Fluorophore multimerization on a PEG backbone as a concept for signal amplification and lifetime modulation.
Brightness
Flow cytometry
Fluorescence lifetime imaging (flim)
Fluorescence microscopy
Label
Multimeric dyes
Photostability
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
24 May 2024
24 May 2024
Historique:
received:
22
03
2024
accepted:
17
05
2024
medline:
25
5
2024
pubmed:
25
5
2024
entrez:
24
5
2024
Statut:
epublish
Résumé
Fluorescent labels have strongly contributed to many advancements in bioanalysis, molecular biology, molecular imaging, and medical diagnostics. Despite a large toolbox of molecular and nanoscale fluorophores to choose from, there is still a need for brighter labels, e.g., for flow cytometry and fluorescence microscopy, that are preferably of molecular nature. This requires versatile concepts for fluorophore multimerization, which involves the shielding of dyes from other chromophores and possible quenchers in their neighborhood. In addition, to increase the number of readout parameters for fluorescence microscopy and eventually also flow cytometry, control and tuning of the labels' fluorescence lifetimes is desired. Searching for bright multi-chromophoric or multimeric labels, we developed PEGylated dyes bearing functional groups for their bioconjugation and explored their spectroscopic properties and photostability in comparison to those of the respective monomeric dyes for two exemplarily chosen fluorophores excitable at 488 nm. Subsequently, these dyes were conjugated with anti-CD4 and anti-CD8 immunoglobulins to obtain fluorescent conjugates suitable for the labeling of cells and beads. Finally, the suitability of these novel labels for fluorescence lifetime imaging and target discrimination based upon lifetime measurements was assessed. Based upon the results of our spectroscopic studies including measurements of fluorescence quantum yields (QY) and fluorescence decay kinetics we could demonstrate the absence of significant dye-dye interactions and self-quenching in these multimeric labels. Moreover, in a first fluorescence lifetime imaging (FLIM) study, we could show the future potential of this multimerization concept for lifetime discrimination and multiplexing.
Identifiants
pubmed: 38789582
doi: 10.1038/s41598-024-62548-4
pii: 10.1038/s41598-024-62548-4
doi:
Substances chimiques
Fluorescent Dyes
0
Polyethylene Glycols
3WJQ0SDW1A
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
11882Informations de copyright
© 2024. The Author(s).
Références
Cavazos-Elizondo, D. & Aguirre-Soto, A. Photophysical properties of fluorescent labels: A meta-analysis to guide probe selection amidst challenges with available data. Anal. Sens. 2, e202200004. https://doi.org/10.1002/anse.202200004 (2022).
doi: 10.1002/anse.202200004
Leake, M. C. & Quinn, S. D. A guide to small fluorescent probes for single-molecule biophysics. Chem. Phys. Rev. https://doi.org/10.1063/5.0131663 (2023).
doi: 10.1063/5.0131663
Gao, P., Pan, W., Li, N. & Tang, B. Fluorescent probes for organelle-targeted bioactive species imaging. Chem. Sci. 10, 6035–6071. https://doi.org/10.1039/C9SC01652J (2019).
doi: 10.1039/C9SC01652J
pubmed: 31360411
pmcid: 6585876
Resch-Genger, U., Grabolle, M., Cavaliere-Jaricot, S., Nitschke, R. & Nann, T. Quantum dots versus organic dyes as fluorescent labels. Nat. Methods 5, 763–775. https://doi.org/10.1038/nmeth.1248 (2008).
doi: 10.1038/nmeth.1248
pubmed: 18756197
Krämer, J. et al. Molecular probes, chemosensors, and nanosensors for optical detection of biorelevant molecules and ions in aqueous media and biofluids. Chem. Rev. 122, 3459–3636. https://doi.org/10.1021/acs.chemrev.1c00746 (2022).
doi: 10.1021/acs.chemrev.1c00746
pubmed: 34995461
pmcid: 8832467
Martinić, I. et al. Near-infrared luminescent metallacrowns for combined in vitro cell fixation and counter staining. Chem. Sci. 8, 6042–6050. https://doi.org/10.1039/C7SC01872J (2017).
doi: 10.1039/C7SC01872J
pubmed: 28989634
pmcid: 5625569
Wolfbeis, O. S. An overview of nanoparticles commonly used in fluorescent bioimaging. Chem. Soc. Rev. 44, 4743–4768. https://doi.org/10.1039/C4CS00392F (2015).
