CytoSIP: an annotated structural atlas for interactions involving cytokines or cytokine receptors.
Journal
Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179
Informations de publication
Date de publication:
24 May 2024
24 May 2024
Historique:
received:
23
05
2023
accepted:
03
05
2024
medline:
25
5
2024
pubmed:
25
5
2024
entrez:
24
5
2024
Statut:
epublish
Résumé
Therapeutic agents targeting cytokine-cytokine receptor (CK-CKR) interactions lead to the disruption in cellular signaling and are effective in treating many diseases including tumors. However, a lack of universal and quick access to annotated structural surface regions on CK/CKR has limited the progress of a structure-driven approach in developing targeted macromolecular drugs and precision medicine therapeutics. Herein we develop CytoSIP (Single nucleotide polymorphisms (SNPs), Interface, and Phenotype), a rich internet application based on a database of atomic interactions around hotspots in experimentally determined CK/CKR structural complexes. CytoSIP contains: (1) SNPs on CK/CKR; (2) interactions involving CK/CKR domains, including CK/CKR interfaces, oligomeric interfaces, epitopes, or other drug targeting surfaces; and (3) diseases and phenotypes associated with CK/CKR or SNPs. The database framework introduces a unique tri-level SIP data model to bridge genetic variants (atomic level) to disease phenotypes (organism level) using protein structure (complexes) as an underlying framework (molecule level). Customized screening tools are implemented to retrieve relevant CK/CKR subset, which reduces the time and resources needed to interrogate large datasets involving CK/CKR surface hotspots and associated pathologies. CytoSIP portal is publicly accessible at https://CytoSIP.biocloud.top , facilitating the panoramic investigation of the context-dependent crosstalk between CK/CKR and the development of targeted therapeutic agents.
Identifiants
pubmed: 38789577
doi: 10.1038/s42003-024-06289-0
pii: 10.1038/s42003-024-06289-0
doi:
Substances chimiques
Receptors, Cytokine
0
Cytokines
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
630Informations de copyright
© 2024. The Author(s).
Références
van Deventer, S. J. Cytokine and cytokine receptor polymorphisms in infectious disease. Intensive Care Med. 26, S98–S102 (2000).
pubmed: 10786965
doi: 10.1007/s001340051125
Propper, D. J. & Balkwill, F. R. Harnessing cytokines and chemokines for cancer therapy. Nat. Rev. Clin. Oncol. 19, 237–253 (2022).
pubmed: 34997230
doi: 10.1038/s41571-021-00588-9
Alexander, W. S. & Hilton, D. J. The role of suppressors of cytokine signaling (SOCS) proteins in regulation of the immune response. Annu. Rev. Immunol. 22, 503–529 (2004).
pubmed: 15032587
doi: 10.1146/annurev.immunol.22.091003.090312
West, N. R. et al. Emerging cytokine networks in colorectal cancer. Nat. Rev. Immunol. 15, 615–629 (2015).
pubmed: 26358393
doi: 10.1038/nri3896
Vabret, N. et al. Immunology of COVID-19: current state of the science. Immunity 52, 910–941 (2020).
pubmed: 32505227
pmcid: 7200337
doi: 10.1016/j.immuni.2020.05.002
Lee, P. Y. & Cron, R. Q. The multifaceted immunology of cytokine storm syndrome. J. Immunol. 210, 1015–1024 (2023).
pubmed: 37011407
doi: 10.4049/jimmunol.2200808
Rotz, S. J. et al. Severe cytokine release syndrome in a patient receiving PD‐1‐directed therapy. Pediatr. Blood Cancer 64, e26642–e26642 (2017).
doi: 10.1002/pbc.26642
Au, L. et al. Cytokine release syndrome in a patient with colorectal cancer after vaccination with BNT162b2. Nat. Med. 27, 1362–1366 (2021).
pubmed: 34040262
pmcid: 8363501
doi: 10.1038/s41591-021-01387-6
Shimabukuro-Vornhagen, A. et al. Cytokine release syndrome. J. Immunother. Cancer 6, 56 (2018).
pubmed: 29907163
pmcid: 6003181
doi: 10.1186/s40425-018-0343-9
Jiang, P. et al. Systematic investigation of cytokine signaling activity at the tissue and single-cell levels. Nat. methods 18, 1181–1191 (2021).
