Distinct µ-opioid ensembles trigger positive and negative fentanyl reinforcement.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
22 May 2024
Historique:
received: 05 09 2023
accepted: 19 04 2024
medline: 23 5 2024
pubmed: 23 5 2024
entrez: 22 5 2024
Statut: aheadofprint

Résumé

Fentanyl is a powerful painkiller that elicits euphoria and positive reinforcement

Identifiants

pubmed: 38778097
doi: 10.1038/s41586-024-07440-x
pii: 10.1038/s41586-024-07440-x
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. The Author(s).

Références

Lüscher, C. The emergence of a circuit model for addiction. Annu. Rev. Neurosci. 39, 257–276 (2016).
pubmed: 27145911 doi: 10.1146/annurev-neuro-070815-013920
Koob, G. F. & Schulkin, J. Addiction and stress: an allostatic view. Neurosci. Biobehav. Rev. 106, 245–262 (2019).
pubmed: 30227143 doi: 10.1016/j.neubiorev.2018.09.008
Comer, S. D. & Cahill, C. M. Fentanyl: receptor pharmacology, abuse potential, and implications for treatment. Neurosci. Biobehav. Rev. 106, 49–57 (2019).
pubmed: 30528374 doi: 10.1016/j.neubiorev.2018.12.005
Anthony, J. C., Warner, L. A. & Kessler, R. C. Comparative epidemiology of dependence on tobacco, alcohol, controlled substances, and inhalants: basic findings from the National Comorbidity Survey. Exp. Clin. Psychopharmacol. 2, 244–268 (1994).
doi: 10.1037/1064-1297.2.3.244
Matthes, H. W. D. et al. Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the µ-opioid-receptor gene. Nature 383, 819–823 (1996).
pubmed: 8893006 doi: 10.1038/383819a0
Dunn, K. E., Huhn, A. S., Bergeria, C. L., Gipson, C. D. & Weerts, E. M. Non-opioid neurotransmitter systems that contribute to the opioid withdrawal syndrome: a review of preclinical and human evidence. J. Pharmacol. Exp. Ther. 371, 422–452 (2019).
pubmed: 31391211 pmcid: 6863456 doi: 10.1124/jpet.119.258004
Koob, G. F. Neurobiology of opioid addiction: opponent process, hyperkatifeia, and negative reinforcement. Biol. Psychiatry 87, 44–53 (2020).
pubmed: 31400808 doi: 10.1016/j.biopsych.2019.05.023
Stinus, L., Le Moal, M. & Koob, G. F. Nucleus accumbens and amygdala are possible substrates for the aversive stimulus effects of opiate withdrawal. Neuroscience 37, 767–773 (1990).
pubmed: 2247222 doi: 10.1016/0306-4522(90)90106-E
Di Chiara, G. & Imperato, A. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc. Natl Acad. Sci. USA 85, 5274–5278 (1988).
pubmed: 2899326 pmcid: 281732 doi: 10.1073/pnas.85.14.5274
Kornetsky, C., Esposito, R. U., McLean, S. & Jacobson, J. O. Intracranial self-stimulation thresholds: a model for the hedonic effects of drugs of abuse. Arch. Gen. Psychiatry 36, 289–292 (1979).
pubmed: 420547 doi: 10.1001/archpsyc.1979.01780030055004
Wise, R. A. & Bozarth, M. A. Action of drugs of abuse on brain reward systems: an update with specific attention to opiates. Pharmacol. Biochem. Behav. 17, 239–243 (1982).
pubmed: 6127721 doi: 10.1016/0091-3057(82)90076-4
Tsai, H.-C. et al. Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science 324, 1080–1084 (2009).
pubmed: 19389999 pmcid: 5262197 doi: 10.1126/science.1168878
Pascoli, V., Terrier, J., Hiver, A. & Lüscher, C. Sufficiency of mesolimbic dopamine neuron stimulation for the progression to addiction. Neuron 88, 1054–1066 (2015).
pubmed: 26586182 doi: 10.1016/j.neuron.2015.10.017
Corre, J. et al. Dopamine neurons projecting to medial shell of the nucleus accumbens drive heroin reinforcement. eLife 7, e39945 (2018).
pubmed: 30373717 pmcid: 6207421 doi: 10.7554/eLife.39945
Jalabert, M. et al. Neuronal circuits underlying acute morphine action on dopamine neurons. Proc. Natl Acad. Sci. USA 108, 16446–16450 (2011).
pubmed: 21930931 pmcid: 3182694 doi: 10.1073/pnas.1105418108
Varga, E. V. et al. Molecular mechanisms of excitatory signaling upon chronic opioid agonist treatment. Life Sci. 74, 299–311 (2003).
pubmed: 14607258 doi: 10.1016/j.lfs.2003.09.017
Williams, J. T. et al. Regulation of μ-opioid receptors: desensitization, phosphorylation, internalization, and tolerance. Pharmacol. Rev. 65, 223–254 (2013).
pubmed: 23321159 pmcid: 3565916 doi: 10.1124/pr.112.005942