doi: 10.1039/C4CS00392F
pubmed: 25620543
Farka, Z., Juřík, T., Kovář, D., Trnková, L. & Skládal, P. Nanoparticle-based immunochemical biosensors and assays: Recent advances and challenges. Chem. Rev. 117, 9973–10042. https://doi.org/10.1021/acs.chemrev.7b00037 (2017).
doi: 10.1021/acs.chemrev.7b00037
pubmed: 28753280
Algar, W. R. et al. Photoluminescent nanoparticles for chemical and biological analysis and imaging. Chem. Rev. 121, 9243–9358. https://doi.org/10.1021/acs.chemrev.0c01176 (2021).
doi: 10.1021/acs.chemrev.0c01176
pubmed: 34282906
Han, T. et al. Aggregation-induced emission: A rising star in chemistry and materials science. Chin. J. Chem. 39, 677–689. https://doi.org/10.1002/cjoc.202000520 (2021).
doi: 10.1002/cjoc.202000520
Tang, W. & Becker, M. L. “Click” reactions: A versatile toolbox for the synthesis of peptide-conjugates. Chem. Soc. Rev. 43, 7013–7039. https://doi.org/10.1039/C4CS00139G (2014).
doi: 10.1039/C4CS00139G
pubmed: 24993161
Tian, S. et al. Maleic anhydride labeling-based approach for quantitative proteomics and successive derivatization of peptides. Anal. Chem. 89, 8259–8265. https://doi.org/10.1021/acs.analchem.7b01120 (2017).
doi: 10.1021/acs.analchem.7b01120
pubmed: 28723071
Howarth, M. et al. A monovalent streptavidin with a single femtomolar biotin binding site. Nat. Methods 3, 267–273. https://doi.org/10.1038/nmeth861 (2006).
doi: 10.1038/nmeth861
pubmed: 16554831
pmcid: 2576293
Anderson, G. P. et al. Oriented immobilization of single-domain antibodies using SpyTag/SpyCatcher yields improved limits of detection. Anal. Chem. 91, 9424–9429. https://doi.org/10.1021/acs.analchem.9b02096 (2019).
doi: 10.1021/acs.analchem.9b02096
pubmed: 31313917
Palui, G., Aldeek, F., Wang, W. & Mattoussi, H. Strategies for interfacing inorganic nanocrystals with biological systems based on polymer-coating. Chem. Soc. Rev. 44, 193–227. https://doi.org/10.1039/C4CS00124A (2015).
doi: 10.1039/C4CS00124A
pubmed: 25029116
Saha, B., Evers, T. H. & Prins, M. W. J. How antibody surface coverage on nanoparticles determines the activity and kinetics of antigen capturing for biosensing. Anal. Chem. 86, 8158–8166. https://doi.org/10.1021/ac501536z (2014).
doi: 10.1021/ac501536z
pubmed: 25048623
Colombo, M. et al. Tumour homing and therapeutic effect of colloidal nanoparticles depend on the number of attached antibodies. Nat. Commun. 7, 13818. https://doi.org/10.1038/ncomms13818 (2016).
doi: 10.1038/ncomms13818
pubmed: 27991503
pmcid: 5187442
Fleming, A. et al. Designing functional bionanoconstructs for effective in vivo targeting. Bioconjug. Chem. 33, 429–443. https://doi.org/10.1021/acs.bioconjchem.1c00546 (2022).
doi: 10.1021/acs.bioconjchem.1c00546
pubmed: 35167255
pmcid: 8931723
Reiber, T., Zavoiura, O., Dose, C. & Yushchenko, D. A. Fluorophore multimerization as an efficient approach towards bright protein labels. Eur. J. Org. Chem. 2817–2830, 2021. https://doi.org/10.1002/ejoc.202100117 (2021).
doi: 10.1002/ejoc.202100117
Pauli, J. et al. Suitable labels for molecular imaging—Influence of dye structure and hydrophilicity on the spectroscopic properties of igg conjugates. Bioconjug. Chem. 22, 1298–1308. https://doi.org/10.1021/bc1004763 (2011).
doi: 10.1021/bc1004763
pubmed: 21585199
Pauli, J. et al. New fluorescent labels with tunable hydrophilicity for the rational design of bright optical probes for molecular imaging. Bioconjug. Chem. 24, 1174–1185. https://doi.org/10.1021/bc4000349 (2013).