pubmed: 34594031
pmcid: 8493809
doi: 10.1038/s41592-021-01274-5
Spangler, J. B. et al. Insights into cytokine-receptor interactions from cytokine engineering. Annu Rev. Immunol. 33, 139–167 (2015).
pubmed: 25493332
doi: 10.1146/annurev-immunol-032713-120211
Oppenheim, J. J. et al. Properties of the novel proinflammatory supergene “intercrine” cytokine family. Annu Rev. Immunol. 9, 617–648 (1991).
pubmed: 1910690
doi: 10.1146/annurev.iy.09.040191.003153
Burmester, G. R. et al. Efficacy and safety of sarilumab monotherapy versus adalimumab monotherapy for the treatment of patients with active rheumatoid arthritis (MONARCH): a randomised, double-blind, parallel-group phase III trial. Ann. Rheum. Dis. 76, 840–847 (2017).
pubmed: 27856432
doi: 10.1136/annrheumdis-2016-210310
Tella, S. H. & Gallagher, J. C. Prevention and treatment of postmenopausal osteoporosis. J. Steroid Biochem. Mol. Biol. 142, 155–170 (2014).
pubmed: 24176761
doi: 10.1016/j.jsbmb.2013.09.008
Rupolo, M. et al. Hematopoietic growth factors support in the elderly cancer patients treated with antiblastic chemotherapy. Anti-cancer Agents Med. Chem. 13, 1438 (2013).
doi: 10.2174/18715206113136660352
Angriman, F. et al. Interleukin-6 receptor blockade in patients with COVID-19: placing clinical trials into context. Lancet Respir. Med. 9, 655–664 (2021).
pubmed: 33930329
pmcid: 8078877
doi: 10.1016/S2213-2600(21)00139-9
Kalbasi, A. et al. Potentiating adoptive cell therapy using synthetic IL-9 receptors. Nature 607, 360–365 (2022).
pubmed: 35676488
pmcid: 9283313
doi: 10.1038/s41586-022-04801-2
Ruzicka, T. et al. Anti–interleukin-31 receptor A antibody for atopic dermatitis. N. Engl. J. Med. 376, 826–835 (2017).
pubmed: 28249150
doi: 10.1056/NEJMoa1606490
Papp, K. A. et al. Brodalumab, an anti–interleukin-17–receptor antibody for psoriasis. N. Engl. J. Med. 366, 1181–1189 (2012).
pubmed: 22455412
doi: 10.1056/NEJMoa1109017
Zlotnik, A. Perspective: insights on the nomenclature of cytokines and chemokines. Front. Immunol. 11, 908 (2020). 908.
pubmed: 32499780
pmcid: 7243804
doi: 10.3389/fimmu.2020.00908
Wells, J. A. & McClendon, C. L. Reaching for high-hanging fruit in drug discovery at protein-protein interfaces. Nature 450, 1001–1009 (2007).
pubmed: 18075579
doi: 10.1038/nature06526
Arkin, M. R. & Wells, J. A. Small-molecule inhibitors of protein-protein interactions: progressing towards the dream. Nat. Rev. Drug Discov. 3, 301–317 (2004).
pubmed: 15060526
doi: 10.1038/nrd1343
Oostindie, S. C. et al. Avidity in antibody effector functions and biotherapeutic drug design. Nat. Rev. Drug Discov. 21, 715–735 (2022).
pubmed: 35790857
pmcid: 9255845
doi: 10.1038/s41573-022-00501-8
Dhanda, S. K. et al. IEDB-AR: immune epitope database-analysis resource in 2019. Nucleic Acids Res. 47, W502–W506 (2019).
pubmed: 31114900
pmcid: 6602498
doi: 10.1093/nar/gkz452
Hopkins, C. E. et al. Phenotypic screening models for rapid diagnosis of genetic variants and discovery of personalized therapeutics. Mol. Asp. Med. 91, 101153 (2023).
doi: 10.1016/j.mam.2022.101153
Floss, D. M. & Scheller, J. Naturally occurring and synthetic constitutive-active cytokine receptors in disease and therapy. Cytokine Growth Factor Rev. 47, 1–20 (2019).
pubmed: 31147158
doi: 10.1016/j.cytogfr.2019.05.007
Pettersen, E. F. et al. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).
pubmed: 32881101
doi: 10.1002/pro.3943
Shan, Y. et al. How does a small molecule bind at a cryptic binding site? PLOS Comput. Biol. 18, e1009817 (2022).
