Enhancing endurance performance with combined imagined and actual physical practice.
Endurance performance
Motor imagery
Perception of effort
Perception of muscle pain
Physical training
Journal
European journal of applied physiology
ISSN: 1439-6327
Titre abrégé: Eur J Appl Physiol
Pays: Germany
ID NLM: 100954790
Informations de publication
Date de publication:
24 May 2024
24 May 2024
Historique:
received:
04
01
2024
accepted:
13
05
2024
medline:
24
5
2024
pubmed:
24
5
2024
entrez:
24
5
2024
Statut:
aheadofprint
Résumé
The perception of effort exerts influence in determining task failure during endurance performance. Training interventions blending physical and cognitive tasks yielded promising results in enhancing performance. Motor imagery can decrease the perception of effort. Whether combining motor imagery and physical training improves endurance remains to be understood, and this was the aim of this study. Participants (24 ± 3 year) were assigned to a motor imagery (n = 16) or a control (n = 17) group. Both groups engaged in physical exercises targeting the knee extensors (i.e., wall squat, 12 training sessions, 14-days), with participants from the motor imagery group also performing motor imagery. Each participant visited the laboratory Pre and Post-training, during which we assessed endurance performance through a sustained submaximal isometric knee extension contraction until task failure, at either 20% or 40% of the maximal voluntary contraction peak torque. Perceptions of effort and muscle pain were measured during the exercise. We reported no changes in endurance performance for the control group. Endurance performance in the motor imagery group exhibited significant improvements when the intensity of the sustained isometric exercise closely matched that used in training. These enhancements were less pronounced when considering the higher exercise intensity. No reduction in perception of effort was observed in both groups. There was a noticeable decrease in muscle pain perception within the motor imagery group Post training. Combining motor imagery and physical training may offer a promising avenue for enhancing endurance performance and managing pain in various contexts.
Identifiants
pubmed: 38787411
doi: 10.1007/s00421-024-05510-6
pii: 10.1007/s00421-024-05510-6
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Ahlborg B, Bergström J, Ekelund L-G, Guarnieri G, Harris R, Hultman E, Nordesjö L (1972) Muscle metabolism during isometric exercise performed at constant force. J Appl Physiol 33(2):224–228. https://doi.org/10.1152/jappl.1972.33.2.224
doi: 10.1152/jappl.1972.33.2.224
pubmed: 5054429
Barwood MJ, Corbett J, Wagstaff CR, McVeigh D, Thelwell RC (2015) Improvement of 10-km time-trial cycling with motivational self-talk compared with neutral self-talk. J Sports Physiol Perform 10(2):166–171. https://doi.org/10.1123/ijspp.2014-0059
doi: 10.1123/ijspp.2014-0059
Basset FA, Kelly LP, Hohl R, Kaushal N (2022) Type of self-talk matters: Its effects on perceived exertion, cardiorespiratory, and cortisol responses during an iso-metabolic endurance exercise. Psychophysiology 59(3):e13980. https://doi.org/10.1111/psyp.13980
doi: 10.1111/psyp.13980
pubmed: 34837395
Bergevin M, Steele J, Payen de la Garanderie M, Feral-Basin C, Marcora SM, Rainville P, Caron JG, Pageaux B (2023) Pharmacological blockade of muscle afferents and perception of effort: a systematic review with meta-analysis. Sports Med 53(2):415–435. https://doi.org/10.1007/s40279-022-01762-4