doi: 10.1021/bc4000349
pubmed: 23758616
Eisfeld, A. & Briggs, J. S. The J- and H-bands of organic dye aggregates. Chem. Phys. 324, 376–384. https://doi.org/10.1016/j.chemphys.2005.11.015 (2006).
doi: 10.1016/j.chemphys.2005.11.015
Packard, B. Z., Komoriya, A., Toptygin, D. D. & Brand, L. Structural characteristics of fluorophores that form intramolecular H-type dimers in a protease substrate. J. Phys. Chem. B 101, 5070–5074. https://doi.org/10.1021/jp9702210 (1997).
doi: 10.1021/jp9702210
Ogawa, M., Kosaka, N., Choyke, P. L. & Kobayashi, H. H-type dimer formation of fluorophores: A mechanism for activatable, in vivo optical molecular imaging. ACS Chem. Biol. 4, 535–546. https://doi.org/10.1021/cb900089j (2009).
doi: 10.1021/cb900089j
pubmed: 19480464
pmcid: 2743556
Brown, C. W. III. et al. Dendrimeric DNA nanostructures as scaffolds for efficient bidirectional BRET–FRET cascades. Adv. Opt. Mater. 5, 1700181. https://doi.org/10.1002/adom.201700181 (2017).
doi: 10.1002/adom.201700181
Brown, C. W. III. et al. Evaluating dye-labeled DNA dendrimers for potential applications in molecular biosensing. ACS Sens. 2, 401–410. https://doi.org/10.1021/acssensors.6b00778 (2017).
doi: 10.1021/acssensors.6b00778
pubmed: 28723206
Buckhout-White, S. et al. Assembling programmable FRET-based photonic networks using designer DNA scaffolds. Nat. Commun. 5, 5615. https://doi.org/10.1038/ncomms6615 (2014).
doi: 10.1038/ncomms6615
pubmed: 25504073
Schmied, J. J. et al. DNA origami–based standards for quantitative fluorescence microscopy. Nat. Protoc. 9, 1367–1391. https://doi.org/10.1038/nprot.2014.079 (2014).
doi: 10.1038/nprot.2014.079
pubmed: 24833175
Choi, Y., Kotthoff, L., Olejko, L., Resch-Genger, U. & Bald, I. DNA origami-based förster resonance energy-transfer nanoarrays and their application as ratiometric sensors. ACS Appl. Mater. Interfaces 10, 23295–23302. https://doi.org/10.1021/acsami.8b03585 (2018).
doi: 10.1021/acsami.8b03585
pubmed: 29916243
Jahnke, K., Grubmüller, H., Igaev, M. & Göpfrich, K. Choice of fluorophore affects dynamic DNA nanostructures. Nucleic Acids Res. 49, 4186–4195. https://doi.org/10.1093/nar/gkab201 (2021).
doi: 10.1093/nar/gkab201
pubmed: 33784399
pmcid: 8053122
Ebrahimi, S. B., Samanta, D. & Mirkin, C. A. DNA-based nanostructures for live-cell analysis. J. Am. Chem. Soc. 142, 11343–11356. https://doi.org/10.1021/jacs.0c04978 (2020).
doi: 10.1021/jacs.0c04978
pubmed: 32573219
Dose, C. Bright Fluorochromes Based on Multimerization of Fluorescent Dyes on Branched Polyether Scaffolds (Germany patent, 2015).
Agard, N. J., Baskin, J. M., Prescher, J. A., Lo, A. & Bertozzi, C. R. A comparative study of bioorthogonal reactions with azides. ACS Chem. Biol. 1, 644–648. https://doi.org/10.1021/cb6003228 (2006).
doi: 10.1021/cb6003228
pubmed: 17175580
Szabó, Á. et al. The effect of fluorophore conjugation on antibody affinity and the photophysical properties of dyes. Biophys. J. 114, 688–700. https://doi.org/10.1016/j.bpj.2017.12.011 (2018).
doi: 10.1016/j.bpj.2017.12.011
pubmed: 29414714
pmcid: 5985035
Siemiarczuk, A., Wagner, B. D. & Ware, W. R. Comparison of the maximum entropy and exponential series methods for the recovery of distributions of lifetimes from fluorescence lifetime data. J. Phys. Chem. 94, 1661–1666. https://doi.org/10.1021/j100367a080 (1990).
doi: 10.1021/j100367a080
Włodarczyk, J. & Kierdaszuk, B. Interpretation of fluorescence decays using a power-like model. Biophys. J. 85, 589–598. https://doi.org/10.1016/S0006-3495(03)74503-2 (2003).
doi: 10.1016/S0006-3495(03)74503-2
pubmed: 12829513
pmcid: 1303114
Parra, E. R., Francisco-Cruz, A. & Wistuba, I. I. State-of-the-art of profiling immune contexture in the era of multiplexed staining and digital analysis to study paraffin tumor tissues. Cancers 11, 247 (2019).
doi: 10.3390/cancers11020247
pubmed: 30791580
pmcid: 6406364
Lakowicz, J. R. Principles of Fluorescence Spectroscopy (Springer, 2007).