pubmed: 35239648
pmcid: 8893328
doi: 10.1371/journal.pcbi.1009817
Xu, Q. & Dunbrack, R. J. ProtCID: a data resource for structural information on protein interactions. Nat. Commun. 11, 711 (2020).
pubmed: 32024829
pmcid: 7002494
doi: 10.1038/s41467-020-14301-4
Burley, S. K. et al. RCSB protein data bank: sustaining a living digital data resource that enables breakthroughs in scientific research and biomedical education. Protein Sci. 27, 316–330 (2018).
pubmed: 29067736
doi: 10.1002/pro.3331
Dhall, A. et al. Computer-aided prediction and design of IL-6 inducing peptides: IL-6 plays a crucial role in COVID-19. Brief. Bioinform. 22, 936–945 (2021).
pubmed: 33034338
doi: 10.1093/bib/bbaa259
Del, T. N. et al. The IntAct database: efficient access to fine-grained molecular interaction data. Nucleic Acids Res. 50, D648–D653 (2022).
doi: 10.1093/nar/gkab1006
Carrasco, P. S. et al. Global landscape of mouse and human cytokine transcriptional regulation. Nucleic Acids Res. 46, 9321–9337 (2018).
doi: 10.1093/nar/gky787
Kumar, P., Henikoff, S. & Ng, P. C. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat. Protoc. 4, 1073–1081 (2009).
pubmed: 19561590
doi: 10.1038/nprot.2009.86
Shaw, S. et al. Discovery and characterization of olokizumab: a humanized antibody targeting interleukin-6 and neutralizing gp130-signaling. MAbs 6, 774–782 (2014).
pubmed: 24670876
doi: 10.4161/mabs.28612
Blanchetot, C. et al. Structural mimicry of receptor interaction by antagonistic interleukin-6 (IL-6) antibodies. J. Biol. Chem. 291, 13846–13854 (2016).
pubmed: 27129274
pmcid: 4919466
doi: 10.1074/jbc.M115.695528
Mortazavi, E. et al. Association of mannose-binding lectin rs1800450 and tumor necrotic factor-α rs1800620 polymorphism with helicobacter pylori in type II diabetes mellitus. Monoclon. Antib. Immunodiagn. Immunother. 36, 236 (2017).
pubmed: 29053425
doi: 10.1089/mab.2017.0039
Rausch, S. M. et al. Relationship between cytokine gene single nucleotide polymorphisms and symptom burden and quality of life in lung cancer survivors. Cancer 116, 4103–4113 (2010).
pubmed: 20564140
doi: 10.1002/cncr.25255
Bovijn, J., Lindgren, C. M. & Holmes, M. V. Genetic variants mimicking therapeutic inhibition of IL-6 receptor signaling and risk of COVID-19. Lancet Rheumatol. 2, e658–e659 (2020).
pubmed: 33015641
pmcid: 7518829
doi: 10.1016/S2665-9913(20)30345-3
Blech, M. et al. One target-two different binding modes: structural insights into gevokizumab and canakinumab interactions to interleukin-1beta. J. Mol. Biol. 425, 94–111 (2013).
pubmed: 23041424
doi: 10.1016/j.jmb.2012.09.021
Owyang, A. M. et al. XOMA 052, a potent, high-affinity monoclonal antibody for the treatment of IL-1beta-mediated diseases. MAbs 3, 49–60 (2011).
pubmed: 21048425
pmcid: 3038011
doi: 10.4161/mabs.3.1.13989
Lawrence, S. H. et al. Shape shifting leads to small-molecule allosteric drug discovery. Chem. Biol. 15, 586–596 (2008).
pubmed: 18559269
pmcid: 2703447
doi: 10.1016/j.chembiol.2008.04.012
LaPorte, S. L. et al. Molecular and structural basis of cytokine receptor pleiotropy in the interleukin-4/13 system. Cell 132, 259–272 (2008).
pubmed: 18243101
pmcid: 2265076
doi: 10.1016/j.cell.2007.12.030
Jiang, Z. et al. Adaptor-specific antibody fragment inhibitors for the intracellular modulation of p97 (VCP) protein-protein interactions. J. Am. Chem. Soc. 144, 13218–13225 (2022).
pubmed: 35819848
pmcid: 9335864
doi: 10.1021/jacs.2c03665
Wang, W., Groves, M. R. & Dömling, A. Artificial macrocycles as IL-17A/IL-17RA antagonists. MedChemComm 9, 22–26 (2018).