doi: 10.1007/s40279-022-01762-4
pubmed: 36318384
Blanchfield AW, Hardy J, De Morree HM, Staiano W, Marcora SM (2014) Talking yourself out of exhaustion: the effects of self-talk on endurance performance. Med Sci Sports Exerc 46(5):998–1007. https://doi.org/10.1249/MSS.0000000000000184
doi: 10.1249/MSS.0000000000000184
pubmed: 24121242
Borg E, Kaijser L (2006) A comparison between three rating scales for perceived exertion and two different work tests. Scand J Med Sci Sports 16(1):57–69. https://doi.org/10.1111/j.1600-0838.2005.00448.x
doi: 10.1111/j.1600-0838.2005.00448.x
pubmed: 16430682
Brehm JW, Self EA (1989) The intensity of motivation. Annu Rev Psychol 40:109–131. https://doi.org/10.1146/annurev.ps.40.020189.000545
doi: 10.1146/annurev.ps.40.020189.000545
pubmed: 2648973
Cohen J (1988) Statistical power analysis for the behavioral sciences. Erlbaum, Hillsdale, NJ
Cowley PM, Clark BC, Ploutz-Snyder LL (2008) Kinesthetic motor imagery and spinal excitability: the effect of contraction intensity and spatial localization. Clin Neurophysiol 119(8):1849–1856. https://doi.org/10.1016/j.clinph.2008.04.004
doi: 10.1016/j.clinph.2008.04.004
pubmed: 18486544
Dallaway N, Lucas SJE, Ring C (2021) Concurrent brain endurance training improves endurance exercise performance. J Sci Med Sport 24(4):405–411. https://doi.org/10.1016/j.jsams.2020.10.008
doi: 10.1016/j.jsams.2020.10.008
pubmed: 33218873
Dallaway N, Lucas S, Marks J, Ring C (2023) Prior brain endurance training improves endurance exercise performance. Eur J Sport Sci 23(7):1269–1278. https://doi.org/10.1080/17461391.2022.2153231
doi: 10.1080/17461391.2022.2153231
pubmed: 36475378
Grosprêtre S, Jacquet T, Lebon F, Papaxanthis C, Martin A (2018) Neural mechanisms of strength increase after one-week motor imagery training. Eur J Sport Sci 18(2):209–218. https://doi.org/10.1080/17461391.2017.1415377
doi: 10.1080/17461391.2017.1415377
pubmed: 29249176
Guillot A (2020) 14 Neurophysiological foundations and practical applications of motor imagery. In: Abraham A (ed) The Cambridge handbook of the imagination. Cambridge University Press, Cambridge, pp 207–226
doi: 10.1017/9781108580298.014
Guillot A, Desliens S, Rouyer C, Rogowski I (2013) Motor imagery and tennis serve performance: the external focus efficacy. Jsports Sci Med 12(2):332–338
Hardwick RM, Caspers S, Eickhoff SB, Swinnen SP (2018) Neural correlates of action: comparing meta-analyses of imagery, observation, and execution. Neurosci Biobehav Rev 94:31–44. https://doi.org/10.1016/j.neubiorev.2018.08.003
doi: 10.1016/j.neubiorev.2018.08.003
pubmed: 30098990
Hart SG, Staveland LE (1988) Development of NASA-TLX (Task Load Index): results of empirical and theoretical research. Adv Psychol 52:139–183
doi: 10.1016/S0166-4115(08)62386-9
Hunter SK, Duchateau J, Enoka RM (2004) Muscle fatigue and the mechanisms of task failure. Exerc Sport Sci Rev 32(2):44–49. https://doi.org/10.1097/00003677-200404000-00002
doi: 10.1097/00003677-200404000-00002
pubmed: 15064647
Jacquet T, Lepers R, Poulin-Charronnat B, Bard P, Pfister P, Pageaux B (2021) Mental fatigue induced by prolonged motor imagery increases perception of effort and the activity of motor areas. Neuropsychologia 150:107701. https://doi.org/10.1016/j.neuropsychologia.2020.107701
