 30, 1720 (2018).
doi: 10.1071/RD17428
pubmed: 29929575
Balaban, B. et al. The Istanbul consensus workshop on embryo assessment: Proceedings of an expert meeting. Hum. Reprod. 26, 1270–1283 (2011).
doi: 10.1093/humrep/der037