Transfontanellar shear wave elastography of the neonatal brain for quantitative evaluation of white matter damage.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
23 05 2024
23 05 2024
Historique:
received:
03
11
2023
accepted:
29
04
2024
medline:
24
5
2024
pubmed:
24
5
2024
entrez:
23
5
2024
Statut:
epublish
Résumé
Cerebral white matter damage (WMD) is the most frequent brain lesion observed in infants surviving premature birth. Qualitative B-mode cranial ultrasound (cUS) is widely used to assess brain integrity at bedside. Its limitations include lower discriminatory power to predict long-term outcomes compared to magnetic resonance imaging (MRI). Shear wave elastography (SWE), a promising ultrasound imaging modality, might improve this limitation by detecting quantitative differences in tissue stiffness. The study enrolled 90 neonates (52% female, mean gestational age = 30.1
Identifiants
pubmed: 38782968
doi: 10.1038/s41598-024-60968-w
pii: 10.1038/s41598-024-60968-w
doi:
Banques de données
ClinicalTrials.gov
['NCT02042716']
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
11827Subventions
Organisme : European Union's Horizon 2020 Research and Innovation programme
ID : Grant Agreement No 874721 PREMSTEM
Informations de copyright
© 2024. The Author(s).
Références
Blencowe, H. et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: A systematic analysis and implications. Lancet 379, 2162–2172 (2012).
doi: 10.1016/S0140-6736(12)60820-4
pubmed: 22682464
Liu, L. et al. Global, regional, and national causes of under-5 mortality in 2000–15: An updated systematic analysis with implications for the Sustainable Development Goals. Lancet 388, 3027–3035 (2016).
doi: 10.1016/S0140-6736(16)31593-8
pubmed: 27839855
pmcid: 5161777
Ancel, P. Y. et al. Survival and morbidity of preterm children born at 22 through 34weeks’ gestation in france in 2011 results of the EPIPAGE-2 cohort study. JAMA Pediatr. 169, 230–238 (2015).
doi: 10.1001/jamapediatrics.2014.3351
pubmed: 25621457
Pierrat, V. et al. Neurodevelopmental outcomes at age 5 among children born preterm: EPIPAGE-2 cohort study. BMJ 373, n714 (2021).
Back, S. A. White matter injury in the preterm infant: Pathology and mechanisms. Acta Neuropathol. 134, 331–349 (2017).
doi: 10.1007/s00401-017-1718-6
pubmed: 28534077
pmcid: 5973818
Sauve, R. Routine screening cranial ultrasound examinations for prediction of long term neurodevelopmental outcomes in preterm infants. Paediatr. Child Health (Oxf.) 6, 39–43 (2001).
doi: 10.1093/pch/6.1.39
Agut, T. et al. Preterm white matter injury: Ultrasound diagnosis and classification. Pediatr. Res. 87, 37–49 (2020).
doi: 10.1038/s41390-020-0781-1
pubmed: 32218534
pmcid: 7098888
Inder, T. E. et al. Neuroimaging of the preterm brain: Review and recommendations. J. Pediatr. 237, 276-287.e4 (2021).
doi: 10.1016/j.jpeds.2021.06.014
pubmed: 34146549
Gennisson, J. L., Deffieux, T., Fink, M. & Tanter, M. Ultrasound elastography: Principles and techniques. Diagn. Interv. Imaging 94, 487–495 (2013).
doi: 10.1016/j.diii.2013.01.022
pubmed: 23619292
Gilles, F. H. & Leviton, A. Neonatal white matter damage and the fetal inflammatory response. Semin. Fetal Neonatal Med. 25, 101111 (2020).
doi: 10.1016/j.siny.2020.101111
pubmed: 32299712
Bercoff, J., Tanter, M. & Fink, M. Supersonic shear imaging: A new technique for soft tissue elasticity mapping. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51, 396–409 (2004).
doi: 10.1109/TUFFC.2004.1295425
pubmed: 15139541
Sigrist, R. M. S., Liau, J., Kaffas, A. E., Chammas, M. C. & Willmann, J. K. Ultrasound elastography: Review of techniques and clinical applications. Theranostics 7, 1303–1329 (2017).
doi: 10.7150/thno.18650
pubmed: 28435467
pmcid: 5399595
Bercoff, J. et al. In vivo breast tumor detection using transient elastography. Ultrasound Med. Biol. 29, 1387–1396 (2003).
doi: 10.1016/S0301-5629(03)00978-5
pubmed: 14597335
Garcés Iñigo, E. et al. Quantitative evaluation of neonatal brain elasticity using shear wave elastography. J. Ultrasound Med. 40, 795–804 (2021).
doi: 10.1002/jum.15464
pubmed: 32876366
El-Ali, A. M., Subramanian, S., Krofchik, L. M., Kephart, M. C. & Squires, J. H. Feasibility and reproducibility of shear wave elastography in pediatric cranial ultrasound. Pediatr. Radiol. 50, 990–996 (2020).
doi: 10.1007/s00247-019-04592-1
pubmed: 31863191
Albayrak, E. & Kasap, T. Evaluation of neonatal brain parenchyma using 2-dimensional shear wave elastography. J. Ultrasound Med. 37, 959–967 (2018).
doi: 10.1002/jum.14366
pubmed: 28850723
Dirrichs, T. et al. Transcranial shear wave elastography of neonatal and infant brains for quantitative evaluation of increased intracranial pressure. Investig. Radiol. 54, 719–727 (2019).
doi: 10.1097/RLI.0000000000000602
deCampo, D. & Hwang, M. Characterizing the neonatal brain with ultrasound elastography. Pediatr. Neurol. 86, 19–26 (2018).