doi: 10.1016/j.neuropsychologia.2020.107701
pubmed: 33276035
Kayser B (2003) Exercise starts and ends in the brain. Eur J Appl Physiol 90(3–4):411–419. https://doi.org/10.1007/s00421-003-0902-7
doi: 10.1007/s00421-003-0902-7
pubmed: 12883902
Lakens D (2022) Sample size justification. Collabra Psychol 8(1):33267
doi: 10.1525/collabra.33267
Lind AR (2011) Cardiovascular adjustments to isometric contractions: static effort. Compr Physiol 947–966
Malleron T, Har-Nir I, Vigotsky AD, Halperin I (2023) Rating of perceived effort but relative to what? A comparison between imposed and self-selected anchors. Psychol Sport Exerc 66:102396. https://doi.org/10.1016/j.psychsport.2023
doi: 10.1016/j.psychsport.2023
pubmed: 37665858
Marcora S (2019) Psychobiology of fatigue during endurance exercise. In: Meijen C (ed) Endurance performance in sport. Routledge, Abingdon, pp 15–34
doi: 10.4324/9781315167312-2
Marcora SM, Staiano W (2010) The limit to exercise tolerance in humans: mind over muscle? Eur J Appl Physiol 109(4):763–770. https://doi.org/10.1007/s00421-010-1418-6
doi: 10.1007/s00421-010-1418-6
pubmed: 20221773
Marcora SM, Bosio A, de Morree HM (2008) Locomotor muscle fatigue increases cardiorespiratory responses and reduces performance during intense cycling exercise independently from metabolic stress. Am J Physiol Regul Integr Comp Physiol 294(3):R874–R883. https://doi.org/10.1152/ajpregu.00678.2007
doi: 10.1152/ajpregu.00678.2007
pubmed: 18184760
Marcora S, Staiano W, Merlini M (2013) Brain training improves endurance performance. ECSS Amsterdam 2014:1469-0691.2011
Millet GY (2011) Can neuromuscular fatigue explain running strategies and performance in ultra-marathons? Sports Med 41(6):489–506. https://doi.org/10.2165/11588760-000000000-00000
doi: 10.2165/11588760-000000000-00000
pubmed: 21615190
Mizuguchi N, Nakata H, Kanosue K (2014) Activity of right premotor-parietal regions dependent upon imagined force level: an fMRI study. Front Hum Neurosci 8:810. https://doi.org/10.3389/fnhum.2014.00810
doi: 10.3389/fnhum.2014.00810
pubmed: 25339893
pmcid: 4189331
Nicolò A, Sacchetti M, Girardi M, McCormick A, Angius L, Bazzucchi I, Marcora SM (2019) A comparison of different methods to analyse data collected during time-to-exhaustion tests. Sport Sci Health 15(3):667–679
doi: 10.1007/s11332-019-00585-7
O’Connor PJ, Cook DB (1999) Exercise and pain: the neurobiology, measurement, and laboratory study of pain in relation to exercise in humans. Exerc Sport Sci Rev 27:119–166
pubmed: 10791016
Pageaux B (2014) The psychobiological model of endurance performance: an effort-based decision-making theory to explain self-paced endurance performance. Sports Med 44(9):1319–1320. https://doi.org/10.1007/s40279-014-0198-2
doi: 10.1007/s40279-014-0198-2
pubmed: 24809249
Pageaux B (2016) Perception of effort in exercise science: definition, measurement and perspectives. Eur J Sport Sci 16(8):885–894. https://doi.org/10.1080/17461391.2016.1188992
doi: 10.1080/17461391.2016.1188992
pubmed: 27240002
Pageaux B, Lepers R (2016) Fatigue induced by physical and mental exertion increases perception of effort and impairs subsequent endurance performance. Front Physiol 7:587. https://doi.org/10.3389/fphys.2016.00587
doi: 10.3389/fphys.2016.00587
pubmed: 27965592
pmcid: 5126404