Mathis, A. et al. DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nat. Neurosci. 21, 1281–1289 (2018).
pubmed: 30127430 doi: 10.1038/s41593-018-0209-y
Fulcher, B. D. & Jones, N. S. hctsa: A Computational Framework for automated time-series phenotyping using massive feature extraction. Cell Syst. 5, 527–531.e3 (2017).
pubmed: 29102608 doi: 10.1016/j.cels.2017.10.001
Ye, J. & Veinante, P. Cell-type specific parallel circuits in the bed nucleus of the stria terminalis and the central nucleus of the amygdala of the mouse. Brain Struct. Funct. 224, 1067–1095 (2019).
pubmed: 30610368 doi: 10.1007/s00429-018-01825-1
Wang, Y. et al. Multimodal mapping of cell types and projections in the central nucleus of the amygdala. eLife 12, e84262 (2023).
pubmed: 36661218 pmcid: 9977318 doi: 10.7554/eLife.84262
Bailly, J. et al. Targeting morphine-responsive neurons: generation of a knock-in mouse line expressing Cre recombinase from the mu-opioid receptor gene locus. eNeuro 7, ENEURO.0433-19.2020 (2020).
pubmed: 32381649 pmcid: 7266138 doi: 10.1523/ENEURO.0433-19.2020
Giovanniello, J. et al. A central amygdala–globus pallidus circuit conveys unconditioned stimulus-related information and controls fear learning. J. Neurosci. 40, 9043–9054 (2020).
pubmed: 33067362 pmcid: 7673004 doi: 10.1523/JNEUROSCI.2090-20.2020
Wilson, T. D. et al. Dual and opposing functions of the central amygdala in the modulation of pain. Cell Rep. 29, 332–346.e5 (2019).
pubmed: 31597095 pmcid: 6816228 doi: 10.1016/j.celrep.2019.09.011
Lebow, M. A. & Chen, A. Overshadowed by the amygdala: the bed nucleus of the stria terminalis emerges as key to psychiatric disorders. Mol. Psychiatry 21, 450–463 (2016).
pubmed: 26878891 pmcid: 4804181 doi: 10.1038/mp.2016.1
Johnson, S. W. & North, R. A. Opioids excite dopamine neurons by hyperpolarization of local interneurons. J. Neurosci. 12, 483–488 (1992).
pubmed: 1346804 pmcid: 6575608 doi: 10.1523/JNEUROSCI.12-02-00483.1992
Badiani, A., Belin, D., Epstein, D., Calu, D. & Shaham, Y. Opiate versus psychostimulant addiction: the differences do matter. Nat. Rev. Neurosci. 12, 685–700 (2011).
pubmed: 21971065 pmcid: 3721140 doi: 10.1038/nrn3104
Hnasko, T. S., Sotak, B. N. & Palmiter, R. D. Morphine reward in dopamine-deficient mice. Nature 438, 854–857 (2005).
pubmed: 16341013 doi: 10.1038/nature04172
McGovern, D. J. et al. Ventral tegmental area glutamate neurons establish a mu-opioid receptor gated circuit to mesolimbic dopamine neurons and regulate opioid-seeking behavior. Neuropsychopharmacology 48, 1889–1900 (2023).
pubmed: 37407648 doi: 10.1038/s41386-023-01637-w
Darcq, E. & Kieffer, B. L. Opioid receptors: drivers to addiction? Nat. Rev. Neurosci. 19, 499–514 (2018).
pubmed: 29934561 doi: 10.1038/s41583-018-0028-x
Brown, M. T. C. et al. Ventral tegmental area GABA projections pause accumbal cholinergic interneurons to enhance associative learning. Nature 492, 452–456 (2012).
pubmed: 23178810 doi: 10.1038/nature11657
Mohebi, A. et al. Dissociable dopamine dynamics for learning and motivation. Nature 570, 65–70 (2019).
pubmed: 31118513 pmcid: 6555489 doi: 10.1038/s41586-019-1235-y
Nader, K. & van der Kooy, D. Deprivation state switches the neurobiological substrates mediating opiate reward in the ventral tegmental area. J. Neurosci. 17, 383–390 (1997).
pubmed: 8987763 pmcid: 6793678 doi: 10.1523/JNEUROSCI.17-01-00383.1997
Margolis, E. B., Hjelmstad, G. O., Fujita, W. & Fields, H. L. Direct bidirectional μ-opioid control of midbrain dopamine neurons. J. Neurosci. 34, 14707–14716 (2014).
pubmed: 25355223 pmcid: 4212068 doi: 10.1523/JNEUROSCI.2144-14.2014
Margolis, E. B., Fujita, W., Devi, L. A. & Fields, H. L. Two delta opioid receptor subtypes are functional in single ventral tegmental area neurons, and can interact with the mu opioid receptor. Neuropharmacology 123, 420–432 (2017).
pubmed: 28645621 pmcid: 5563499 doi: 10.1016/j.neuropharm.2017.06.019
Kremer, Y., Flakowski, J., Rohner, C. & Lüscher, C. Context-dependent multiplexing by individual VTA dopamine neurons. J. Neurosci. 40, 7489–7509 (2020).
pubmed: 32859713 pmcid: 7511185 doi: 10.1523/JNEUROSCI.0502-20.2020