Roederer, M. Spectral compensation for flow cytometry: Visualization artifacts, limitations, and caveats. Cytometry 45, 194–205. https://doi.org/10.1002/1097-0320(20011101)45:3%3c194::AID-CYTO1163%3e3.0.CO;2-C (2001).
doi: 10.1002/1097-0320(20011101)45:3<194::AID-CYTO1163>3.0.CO;2-C
pubmed: 11746088
Kinkhabwala, A. et al. MACSima imaging cyclic staining (MICS) technology reveals combinatorial target pairs for CAR T cell treatment of solid tumors. Sci. Rep. 12, 1911. https://doi.org/10.1038/s41598-022-05841-4 (2022).
doi: 10.1038/s41598-022-05841-4
pubmed: 35115587
pmcid: 8813936
Black, S. et al. CODEX multiplexed tissue imaging with DNA-conjugated antibodies. Nat. Protoc. 16, 3802–3835. https://doi.org/10.1038/s41596-021-00556-8 (2021).
doi: 10.1038/s41596-021-00556-8
pubmed: 34215862
pmcid: 8647621
Jones, J. A. et al. Oligonucleotide conjugated antibody strategies for cyclic immunostaining. Sci. Rep. 11, 23844. https://doi.org/10.1038/s41598-021-03135-9 (2021).
doi: 10.1038/s41598-021-03135-9
pubmed: 34903759
pmcid: 8668956
Berezin, M. Y. & Achilefu, S. Fluorescence lifetime measurements and biological imaging. Chem. Rev. 110, 2641–2684. https://doi.org/10.1021/cr900343z (2010).
doi: 10.1021/cr900343z
pubmed: 20356094
pmcid: 2924670
Hildebrandt, N. et al. Energy transfer with semiconductor quantum dot bioconjugates: A versatile platform for biosensing, energy harvesting, and other developing applications. Chem. Rev. 117, 536–711. https://doi.org/10.1021/acs.chemrev.6b00030 (2017).
doi: 10.1021/acs.chemrev.6b00030
pubmed: 27359326
Kaiser, U. et al. Förster resonance energy transfer mediated enhancement of the fluorescence lifetime of organic fluorophores to the millisecond range by coupling to Mn-doped CdS/ZnS quantum dots. Nanotechnology 27, 055101. https://doi.org/10.1088/0957-4484/27/5/055101 (2016).
doi: 10.1088/0957-4484/27/5/055101
pubmed: 26670636
Tan, M. et al. Rare-earth-doped fluoride nanoparticles with engineered long luminescence lifetime for time-gated in vivo optical imaging in the second biological window. Nanoscale 10, 17771–17780. https://doi.org/10.1039/C8NR02382D (2018).
doi: 10.1039/C8NR02382D
pubmed: 30215442
Mathejczyk, J. E. et al. High-sensitivity detection of breast tumors in vivo by use of a pH-sensitive near-infrared fluorescence probe. J. Biomed. Opt. 17, 076028. https://doi.org/10.1117/1.jbo.17.7.076028 (2012).
doi: 10.1117/1.jbo.17.7.076028
pubmed: 22894511
Hoffmann, K., Behnke, T., Drescher, D., Kneipp, J. & Resch-Genger, U. Near-infrared-emitting nanoparticles for lifetime-based multiplexed analysis and imaging of living cells. ACS Nano 7, 6674–6684. https://doi.org/10.1021/nn4029458 (2013).
doi: 10.1021/nn4029458
pubmed: 23837453
Frei, M. S., Koch, B., Hiblot, J. & Johnsson, K. Live-cell fluorescence lifetime multiplexing using synthetic fluorescent probes. ACS Chem. Biol. 17, 1321–1327. https://doi.org/10.1021/acschembio.2c00041 (2022).
