Distinct µ-opioid ensembles trigger positive and negative fentanyl reinforcement.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
22 May 2024
22 May 2024
Historique:
received:
05
09
2023
accepted:
19
04
2024
medline:
23
5
2024
pubmed:
23
5
2024
entrez:
22
5
2024
Statut:
aheadofprint
Résumé
Fentanyl is a powerful painkiller that elicits euphoria and positive reinforcement
Identifiants
pubmed: 38778097
doi: 10.1038/s41586-024-07440-x
pii: 10.1038/s41586-024-07440-x
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. The Author(s).
Références
Lüscher, C. The emergence of a circuit model for addiction. Annu. Rev. Neurosci. 39, 257–276 (2016).
pubmed: 27145911
doi: 10.1146/annurev-neuro-070815-013920
Koob, G. F. & Schulkin, J. Addiction and stress: an allostatic view. Neurosci. Biobehav. Rev. 106, 245–262 (2019).
pubmed: 30227143
doi: 10.1016/j.neubiorev.2018.09.008
Comer, S. D. & Cahill, C. M. Fentanyl: receptor pharmacology, abuse potential, and implications for treatment. Neurosci. Biobehav. Rev. 106, 49–57 (2019).
pubmed: 30528374
doi: 10.1016/j.neubiorev.2018.12.005
Anthony, J. C., Warner, L. A. & Kessler, R. C. Comparative epidemiology of dependence on tobacco, alcohol, controlled substances, and inhalants: basic findings from the National Comorbidity Survey. Exp. Clin. Psychopharmacol. 2, 244–268 (1994).
doi: 10.1037/1064-1297.2.3.244
Matthes, H. W. D. et al. Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the µ-opioid-receptor gene. Nature 383, 819–823 (1996).
pubmed: 8893006
doi: 10.1038/383819a0
Dunn, K. E., Huhn, A. S., Bergeria, C. L., Gipson, C. D. & Weerts, E. M. Non-opioid neurotransmitter systems that contribute to the opioid withdrawal syndrome: a review of preclinical and human evidence. J. Pharmacol. Exp. Ther. 371, 422–452 (2019).
pubmed: 31391211
pmcid: 6863456
doi: 10.1124/jpet.119.258004
Koob, G. F. Neurobiology of opioid addiction: opponent process, hyperkatifeia, and negative reinforcement. Biol. Psychiatry 87, 44–53 (2020).
pubmed: 31400808
doi: 10.1016/j.biopsych.2019.05.023
Stinus, L., Le Moal, M. & Koob, G. F. Nucleus accumbens and amygdala are possible substrates for the aversive stimulus effects of opiate withdrawal. Neuroscience 37, 767–773 (1990).
pubmed: 2247222
doi: 10.1016/0306-4522(90)90106-E
Di Chiara, G. & Imperato, A. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc. Natl Acad. Sci. USA 85, 5274–5278 (1988).
pubmed: 2899326
pmcid: 281732
doi: 10.1073/pnas.85.14.5274
Kornetsky, C., Esposito, R. U., McLean, S. & Jacobson, J. O. Intracranial self-stimulation thresholds: a model for the hedonic effects of drugs of abuse. Arch. Gen. Psychiatry 36, 289–292 (1979).
pubmed: 420547
doi: 10.1001/archpsyc.1979.01780030055004
Wise, R. A. & Bozarth, M. A. Action of drugs of abuse on brain reward systems: an update with specific attention to opiates. Pharmacol. Biochem. Behav. 17, 239–243 (1982).
pubmed: 6127721
doi: 10.1016/0091-3057(82)90076-4
Tsai, H.-C. et al. Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science 324, 1080–1084 (2009).
pubmed: 19389999
pmcid: 5262197
doi: 10.1126/science.1168878
Pascoli, V., Terrier, J., Hiver, A. & Lüscher, C. Sufficiency of mesolimbic dopamine neuron stimulation for the progression to addiction. Neuron 88, 1054–1066 (2015).
pubmed: 26586182
doi: 10.1016/j.neuron.2015.10.017
Corre, J. et al. Dopamine neurons projecting to medial shell of the nucleus accumbens drive heroin reinforcement. eLife 7, e39945 (2018).
pubmed: 30373717
pmcid: 6207421
doi: 10.7554/eLife.39945
Jalabert, M. et al. Neuronal circuits underlying acute morphine action on dopamine neurons. Proc. Natl Acad. Sci. USA 108, 16446–16450 (2011).
pubmed: 21930931
pmcid: 3182694
doi: 10.1073/pnas.1105418108
Varga, E. V. et al. Molecular mechanisms of excitatory signaling upon chronic opioid agonist treatment. Life Sci. 74, 299–311 (2003).
pubmed: 14607258
doi: 10.1016/j.lfs.2003.09.017
Williams, J. T. et al. Regulation of μ-opioid receptors: desensitization, phosphorylation, internalization, and tolerance. Pharmacol. Rev. 65, 223–254 (2013).
