Transfontanellar shear wave elastography of the neonatal brain for quantitative evaluation of white matter damage.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
23 05 2024
Historique:
received: 03 11 2023
accepted: 29 04 2024
medline: 24 5 2024
pubmed: 24 5 2024
entrez: 23 5 2024
Statut: epublish

Résumé

Cerebral white matter damage (WMD) is the most frequent brain lesion observed in infants surviving premature birth. Qualitative B-mode cranial ultrasound (cUS) is widely used to assess brain integrity at bedside. Its limitations include lower discriminatory power to predict long-term outcomes compared to magnetic resonance imaging (MRI). Shear wave elastography (SWE), a promising ultrasound imaging modality, might improve this limitation by detecting quantitative differences in tissue stiffness. The study enrolled 90 neonates (52% female, mean gestational age = 30.1 

Identifiants

pubmed: 38782968
doi: 10.1038/s41598-024-60968-w
pii: 10.1038/s41598-024-60968-w
doi:

Banques de données

ClinicalTrials.gov
['NCT02042716']

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

11827

Subventions

Organisme : European Union's Horizon 2020 Research and Innovation programme
ID : Grant Agreement No 874721 PREMSTEM

Informations de copyright

© 2024. The Author(s).

Références

Blencowe, H. et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: A systematic analysis and implications. Lancet 379, 2162–2172 (2012).
doi: 10.1016/S0140-6736(12)60820-4 pubmed: 22682464
Liu, L. et al. Global, regional, and national causes of under-5 mortality in 2000–15: An updated systematic analysis with implications for the Sustainable Development Goals. Lancet 388, 3027–3035 (2016).
doi: 10.1016/S0140-6736(16)31593-8 pubmed: 27839855 pmcid: 5161777
Ancel, P. Y. et al. Survival and morbidity of preterm children born at 22 through 34weeks’ gestation in france in 2011 results of the EPIPAGE-2 cohort study. JAMA Pediatr. 169, 230–238 (2015).
doi: 10.1001/jamapediatrics.2014.3351 pubmed: 25621457
Pierrat, V. et al. Neurodevelopmental outcomes at age 5 among children born preterm: EPIPAGE-2 cohort study. BMJ 373, n714 (2021).
Back, S. A. White matter injury in the preterm infant: Pathology and mechanisms. Acta Neuropathol. 134, 331–349 (2017).
doi: 10.1007/s00401-017-1718-6 pubmed: 28534077 pmcid: 5973818
Sauve, R. Routine screening cranial ultrasound examinations for prediction of long term neurodevelopmental outcomes in preterm infants. Paediatr. Child Health (Oxf.) 6, 39–43 (2001).
doi: 10.1093/pch/6.1.39
Agut, T. et al. Preterm white matter injury: Ultrasound diagnosis and classification. Pediatr. Res. 87, 37–49 (2020).
doi: 10.1038/s41390-020-0781-1 pubmed: 32218534 pmcid: 7098888
Inder, T. E. et al. Neuroimaging of the preterm brain: Review and recommendations. J. Pediatr. 237, 276-287.e4 (2021).
doi: 10.1016/j.jpeds.2021.06.014 pubmed: 34146549
Gennisson, J. L., Deffieux, T., Fink, M. & Tanter, M. Ultrasound elastography: Principles and techniques. Diagn. Interv. Imaging 94, 487–495 (2013).
doi: 10.1016/j.diii.2013.01.022 pubmed: 23619292
Gilles, F. H. & Leviton, A. Neonatal white matter damage and the fetal inflammatory response. Semin. Fetal Neonatal Med. 25, 101111 (2020).
doi: 10.1016/j.siny.2020.101111 pubmed: 32299712
Bercoff, J., Tanter, M. & Fink, M. Supersonic shear imaging: A new technique for soft tissue elasticity mapping. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51, 396–409 (2004).
doi: 10.1109/TUFFC.2004.1295425 pubmed: 15139541
Sigrist, R. M. S., Liau, J., Kaffas, A. E., Chammas, M. C. & Willmann, J. K. Ultrasound elastography: Review of techniques and clinical applications. Theranostics 7, 1303–1329 (2017).
doi: 10.7150/thno.18650 pubmed: 28435467 pmcid: 5399595
Bercoff, J. et al. In vivo breast tumor detection using transient elastography. Ultrasound Med. Biol. 29, 1387–1396 (2003).
doi: 10.1016/S0301-5629(03)00978-5 pubmed: 14597335
Garcés Iñigo, E. et al. Quantitative evaluation of neonatal brain elasticity using shear wave elastography. J. Ultrasound Med. 40, 795–804 (2021).
doi: 10.1002/jum.15464 pubmed: 32876366
El-Ali, A. M., Subramanian, S., Krofchik, L. M., Kephart, M. C. & Squires, J. H. Feasibility and reproducibility of shear wave elastography in pediatric cranial ultrasound. Pediatr. Radiol. 50, 990–996 (2020).
doi: 10.1007/s00247-019-04592-1 pubmed: 31863191
Albayrak, E. & Kasap, T. Evaluation of neonatal brain parenchyma using 2-dimensional shear wave elastography. J. Ultrasound Med. 37, 959–967 (2018).
doi: 10.1002/jum.14366 pubmed: 28850723
Dirrichs, T. et al. Transcranial shear wave elastography of neonatal and infant brains for quantitative evaluation of increased intracranial pressure. Investig. Radiol. 54, 719–727 (2019).