Solomon, R. L. The opponent-process theory of acquired motivation: the costs of pleasure and the benefits of pain. Am. Psychol. 35, 691–712 (1980).
pubmed: 7416563 doi: 10.1037/0003-066X.35.8.691
Christie, M. J., Williams, J. T., Osborne, P. B. & Bellchambers, C. E. Where is the locus in opioid withdrawal? Trends Pharmacol. Sci. 18, 134–140 (1997).
pubmed: 9149542 doi: 10.1016/S0165-6147(97)01045-6
Frenois, F., Stinus, L., Blasi, F. D., Cador, M. & Moine, C. L. A specific limbic circuit underlies opiate withdrawal memories. J. Neurosci. 25, 1366–1374 (2005).
pubmed: 15703390 pmcid: 6725999 doi: 10.1523/JNEUROSCI.3090-04.2005
Pantazis, C. B. et al. Cues conditioned to withdrawal and negative reinforcement: Neglected but key motivational elements driving opioid addiction. Sci. Adv. 7, eabf0364 (2021).
pubmed: 33827822 pmcid: 8026136 doi: 10.1126/sciadv.abf0364
Cabral, A., Ruggiero, R. N., Nobre, M. J., Brandão, M. L. & Castilho, V. M. GABA and opioid mechanisms of the central amygdala underlie the withdrawal-potentiated startle from acute morphine. Prog. Neuropsychopharmacol. Biol. Psychiatry 33, 334–344 (2009).
pubmed: 19150477 doi: 10.1016/j.pnpbp.2008.12.012
Jiang, C. et al. CRHCeA→VTA inputs inhibit the positive ensembles to induce negative effect of opiate withdrawal. Mol. Psychiatry 26, 6170–6186 (2021).
pubmed: 34642456 pmcid: 8760059 doi: 10.1038/s41380-021-01321-9
de Guglielmo, G. et al. Inactivation of a CRF-dependent amygdalofugal pathway reverses addiction-like behaviors in alcohol-dependent rats. Nat. Commun. 10, 1238 (2019).
pubmed: 30886240 pmcid: 6423296 doi: 10.1038/s41467-019-09183-0
Beyeler, A. et al. Divergent routing of positive and negative information from the amygdala during memory retrieval. Neuron 90, 348–361 (2016).
pubmed: 27041499 pmcid: 4854303 doi: 10.1016/j.neuron.2016.03.004
Zhu, Y., Wienecke, C. F. R., Nachtrab, G. & Chen, X. A thalamic input to the nucleus accumbens mediates opiate dependence. Nature 530, 219–222 (2016).
pubmed: 26840481 pmcid: 4814115 doi: 10.1038/nature16954
Mechling, A. E. et al. Deletion of the mu opioid receptor gene in mice reshapes the reward–aversion connectome. Proc. Natl Acad. Sci. USA 113, 11603–11608 (2016).
pubmed: 27671662 pmcid: 5068324 doi: 10.1073/pnas.1601640113
Bailly, J. et al. Habenular neurons expressing mu opioid receptors promote negative affect in a projection-specific manner. Biol. Psychiatry 93, 1108–1117 (2023).
pubmed: 36496267 doi: 10.1016/j.biopsych.2022.09.013
de Jong, J. W. et al. A neural circuit mechanism for encoding aversive stimuli in the mesolimbic dopamine system. Neuron 101, 133–151.e7 (2019).
pubmed: 30503173 doi: 10.1016/j.neuron.2018.11.005
Novick, D. M., Salsitz, E. A., Joseph, H. & Kreek, M. J. Methadone medical maintenance: an early 21st-century perspective. J. Addict. Dis. 34, 226–237 (2015).
pubmed: 26110221 doi: 10.1080/10550887.2015.1059225
Lüscher, C. & Janak, P. H. Consolidating the circuit model for addiction. Annu. Rev. Neurosci. 44, 173–195 (2021).
pubmed: 33667115 doi: 10.1146/annurev-neuro-092920-123905
Fabrice, C. et al. µ-Opioid receptors of distinct neuronal populations trigger positive and negative fentanyl reinforcement. Zenodo https://doi.org/10.5281/zenodo.8359491 (2024).

Auteurs

Fabrice Chaudun (F)

Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland.

Laurena Python (L)

Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland.

Yu Liu (Y)

Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland.

Agnes Hiver (A)

Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland.

Jennifer Cand (J)

Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland.

Brigitte L Kieffer (BL)

INSERM U1114, University of Strasbourg Institute for Advanced Study, Strasbourg, France.

Emmanuel Valjent (E)

IGF, Université de Montpellier CNRS, Inserm, Montpellier, France.

Christian Lüscher (C)

Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland. christian.luscher@unige.ch.
Clinic of Neurology, Department of Clinical Neurosciences, Geneva University Hospital, Geneva, Switzerland. christian.luscher@unige.ch.

Classifications MeSH