doi: 10.1016/j.pediatrneurol.2018.06.005
pubmed: 30180999
Mamelle, N., Munoz, F. & Grandjean, H. Fetal growth from the AUDIPOG study. I. Establishment of reference curves. J Gynecol. Obstet. Biol. Reprod. (Paris) 25, 61–70 (1996).
pubmed: 8901304
Dong, Y. & Speer, C. P. Late-onset neonatal sepsis: Recent developments. Arch. Dis. Child Fetal Neonatal Ed. 100, F257–F263 (2015).
doi: 10.1136/archdischild-2014-306213
pubmed: 25425653
Alison, M. et al. Prophylactic hydrocortisone in extremely preterm infants and brain MRI abnormality. Arch. Dis. Child Fetal Neonatal Ed. 105, 520–525 (2020).
doi: 10.1136/archdischild-2019-317720
pubmed: 31980445
Kidokoro, H., Neil, J. J. & Inder, T. E. New MR imaging assessment tool to define brain abnormalities in very preterm infants at term. Am. J. Neuroradiol. 34, 2208–2214 (2013).
doi: 10.3174/ajnr.A3521
pubmed: 23620070
pmcid: 4163698
Papile, L. A., Burstein, J., Burstein, R. & Koffler, H. Incidence and evolution of subependymal and intraventricular hemorrhage: A study of infants with birth weights less than 1,500 gm. J. Pediatr. 92, 529–534 (1978).
doi: 10.1016/S0022-3476(78)80282-0
pubmed: 305471
Bland, J. M. & Altman, D. G. Statistical methods for assessing agreement between two methods of clinical measurement. Int. J. Nurs. Stud. 47, 931–936 (2010).
doi: 10.1016/j.ijnurstu.2009.10.001
Bartlett, J. W. & Frost, C. Reliability, repeatability and reproducibility: Analysis of measurement errors in continuous variables. Ultrasound Obstet. Gynecol. 31, 466–475 (2008).
doi: 10.1002/uog.5256
pubmed: 18306169
McGraw, K. O. & Wong, S. P. Forming inferences about some intraclass correlation coefficients. Psychol. Methods 1, 30–46 (1996).
doi: 10.1037/1082-989X.1.1.30
Fleiss, J. L. Stratification to control for prognostic variables. Des. Anal. Clin. Exp. https://doi.org/10.1002/9781118032923.ch6 (2011).
doi: 10.1002/9781118032923.ch6
Weickenmeier, J. et al. Brain stiffness increases with myelin content. Acta Biomater. 42, 265–272 (2016).
doi: 10.1016/j.actbio.2016.07.040
pubmed: 27475531
Schregel, K. et al. Demyelination reduces brain parenchymal stiffness quantified in vivo by magnetic resonance elastography. Proc. Natl. Acad. Sci. USA 109, 6650–6655 (2012).
doi: 10.1073/pnas.1200151109
pubmed: 22492966
pmcid: 3340071
Murphy, M. C. et al. Decreased brain stiffness in Alzheimer’s disease determined by magnetic resonance elastography. J. Magn. Reson. Imaging 34, 494–498 (2011).
doi: 10.1002/jmri.22707
pubmed: 21751286
pmcid: 3217096
Su, Y. et al. Application of acoustic radiation force impulse imaging (ARFI) in quantitative evaluation of neonatal brain development. Clin. Exp. Obstet. Gynecol. 42, 797–800 (2015).
doi: 10.12891/ceog1956.2015
pubmed: 26753489
Lee, W. N., Larrat, B., Pernot, M. & Tanter, M. Ultrasound elastic tensor imaging: Comparison with MR diffusion tensor imaging in the myocardium. Phys. Med. Biol. 57, 5075–5095 (2012).
doi: 10.1088/0031-9155/57/16/5075
pubmed: 22836727
Baud, O. & Saint-Faust, M. Neuroinflammation in the developing brain: Risk factors, involvement of microglial cells, and implication for early anesthesia. Anesth. Analg. 128, 718–725 (2019).
doi: 10.1213/ANE.0000000000004032
pubmed: 30883417
Van Steenwinckel, J. et al. Decreased microglial Wnt/β-catenin signalling drives microglial pro-inflammatory activation in the developing brain. Brain 142, 3806–3833 (2019).
doi: 10.1093/brain/awz319
pubmed: 31665242
pmcid: 6906599
Yang, H. et al. Compression elastography and shear wave ultrasound elastography for measurement of brain elasticity in full-term and premature neonates. J. Ultrasound Med. 42, 221–231 (2023).
doi: 10.1002/jum.16075
pubmed: 35929079
Kim, H. G., Park, M. S., Lee, J. D. & Park, S. Y. Ultrasound elastography of the neonatal brain: Preliminary study. J. Ultrasound Med. 36, 1313–1319 (2017).
doi: 10.7863/ultra.16.06079
pubmed: 28304105
Li, C., Zhang, C., Li, J., Cao, X. & Song, D. An experimental study of the potential biological effects associated with 2-D shear wave elastography on the neonatal brain. Ultrasound Med. Biol. 42, 1551–1559 (2016).
doi: 10.1016/j.ultrasmedbio.2016.02.018
pubmed: 27112914
Zhang, C., Li, N., Li, C. & Li, J. A safety study of the effects of 2-dimensional shear wave elastography on synaptic morphologic characteristics and function in the hippocampus of neonatal Mice. J. Ultrasound Med. https://doi.org/10.1002/jum.15387 (2021).
doi: 10.1002/jum.15387
pubmed: 34967455
pmcid: 9838564