pubmed: 23321159
pmcid: 3565916
doi: 10.1124/pr.112.005942
Mathis, A. et al. DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nat. Neurosci. 21, 1281–1289 (2018).
pubmed: 30127430
doi: 10.1038/s41593-018-0209-y
Fulcher, B. D. & Jones, N. S. hctsa: A Computational Framework for automated time-series phenotyping using massive feature extraction. Cell Syst. 5, 527–531.e3 (2017).
pubmed: 29102608
doi: 10.1016/j.cels.2017.10.001
Ye, J. & Veinante, P. Cell-type specific parallel circuits in the bed nucleus of the stria terminalis and the central nucleus of the amygdala of the mouse. Brain Struct. Funct. 224, 1067–1095 (2019).
pubmed: 30610368
doi: 10.1007/s00429-018-01825-1
Wang, Y. et al. Multimodal mapping of cell types and projections in the central nucleus of the amygdala. eLife 12, e84262 (2023).
pubmed: 36661218
pmcid: 9977318
doi: 10.7554/eLife.84262
Bailly, J. et al. Targeting morphine-responsive neurons: generation of a knock-in mouse line expressing Cre recombinase from the mu-opioid receptor gene locus. eNeuro 7, ENEURO.0433-19.2020 (2020).
pubmed: 32381649
pmcid: 7266138
doi: 10.1523/ENEURO.0433-19.2020
Giovanniello, J. et al. A central amygdala–globus pallidus circuit conveys unconditioned stimulus-related information and controls fear learning. J. Neurosci. 40, 9043–9054 (2020).
pubmed: 33067362
pmcid: 7673004
doi: 10.1523/JNEUROSCI.2090-20.2020
Wilson, T. D. et al. Dual and opposing functions of the central amygdala in the modulation of pain. Cell Rep. 29, 332–346.e5 (2019).
pubmed: 31597095
pmcid: 6816228
doi: 10.1016/j.celrep.2019.09.011
Lebow, M. A. & Chen, A. Overshadowed by the amygdala: the bed nucleus of the stria terminalis emerges as key to psychiatric disorders. Mol. Psychiatry 21, 450–463 (2016).
pubmed: 26878891
pmcid: 4804181
doi: 10.1038/mp.2016.1
Johnson, S. W. & North, R. A. Opioids excite dopamine neurons by hyperpolarization of local interneurons. J. Neurosci. 12, 483–488 (1992).
pubmed: 1346804
pmcid: 6575608
doi: 10.1523/JNEUROSCI.12-02-00483.1992
Badiani, A., Belin, D., Epstein, D., Calu, D. & Shaham, Y. Opiate versus psychostimulant addiction: the differences do matter. Nat. Rev. Neurosci. 12, 685–700 (2011).
pubmed: 21971065
pmcid: 3721140
doi: 10.1038/nrn3104
Hnasko, T. S., Sotak, B. N. & Palmiter, R. D. Morphine reward in dopamine-deficient mice. Nature 438, 854–857 (2005).
pubmed: 16341013
doi: 10.1038/nature04172
McGovern, D. J. et al. Ventral tegmental area glutamate neurons establish a mu-opioid receptor gated circuit to mesolimbic dopamine neurons and regulate opioid-seeking behavior. Neuropsychopharmacology 48, 1889–1900 (2023).
pubmed: 37407648
doi: 10.1038/s41386-023-01637-w
Darcq, E. & Kieffer, B. L. Opioid receptors: drivers to addiction? Nat. Rev. Neurosci. 19, 499–514 (2018).
pubmed: 29934561
doi: 10.1038/s41583-018-0028-x
Brown, M. T. C. et al. Ventral tegmental area GABA projections pause accumbal cholinergic interneurons to enhance associative learning. Nature 492, 452–456 (2012).
pubmed: 23178810
doi: 10.1038/nature11657
Mohebi, A. et al. Dissociable dopamine dynamics for learning and motivation. Nature 570, 65–70 (2019).
pubmed: 31118513
pmcid: 6555489
doi: 10.1038/s41586-019-1235-y
Nader, K. & van der Kooy, D. Deprivation state switches the neurobiological substrates mediating opiate reward in the ventral tegmental area. J. Neurosci. 17, 383–390 (1997).
pubmed: 8987763
pmcid: 6793678
doi: 10.1523/JNEUROSCI.17-01-00383.1997
Margolis, E. B., Hjelmstad, G. O., Fujita, W. & Fields, H. L. Direct bidirectional μ-opioid control of midbrain dopamine neurons. J. Neurosci. 34, 14707–14716 (2014).