Pageaux B, Marcora SM, Lepers R (2013) Prolonged mental exertion does not alter neuromuscular function of the knee extensors. Med Sci Sports Exerc 45(12):2254–2264. https://doi.org/10.1249/MSS.0b013e31829b504a
doi: 10.1249/MSS.0b013e31829b504a
pubmed: 23698244
Pageaux B, Clos P, Impellizzeri F, Audiffren M, Stapley P, Grémeaux V, Perrey S, O’Connor PJ, Marcora SM, Lepers R (2020) Towards standardized instructions for measuring perception of effort and muscle pain during physical exercise. Med Sci Sports Exerc 52(7S):499. https://doi.org/10.1249/01.mss.0000679556.09727.4b
doi: 10.1249/01.mss.0000679556.09727.4b
Piveteau E, Di Rienzo F, Bolliet O, Guillot A (2023) Inter-task transfer of force gains is facilitated by motor imagery. Front Neurosci 17:1228062. https://doi.org/10.3389/fnins.2023.1228062
doi: 10.3389/fnins.2023.1228062
pubmed: 37645373
pmcid: 10461095
Place N, Bruton JD, Westerblad H (2009) Mechanisms of fatigue induced by isometric contractions in exercising humans and in mouse isolated single muscle fibres. Clin Exp Pharmacol Physiol 36(3):334–339. https://doi.org/10.1111/j.1440-1681.2008.05021.x
doi: 10.1111/j.1440-1681.2008.05021.x
pubmed: 18671711
Razon S, Basevitch I, Land W, Thompson B, Biermann M, Tenenbaum G (2010) Associative and dissociative imagery effects on perceived exertion and task duration. J Imag Res Sport Phys. 5(1). https://doi.org/10.2202/1932-0191.1044
Razon S, Mandler K, Arsal G, Tokac U, Tenenbaum G (2014) Effects of imagery on effort perception and cycling endurance. J Imag Res Sport Phys 9(1):23–38. https://doi.org/10.1515/jirspa-2013-0011
doi: 10.1515/jirspa-2013-0011
Robin N, Coudevylle GR, Guillot A, Toussaint L (2020) French translation and validation of the Movement Imagery Questionnaire-third version (MIQ-3f). Mov Sport Sci 2:23–31. https://doi.org/10.1051/sm/2019035
doi: 10.1051/sm/2019035
Ruffino C, Gaveau J, Papaxanthis C, Lebon F (2019) An acute session of motor imagery training induces use-dependent plasticity. Sci Rep 9(1):1–9. https://doi.org/10.1038/s41598-019-56628-z
doi: 10.1038/s41598-019-56628-z
Souron R, Voirin AC, Kennouche D, Espeit L, Millet GY, Rupp T, Lapole T (2020) Task failure during sustained low-intensity contraction is not associated with a critical amount of central fatigue. Scand J Med Sci Sports. https://doi.org/10.1111/sms.13815
doi: 10.1111/sms.13815
pubmed: 32869360
Staiano W, Marcora S, Romagnoli M, Kirk U, Ring C (2023) Brain endurance training improves endurance and cognitive performance in road cyclists. J Sci Med Sport 26(7):375–385. https://doi.org/10.1016/j.jsams.2023.05.008
doi: 10.1016/j.jsams.2023.05.008
pubmed: 37301613
Staiano W, Merlini M, Marcora S (2015) A randomized controlled trial of brain endurance training (BET) to reduce fatigue during endurance exercise. In: ACSM annual meeting, San Diego
Volz MS, Suarez-Contreras V, Portilla ALS, Fregni F (2015) Mental imagery-induced attention modulates pain perception and cortical excitability. BMC Neurosci 16(1):1–10. https://doi.org/10.1186/s12868-015-0146-6
doi: 10.1186/s12868-015-0146-6
Zhang J, Abel S, Macphail M, Aboodarda SJ (2023) Persistent contralateral pain compromises exercise tolerance but does not alter corticomotor responses during repeated, submaximal isometric knee extensions to task failure. Neuroscience 526:267–276. https://doi.org/10.1016/j.neuroscience.2023.07.005
doi: 10.1016/j.neuroscience.2023.07.005
pubmed: 37442523