pubmed: 29750108
doi: 10.1039/C7MD00464H
Hernandez, R. et al. Engineering IL-2 for immunotherapy of autoimmunity and cancer. Nat. Rev. Immunol. 22, 614–628 (2022).
pubmed: 35217787
doi: 10.1038/s41577-022-00680-w
Cavalli, G. & Dagna, L. The course of action for effective anti-cytokine treatment in COVID-19. Lancet Respir. Med. 9, 1353–1354 (2021).
pubmed: 34756179
pmcid: 8555968
doi: 10.1016/S2213-2600(21)00405-7
Kennedy, L. B. & Salama, A. K. S. A review of cancer immunotherapy toxicity. CA: Cancer J. Clin. 70, 86–104 (2020).
pubmed: 31944278
Kanehisa, M. et al. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 51, D587–D592 (2023).
pubmed: 36300620
doi: 10.1093/nar/gkac963
Seal, R. L. et al. Genenames.org: the HGNC resources in 2023. Nucleic Acids Res. 51, D1003–D1009 (2023).
pubmed: 36243972
doi: 10.1093/nar/gkac888
UniProt Consortium: UniProt: the universal protein knowledgebase in 2023. Nucleic Acids Res. 51, D523-D531 (2023).
Pearson, W. R. Finding protein and nucleotide similarities with FASTA. Curr. Protoc. Bioinformatics 53, 3.9.1–3.9.25 (2016).
pubmed: 27010337
doi: 10.1002/0471250953.bi0309s53
Burley, S. K. et al. Protein Data Bank (PDB): the single global macromolecular structure archive. Methods Mol. Biol. 1607, 627–641 (2017).
pubmed: 28573592
pmcid: 5823500
doi: 10.1007/978-1-4939-7000-1_26
Kinjo, A. R. et al. Protein Data Bank Japan (PDBj): updated user interfaces, resource description framework, analysis tools for large structures. Nucleic Acids Res. 45, D282–D288 (2017).
pubmed: 27789697
doi: 10.1093/nar/gkw962
Zheng, H. et al. Data mining of metal ion environments present in protein structures. J. Inorg. Biochem 102, 1765–1776 (2008).
pubmed: 18614239
pmcid: 2872550
doi: 10.1016/j.jinorgbio.2008.05.006
Sherry, S. T. et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 29, 308–311 (2001).
pubmed: 11125122
pmcid: 29783
doi: 10.1093/nar/29.1.308
Yang, H. & Wang, K. Genomic variant annotation and prioritization with ANNOVAR and wANNOVAR. Nat. Protoc. 10, 1556–1566 (2015).
pubmed: 26379229
pmcid: 4718734
doi: 10.1038/nprot.2015.105
Nguyen, H., Case, D. A. & Rose, A. S. NGLview-interactive molecular graphics for Jupyter notebooks. Bioinformatics 34, 1241–1242 (2018).
pubmed: 29236954
doi: 10.1093/bioinformatics/btx789
Knox, C., Wilson, M. & Klinger, C. M. et al. DrugBank 6.0: the DrugBank Knowledgebase for 2024. Nucleic Acids Res. 5, D1265–D1275 (2024).
Lovrić, M., Molero, J. M. & Kern, R. PySpark and RDKit: moving towards big data in cheminformatics. Mol. Inform. 38, 1800082 (2019).
doi: 10.1002/minf.201800082
Zheng, H. et al. Magnesium-binding architectures in RNA crystal structures: validation, binding preferences, classification and motif detection. Nucleic Acids Res. 43, 3789–3801 (2015).
pubmed: 25800744
pmcid: 4402538
doi: 10.1093/nar/gkv225
Zhang, H. et al. virusMED: an atlas of hotspots of viral proteins. IUCrJ 8, 931–942 (2021).
pubmed: 34614039
pmcid: 8479994
doi: 10.1107/S2052252521009076
Tunyasuvunakool, K. et al. Highly accurate protein structure prediction for the human proteome. Nature 596, 590–596 (2021).
pubmed: 34293799
pmcid: 8387240
doi: 10.1038/s41586-021-03828-1
Pinero, J. et al. The DisGeNET cytoscape app: exploring and visualizing disease genomics data. Comput. Struct. Biotechnol. J. 19, 2960–2967 (2021).
pubmed: 34136095
pmcid: 8163863
doi: 10.1016/j.csbj.2021.05.015