pubmed: 25355223
pmcid: 4212068
doi: 10.1523/JNEUROSCI.2144-14.2014
Margolis, E. B., Fujita, W., Devi, L. A. & Fields, H. L. Two delta opioid receptor subtypes are functional in single ventral tegmental area neurons, and can interact with the mu opioid receptor. Neuropharmacology 123, 420–432 (2017).
pubmed: 28645621
pmcid: 5563499
doi: 10.1016/j.neuropharm.2017.06.019
Kremer, Y., Flakowski, J., Rohner, C. & Lüscher, C. Context-dependent multiplexing by individual VTA dopamine neurons. J. Neurosci. 40, 7489–7509 (2020).
pubmed: 32859713
pmcid: 7511185
doi: 10.1523/JNEUROSCI.0502-20.2020
Solomon, R. L. The opponent-process theory of acquired motivation: the costs of pleasure and the benefits of pain. Am. Psychol. 35, 691–712 (1980).
pubmed: 7416563
doi: 10.1037/0003-066X.35.8.691
Christie, M. J., Williams, J. T., Osborne, P. B. & Bellchambers, C. E. Where is the locus in opioid withdrawal? Trends Pharmacol. Sci. 18, 134–140 (1997).
pubmed: 9149542
doi: 10.1016/S0165-6147(97)01045-6
Frenois, F., Stinus, L., Blasi, F. D., Cador, M. & Moine, C. L. A specific limbic circuit underlies opiate withdrawal memories. J. Neurosci. 25, 1366–1374 (2005).
pubmed: 15703390
pmcid: 6725999
doi: 10.1523/JNEUROSCI.3090-04.2005
Pantazis, C. B. et al. Cues conditioned to withdrawal and negative reinforcement: Neglected but key motivational elements driving opioid addiction. Sci. Adv. 7, eabf0364 (2021).
pubmed: 33827822
pmcid: 8026136
doi: 10.1126/sciadv.abf0364
Cabral, A., Ruggiero, R. N., Nobre, M. J., Brandão, M. L. & Castilho, V. M. GABA and opioid mechanisms of the central amygdala underlie the withdrawal-potentiated startle from acute morphine. Prog. Neuropsychopharmacol. Biol. Psychiatry 33, 334–344 (2009).
pubmed: 19150477
doi: 10.1016/j.pnpbp.2008.12.012
Jiang, C. et al. CRHCeA→VTA inputs inhibit the positive ensembles to induce negative effect of opiate withdrawal. Mol. Psychiatry 26, 6170–6186 (2021).
pubmed: 34642456
pmcid: 8760059
doi: 10.1038/s41380-021-01321-9
de Guglielmo, G. et al. Inactivation of a CRF-dependent amygdalofugal pathway reverses addiction-like behaviors in alcohol-dependent rats. Nat. Commun. 10, 1238 (2019).
pubmed: 30886240
pmcid: 6423296
doi: 10.1038/s41467-019-09183-0
Beyeler, A. et al. Divergent routing of positive and negative information from the amygdala during memory retrieval. Neuron 90, 348–361 (2016).
pubmed: 27041499
pmcid: 4854303
doi: 10.1016/j.neuron.2016.03.004
Zhu, Y., Wienecke, C. F. R., Nachtrab, G. & Chen, X. A thalamic input to the nucleus accumbens mediates opiate dependence. Nature 530, 219–222 (2016).
pubmed: 26840481
pmcid: 4814115
doi: 10.1038/nature16954
Mechling, A. E. et al. Deletion of the mu opioid receptor gene in mice reshapes the reward–aversion connectome. Proc. Natl Acad. Sci. USA 113, 11603–11608 (2016).
pubmed: 27671662
pmcid: 5068324
doi: 10.1073/pnas.1601640113
Bailly, J. et al. Habenular neurons expressing mu opioid receptors promote negative affect in a projection-specific manner. Biol. Psychiatry 93, 1108–1117 (2023).
pubmed: 36496267
doi: 10.1016/j.biopsych.2022.09.013
de Jong, J. W. et al. A neural circuit mechanism for encoding aversive stimuli in the mesolimbic dopamine system. Neuron 101, 133–151.e7 (2019).
pubmed: 30503173
doi: 10.1016/j.neuron.2018.11.005
Novick, D. M., Salsitz, E. A., Joseph, H. & Kreek, M. J. Methadone medical maintenance: an early 21st-century perspective. J. Addict. Dis. 34, 226–237 (2015).
pubmed: 26110221
doi: 10.1080/10550887.2015.1059225
Lüscher, C. & Janak, P. H. Consolidating the circuit model for addiction. Annu. Rev. Neurosci. 44, 173–195 (2021).
pubmed: 33667115
doi: 10.1146/annurev-neuro-092920-123905
Fabrice, C. et al. µ-Opioid receptors of distinct neuronal populations trigger positive and negative fentanyl reinforcement. Zenodo https://doi.org/10.5281/zenodo.8359491 (2024).