doi: 10.1097/RLI.0000000000000602
deCampo, D. & Hwang, M. Characterizing the neonatal brain with ultrasound elastography. Pediatr. Neurol. 86, 19–26 (2018).
doi: 10.1016/j.pediatrneurol.2018.06.005 pubmed: 30180999
Mamelle, N., Munoz, F. & Grandjean, H. Fetal growth from the AUDIPOG study. I. Establishment of reference curves. J Gynecol. Obstet. Biol. Reprod. (Paris) 25, 61–70 (1996).
pubmed: 8901304
Dong, Y. & Speer, C. P. Late-onset neonatal sepsis: Recent developments. Arch. Dis. Child Fetal Neonatal Ed. 100, F257–F263 (2015).
doi: 10.1136/archdischild-2014-306213 pubmed: 25425653
Alison, M. et al. Prophylactic hydrocortisone in extremely preterm infants and brain MRI abnormality. Arch. Dis. Child Fetal Neonatal Ed. 105, 520–525 (2020).
doi: 10.1136/archdischild-2019-317720 pubmed: 31980445
Kidokoro, H., Neil, J. J. & Inder, T. E. New MR imaging assessment tool to define brain abnormalities in very preterm infants at term. Am. J. Neuroradiol. 34, 2208–2214 (2013).
doi: 10.3174/ajnr.A3521 pubmed: 23620070 pmcid: 4163698
Papile, L. A., Burstein, J., Burstein, R. & Koffler, H. Incidence and evolution of subependymal and intraventricular hemorrhage: A study of infants with birth weights less than 1,500 gm. J. Pediatr. 92, 529–534 (1978).
doi: 10.1016/S0022-3476(78)80282-0 pubmed: 305471
Bland, J. M. & Altman, D. G. Statistical methods for assessing agreement between two methods of clinical measurement. Int. J. Nurs. Stud. 47, 931–936 (2010).
doi: 10.1016/j.ijnurstu.2009.10.001
Bartlett, J. W. & Frost, C. Reliability, repeatability and reproducibility: Analysis of measurement errors in continuous variables. Ultrasound Obstet. Gynecol. 31, 466–475 (2008).
doi: 10.1002/uog.5256 pubmed: 18306169
McGraw, K. O. & Wong, S. P. Forming inferences about some intraclass correlation coefficients. Psychol. Methods 1, 30–46 (1996).
doi: 10.1037/1082-989X.1.1.30
Fleiss, J. L. Stratification to control for prognostic variables. Des. Anal. Clin. Exp. https://doi.org/10.1002/9781118032923.ch6 (2011).
doi: 10.1002/9781118032923.ch6
Weickenmeier, J. et al. Brain stiffness increases with myelin content. Acta Biomater. 42, 265–272 (2016).
doi: 10.1016/j.actbio.2016.07.040 pubmed: 27475531
Schregel, K. et al. Demyelination reduces brain parenchymal stiffness quantified in vivo by magnetic resonance elastography. Proc. Natl. Acad. Sci. USA 109, 6650–6655 (2012).
doi: 10.1073/pnas.1200151109 pubmed: 22492966 pmcid: 3340071
Murphy, M. C. et al. Decreased brain stiffness in Alzheimer’s disease determined by magnetic resonance elastography. J. Magn. Reson. Imaging 34, 494–498 (2011).
doi: 10.1002/jmri.22707 pubmed: 21751286 pmcid: 3217096
Su, Y. et al. Application of acoustic radiation force impulse imaging (ARFI) in quantitative evaluation of neonatal brain development. Clin. Exp. Obstet. Gynecol. 42, 797–800 (2015).
doi: 10.12891/ceog1956.2015 pubmed: 26753489
Lee, W. N., Larrat, B., Pernot, M. & Tanter, M. Ultrasound elastic tensor imaging: Comparison with MR diffusion tensor imaging in the myocardium. Phys. Med. Biol. 57, 5075–5095 (2012).
doi: 10.1088/0031-9155/57/16/5075 pubmed: 22836727
Baud, O. & Saint-Faust, M. Neuroinflammation in the developing brain: Risk factors, involvement of microglial cells, and implication for early anesthesia. Anesth. Analg. 128, 718–725 (2019).
doi: 10.1213/ANE.0000000000004032 pubmed: 30883417
Van Steenwinckel, J. et al. Decreased microglial Wnt/β-catenin signalling drives microglial pro-inflammatory activation in the developing brain. Brain 142, 3806–3833 (2019).
doi: 10.1093/brain/awz319 pubmed: 31665242 pmcid: 6906599
Yang, H. et al. Compression elastography and shear wave ultrasound elastography for measurement of brain elasticity in full-term and premature neonates. J. Ultrasound Med. 42, 221–231 (2023).
doi: 10.1002/jum.16075 pubmed: 35929079
Kim, H. G., Park, M. S., Lee, J. D. & Park, S. Y. Ultrasound elastography of the neonatal brain: Preliminary study. J. Ultrasound Med. 36, 1313–1319 (2017).
doi: 10.7863/ultra.16.06079 pubmed: 28304105
Li, C., Zhang, C., Li, J., Cao, X. & Song, D. An experimental study of the potential biological effects associated with 2-D shear wave elastography on the neonatal brain. Ultrasound Med. Biol. 42, 1551–1559 (2016).
doi: 10.1016/j.ultrasmedbio.2016.02.018 pubmed: 27112914
Zhang, C., Li, N., Li, C. & Li, J. A safety study of the effects of 2-dimensional shear wave elastography on synaptic morphologic characteristics and function in the hippocampus of neonatal Mice. J. Ultrasound Med. https://doi.org/10.1002/jum.15387 (2021).
doi: 10.1002/jum.15387 pubmed: 34967455 pmcid: 9838564