doi: 10.1021/acschembio.2c00041
pubmed: 35584304
pmcid: 9207807
Yang, X. et al. Lifetime-engineered ruby nanoparticles (tau-rubies) for multiplexed imaging of μ-opioid receptors. ACS Sens. 6, 1375–1383. https://doi.org/10.1021/acssensors.1c00008 (2021).
doi: 10.1021/acssensors.1c00008
pubmed: 33660984
Rietsch, P. et al. Substitution pattern-controlled fluorescence lifetimes of fluoranthene dyes. J. Phys. Chem. B 125, 1207–1213. https://doi.org/10.1021/acs.jpcb.0c08851 (2021).
doi: 10.1021/acs.jpcb.0c08851
pubmed: 33475384
Ortgies, D. H. et al. Lifetime-encoded infrared-emitting nanoparticles for in vivo multiplexed imaging. ACS Nano 12, 4362–4368. https://doi.org/10.1021/acsnano.7b09189 (2018).
doi: 10.1021/acsnano.7b09189
pubmed: 29697971
Lu, Y. et al. Tunable lifetime multiplexing using luminescent nanocrystals. Nat. Photon. 8, 32–36. https://doi.org/10.1038/nphoton.2013.322 (2014).
doi: 10.1038/nphoton.2013.322
Grabolle, M. et al. Fluorescence lifetime multiplexing with nanocrystals and organic labels. Anal. Chem. 81, 7807–7813. https://doi.org/10.1021/ac900934a (2009).
doi: 10.1021/ac900934a
pubmed: 19705851
Kage, D. et al. Luminescence lifetime encoding in time-domain flow cytometry. Sci. Rep. 8, 16715. https://doi.org/10.1038/s41598-018-35137-5 (2018).
doi: 10.1038/s41598-018-35137-5
pubmed: 30425307
pmcid: 6233182
Stenspil, S. G., Chen, J., Liisberg, M. B., Flood, A. H. & Laursen, B. W. Control of the fluorescence lifetime in dye based nanoparticles. Chem. Sci. https://doi.org/10.1039/D3SC05496A (2024).
doi: 10.1039/D3SC05496A
pubmed: 38638234
pmcid: 11023049
Dong, H. et al. Versatile spectral and lifetime multiplexing nanoplatform with excitation orthogonalized upconversion luminescence. ACS Nano 11, 3289–3297. https://doi.org/10.1021/acsnano.7b00559 (2017).
doi: 10.1021/acsnano.7b00559
pubmed: 28238259
Shikha, S., Salafi, T., Cheng, J. & Zhang, Y. Versatile design and synthesis of nano-barcodes. Chem. Soc. Rev. 46, 7054–7093. https://doi.org/10.1039/C7CS00271H (2017).
doi: 10.1039/C7CS00271H
pubmed: 29022018
Qiu, X., Guo, J., Xu, J. & Hildebrandt, N. Three-dimensional FRET multiplexing for DNA quantification with attomolar detection limits. J. Phys. Chem. Lett. 9, 4379–4384. https://doi.org/10.1021/acs.jpclett.8b01944 (2018).
doi: 10.1021/acs.jpclett.8b01944
pubmed: 30016106
Zhou, L. et al. High-capacity upconversion wavelength and lifetime binary encoding for multiplexed biodetection. Angew. Chem. Int. Ed. 57, 12824–12829. https://doi.org/10.1002/anie.201808209 (2018).
doi: 10.1002/anie.201808209
Kage, D., Hoffmann, K., Borcherding, H., Schedler, U. & Resch-Genger, U. Lifetime encoding in flow cytometry for bead-based sensing of biomolecular interaction. Sci. Rep. 10, 19477. https://doi.org/10.1038/s41598-020-76150-x (2020).
doi: 10.1038/s41598-020-76150-x
pubmed: 33173064
pmcid: 7655863
Kage, D. et al. Tempo-spectral multiplexing in flow cytometry with lifetime detection using QD-encoded polymer beads. Sci. Rep. 10, 653. https://doi.org/10.1038/s41598-019-56938-2 (2020).
doi: 10.1038/s41598-019-56938-2
pubmed: 31959852
pmcid: 6971033
Marmé, N., Knemeyer, J.-P., Sauer, M. & Wolfrum, J. Inter- and intramolecular fluorescence quenching of organic dyes by tryptophan. Bioconjug. Chem. 14, 1133–1139. https://doi.org/10.1021/bc0341324 (2003).
doi: 10.1021/bc0341324
pubmed: 14624626