Auteurs

Flora Faure (F)

Institute Physics for Medicine Paris, Inserm U1273, ESPCI Paris, CNRS UMR 8063, PSL University, 75015, Paris, France.

Marianne Alison (M)

Assistance Publique-Hôpitaux de Paris, Pediatric Radiology Department, Robert Debré University Hospital, 75019, Paris, France.

Mariantonietta Francavilla (M)

Pediatric Radiology Department, A.O.U.C. Policlinico of Bari - Hospital Giovanni XXIII, Bari, Italy.

Priscilla Boizeau (P)

Assistance Publique-Hôpitaux de Paris, Unit of Clinical Epidemiology, Inserm U1123 and CIC-EC 1426, Robert Debré Children's Hospital, University of Paris Cité, Paris, France.

Sophie Guilmin Crepon (S)

Assistance Publique-Hôpitaux de Paris, Unit of Clinical Epidemiology, Inserm U1123 and CIC-EC 1426, Robert Debré Children's Hospital, University of Paris Cité, Paris, France.

Chung Lim (C)

Assistance Publique-Hôpitaux de Paris, Pediatric Radiology Department, Robert Debré University Hospital, 75019, Paris, France.

Gregory Planchette (G)

Assistance Publique-Hôpitaux de Paris, Pediatric Radiology Department, Robert Debré University Hospital, 75019, Paris, France.

Mickael Prigent (M)

Assistance Publique-Hôpitaux de Paris, Pediatric Radiology Department, Robert Debré University Hospital, 75019, Paris, France.

Alice Frérot (A)

Department of Neonatal Intensive Care Unit, Assistance Publique-Hôpitaux de Paris, Robert Debré Children's Hospital, Paris, France.

Mickael Tanter (M)

Institute Physics for Medicine Paris, Inserm U1273, ESPCI Paris, CNRS UMR 8063, PSL University, 75015, Paris, France.

Charlie Demené (C)

Institute Physics for Medicine Paris, Inserm U1273, ESPCI Paris, CNRS UMR 8063, PSL University, 75015, Paris, France.

Olivier Baud (O)

Division of Neonatology and Paediatric Intensive Care, Children's University Hospital of Geneva and University of Geneva, Geneva, Switzerland.

Valérie Biran (V)

Department of Neonatal Intensive Care Unit, Assistance Publique-Hôpitaux de Paris, Robert Debré Children's Hospital, Paris, France. valerie.biran@gmail.com.
Inserm U1141, University of Paris Cité, Paris, France. valerie.biran@gmail.com.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH